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Stochastic Gradient Descent (SGD) is perhaps the most frequently used method for
large scale training. A common example is training a neural network over a large data
set, which amounts to minimizing the corresponding mean squared error (MSE). Since
the convergence of SGD is rather slow, acceleration techniques based on the notion of
“Mini-Batches” have been developed. All of them however, mimicking SGD, impose
diminishing step-sizes as a means to inhibit large variations in the MSE objective.

In this article, we introduce random sets of mini-batches instead of individual mini-
batches. We employ an objective function that minimizes the average MSE and its
variance over these sets, eliminating so the need for the systematic step size reduction.

This approach permits the use of state-of-the-art optimization methods, far more efficient
than the gradient descent, and yields a significant performance enhancement.

Keywords: Large-scale training; neural networks; stochastic gradient descent; variance
reduction.

1. Introduction

The stochastic approximation method of Robbins and Monro,1 laid the foundation

for the development of SGD, which together with its variants are the preferred ap-

proaches for large-scale training. In this article, we examine the problem of training

a neural network over a large data set, which nowadays is a frequent task in a host of
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machine-learning applications. Several modifications to the original SGD algorithm,

targeting to accelerate convergence, have appeared in the literature recently; see

for example ADAM,2,3 AMSGrad,4 RADAM5 and ADABound and AMSBound6

among others. Since the deterministic gradient descent is lagging behind in per-

formance compared to Quasi-Newton methods, the question of the possibility to

extend the latter appropriately for the stochastic case, naturally arises. In this di-

rection several techniques have emerged,7–9 which use a quasi-Newton direction in

place of the negative gradient, in an attempt to hasten convergence. SGD-based

techniques have been recently detailed and analyzed in an extensive review article

by Bottou et al.10 All of these SGD–alternatives, operate on randomly selected

subsets of the training set, called “Mini–Batches”. Each Mini–Batch contains a

relatively small number of training points and the associated algorithms, in order

to avoid over-training and at the same time keep the MSE variance low, resort to

using steps of diminishing size, retarding therefore the convergence.

In Section 2 we present the rationale and the framework of the proposed

approach, along with justification for the algorithmic choices. The Variance Coun-

terbalancing (VCB) algorithm is detailed in Section 2.1. In Section 3, implementa-

tion details are given about the platforms used and the coding language, while in

Section 3.1, a brief description of the functionally weighted neural network used, is

laid out. Numerical experiments are described in Section 4, where VCB is compared

to the full-batch BFGS approach and with the widely used ADAM3 method. Fi-

nally in Section 5, conclusions are drawn along with some remarks and suggestions

for further investigation.

2. Variance Counterbalancing

Let S be a training set

S = {(x1, y1), . . . , (xN , yN )} with x ∈ Rn, y ∈ R (1)

and let N(x,w) be a neural network with weights w, that is to be trained over S.

Training is performed by minimizing w.r.t. w the relevant MSE, given by

E(w) =
1

N

N∑
i=1

[N(xi, w)− yi]2 . (2)

Let also S
(M)
i be a subset of S (a mini-batch), containing M points selected at

random.

S
(M)
i = {(xi1 , yi1), . . . , (xiM , yiM )} ⊂ S (3)

with an associated MSE given by

Ei(w) =
1

M

M∑
j=1

[
N(xij , w)− yij

]2
. (4)
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Let the optimal weights be denoted by w∗, corresponding to a “proper” MSE mini-

mum E(w∗). The characterization “proper”, refers to certain properties that should

be satisfied at w∗. MSE objectives, in most cases, possess many local minima. Not

every minimum is a suitable choice as far as learning is concerned. A proper mini-

mum, that has the potential to generalize well, is one that maintains the fluctuations

of the individual squared errors as small as possible. This may be expressed by the

relation

E(w∗) ≈ Ei(w∗), ∀ i = 1, 2, . . . (5)

which is a quite plausible hypothesis, since otherwise either the training would

be poor, or the neural network would be of limited capacity. If the requirement

expressed in (5) could be imposed as a constraint to the optimization process, then

the optimal w∗ would be proper.

So if we consider a random set of K mini-batches, one may construct a suitable

objective

F (w, λ) = E(w) + λ
1

K

K∑
i=1

[Ei(w)− E(w)]
2
, with λ > 0 (6)

that counterbalances E(w) with a variance term to suppress the fluctuations. To

avoid using the costly E(w), we replace it in Eq. (6), by an average over the K

mini-batches.

Ē(w) =
1

K

K∑
i=1

Ei(w) . (7)

The new objective then becomes

F̄ (w, λ) = Ē(w) + λ
1

K

K∑
i=1

[
Ei(w)− Ē(w)

]2
. (8)

Apart from λ, the second term in Eq. (8) is the variance of Ei(w)

σ2(w) ≡ 1

K

K∑
i=1

[
Ei(w)− Ē(w)

]2
. (9)

The training proceeds in epochs, where each epoch is characterized by the random

choice of the mini-batch set {S(M)
i , i = 1, . . . ,K}. Note that the value of the penalty

λ in each epoch, is crucial for the successful application of the VCB algorithm.

Several approaches may apply, for instance the traditional one, where the penalty

starts from a low value and is gradually enhanced, or inversely, starting from a

high value and subsequently being reduced. The second approach aims to guide the

training into the small variance region of the weight space from the very start. We

have followed a “retarded penalty” approach analyzed in Appendix B.
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2.1. The VCB-algorithm

To apply the above ideas to the problem of minimizing the MSE, one may proceed

as follows

(1) Input:

S, the training set, containing N points (x, y). See Eq. (1).

K, the number of mini-batches S
(M)
i , each containing M ≥ 2 points.

α, a lower bound for the penalty (α ≈ 0.1).

β, an upper bound for the penalty (β ≈ 70).

w(0), the initial values for the weights.

(2) Set the iteration counter (epoch) k = 0, w∗ = w(0).

Calculate E(w(0)), the full MSE using all the training examples from Eq. (2).

Set E∗ = E(w(0)).

(3) Pick at random from S, a set of K mini-batches S
(M)
i=1,K , each containing M

points.

A mini-batch is constructed by picking at random M out of N points from S,

via an efficient algorithm listed in (Appendix A).

(4) Set the penalty value according to the “retarded penalty” policy described in

(Appendix B)

λ = min

(
max

(
E∗ − Ē(w(k))

σ2(w(k))
, α

)
, β

)
. (10)

(5) Minimize the objective F̄ (w, λ) of Eq. (8), starting at w = w(k), and obtain

w(k+1).

(6) Calculate E(w(k+1)), i.e. the full MSE.

If E(w(k+1)) < E(w∗), Update: w∗ = w(k+1) and E∗ = E(w(k+1)).

(7) Increment k → k + 1, and repeat from step 3 until a stopping criterion is

satisfied.

(8) Output:

The proper w∗ and the corresponding MSE, E∗ = E(w∗).

Several stopping criteria may be used.

(i) Stop after a prescribed number of iterations.

This number could be determined, for example, by the available CPU-time

budget.

(ii) Stop if for a preset number of consecutive iterations, progress is below a thresh-

old.

This will prevent unnecessary iterations.

(iii) Stop if any of the above rules instructs so.

A combination in the sense of “whatever comes first”, stopping rule.a

aThis is the rule adopted in our numerical experiments.
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Notice that following the minimization session in step 5 , an evaluation of the full

MSE takes place in step 6 . This might at first seem to weigh on the CPU-time.

However, and depending on the termination criteria, it may save iterations. Note

also that the most expensive part, is not the full MSE itself but rather its gradient,

which however is not being evaluated. Anyway, a rough estimate is that it adds,

depending on the mini-batch number and size, approximately a 5–25% burden to

the training time. In addition, if the full MSE is not evaluated, the resulting weights,

that would be unconditionally updated, will not correspond to the least attained

MSE value, and hence may be way too far from optimal.

3. Implementation

We have employed the “Merlin-3.0” optimization environment,11 along with its

programming language “MCL”,12 to implement the proposed VCB algorithm.

Merlin is a command driven environment, offering a host of robust optimization

routines for bound constrained problems, and several auxiliary facilities. Merlin can

be programmed at a high level via MCL (Merlin Control Language) to automate

optimization strategies. Both Merlin and MCL are written in Fortran-77.

The objective F̄ (w, λ) is programmed as a function, and its gradient as a sub-

routine, both in Fortran, in the format required by Merlin. The strategy followed

in the VCB-Algorithm, is programmed in MCL.

Among the various types of Artificial Neural Networks (ANNs), we have chosen

to use the recent “Functionally Weighted Neural Network” (FWNN),13 a network

with infinite number of nodes. Certainly, any type of ANN (MLP, RBF, etc.) could

have been used instead as well.

3.1. Brief description of FWNN

The FWNN is given by the expression

NFW (x,w) =

∫ +1

−1

ds√
1− s2

a(s) exp

(
−||x− µ(s)||2

2σ(s)2

)
, with x and µ(s) ∈ Rn

(11)

and

a(s) =

La∑
j=0

ajs
j , µi(s) =

Lµ∑
j=0

µijs
j (∀ i = 1, . . . , n), σ(s) =

Lσ∑
j=0

σjs
j (12)

where the weights are denoted collectively by

w =
(
{aj}Laj=0, {µij}

n,Lµ
i=1,j=0, {σj}

Lσ
j=0

)
.

The number of weights are given by the expression

L = (1 + La) + n(1 + Lµ) + (1 + Lσ) = n+ 2 + La + nLµ + Lσ .

The integral in (11), may be efficiently and accurately evaluated by the Gauss-

Chebyshev quadrature.14
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Fig. 1. The “Mexican Hat” function: f(x1, x2) =
sin(x2

1+x2
2 )√

x2
1+x2

2

.

4. Numerical Experiments

We have performed experiments with the two-dimensional function known as the

“Mexican Hat”, a 3-d plot of which is depicted in Fig. 1. We have considered a

2-dimensional grid of (200 × 200), i.e. a total of 40 × 103 points, for (x1, x2) ∈
[−5, 5]⊗ [−5, 5]. This training set of 40× 103 points, is a large set, but not a very

large one. The reason it was chosen is that the training of the MSE, E(w) in Eq. (2),

over the whole training set, is feasible. This enables a comparison of the standard

approach to the method proposed in the present article.

Let τf and τg be the CPU-times required for a single evaluation of the neural

network NFW (x,w) and of its gradient ∇wNFW (x,w) respectively. Then the re-

quired CPU-times for evaluating F̄ (w, λ) in Eq. (8) and its gradient ∇wF̄ (w, λ), are

KMτf , and KM(τf + τg). If by Nf and Ng we denote the number of evaluations

of F̄ (w, λ) and ∇wF̄ (w, λ) performed during the training, then the total training

CPU-time is estimated by

T (K,M,Nf , Ng) = KM [Nfτf +Ng (τg + τf )] . (13)

Note that the MSE training over the whole training set, corresponds to setting

K = 1,M = N . The FWNN used is described by La = 8, Lµ = 5, Lσ = 4, with a

total of L = 26 parameters. For this network in our computer system it turned out

that τg ≈ 2τf .

4.1. Comparison with full-batch BFGS

We report in Table 1 the averages over 20 experiments with different random ini-

tialization. The first row corresponds to the full-batch approach using the BFGS

method with line search, while the rest list the results with the VCB algorithm.

The last column (Percent), denotes the percentage of time spent for evaluating the

full MSE in each epoch.
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Table 1. Mini-batch set structure, and corresponding results.

K M Nf Ng MSE T (in 106τf ) Percent

1 40 000 1252 1165 3.45 × 10−2 190 ×
20 50 4333 3873 3.26 × 10−2 21 24

25 40 4479 3976 3.08 × 10−2 22 25

40 25 4382 3910 3.28 × 10−2 21 24

50 20 4607 4126 3.26 × 10−2 22 24

50 50 3591 3271 3.34 × 10−2 36 7

The FWNN weights were bounded in the range [−100, 100]. Note also that reg-

ularization techniques have not been used. For the optimization we have employed

the Quasi-Newton approach with BFGS15,16 updates.

4.2. Experiments with ADAM

We have performed experiments with the ADAM method, since it is a reference

method for stochastic optimization and therefore a comparison could be useful and

interesting. ADAM calculates only the gradient of the MSE over a mini-batch,

and unconditionally accepts the parameter updates. The path followed is not a

monotonically descent one. There is no theoretically sound stopping rule to adopt,

unless one evaluates from time to time either the MSE over the whole training set

or its gradient. Hence there is an ambiguity regarding the termination criteria to

be used in practice. In our experiments we have evaluated the full-MSE every 500

iterations, and stopped iterating when either M ×Ng ≥ Lt or MSE ≤ ft. We tried

two different values for Lt. Lt = 20 × 106 and Lt = 30 × 106 for M = 50, and

Lt = 20 × 106 and Lt = 40 × 106 for M = 100, 150&200. The target value was

set to ft = 3.3 × 10−2, i.e. a little higher that the average attained by the VCB

method. Note that the reported times in Table 2, do not contain the time spent for

the periodic MSE evaluation, which is approximately equal to Ng × 10−4 in units

of 106τf .

One may notice that for M = 100, the drop in the MSE value after an addi-

tional number of 163 067 iterations is 1.27×10−3, showing that convergence is slow.

The situation is similar for all values of M . For larger training sets, convergence is

expected to be even slower. Inspecting Tables 1 and 2, notice that ADAM is roughly

1.6 to 3 times faster than the full-batch BFGS, and 2 to 6 times slower than VCB.

Table 2. ADAM mini-batch size, and corresponding results.

M Ng MSE T (in 106τf ) Ng MSE T (in 106τf )

50 395 433 3.67 × 10−2 59 568 767 3.63 × 10−2 85

100 200 000 3.69 × 10−2 60 363 067 3.56 × 10−2 109

150 133 334 3.89 × 10−2 60 253 422 3.63 × 10−2 114

200 100 000 4.09 × 10−2 60 196 167 3.63 × 10−2 118
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5. Remarks and Conclusions

In this article, a novel alternative to SGD-based methods is presented entitled “Vari-

ance Counterbalancing” a code name that points to its cornerstone concept. The

numerical investigation for demonstrating its efficiency, although limited, clearly

illustrates the capability of the approach to deal with large scale training problems.

When compared to the full-batch approach, we have observed significant CPU-

time reductions. Depending on the structure of the mini-batch set, VCB is from 5

to 10 times faster for the examined Mexican-hat data set. Moreover, the full-batch

approach, since it lacks the stochastic element inherent in VCB, is trapped more of-

ten to undesirable local minima. Note also that on the average, VCB achieves lower

MSE values as it can be verified by inspecting the MSE column of Table 1. The

penalty term in Eq. (8), since it has a reducing effect on the variance, guides the

optimization process to a minimum with promising generalization potential. Com-

paring to the ADAM method, we noticed an average 3–4 times acceleration and the

extra advantage that unambiguous stopping rules may apply. We recommend that

further tests, involving large multidimensional data sets preferably corresponding

to real-world applications, should be carried out in order to definitively confirm and

establish the practical utility of the proposed VCB approach.
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Appendix A. Algorithm S

The problem

Pick k ≤ n integers: lj=1,k at random, from the set {1, 2, . . . , n},

is being solved by “Algorithm S” described in Ref. 17 (p. 142), originally developed

in Refs. 18 and 19, and listed below for convenience.

(1) Input: k, n

Output: lj , j = 1, . . . k

(2) Initialize: i = 0, m = 0

(3) x = ξ|ξ is a uniform random number in (0, 1)

(4) if (n− i)x < k −m, then

m← m+ 1, i← i+ 1

lm ← i

else

i← i+ 1

endif

(5) if m = k, Stop

Repeat from step 3
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Appendix B. The Retarded Penalty Policy

At the end of kth epoch, the weight vector w(k), the mean Ē(w(k)), and the current

best value of the full MSE E∗ are known. The penalty for the next epoch is obtained

by imposing the retarded requirement: F̄ (w(k), λk+1) = E∗. Using Eq. (8) and

forcing λ ∈ [α, β]

λk+1 = min

(
max

(
E∗ − Ē(w(k))

σ2(w(k))
, α

)
, β

)
. (B.1)
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