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CALCULATION OF EIGH ORDER OPERATOR TERMS IN VARTATIONAL MANY-~BODY THEORIES

I.E. LAGARIS *

Department of Physics University of Ioannina

Ioannina - Greece

Abstract.. - A recursion relation method capable of freating high order operator
terms, in variational many-body theories with operator correlations, is suggested.
As an illustration of the method two simple cases are solved exactly. First is the
case of Fermi hypernetted o(or 1) chains; second is the case of direct double ¢{or
1} chains. The method can be extended to treat other interesing cases as well, sin
ce is attacks counting problems common to many calculations,

1. - Introduction.=-

In variational many-body theories of
Nuclear matter (MM}, with operator correla-~
tions, such as those of ref., 1 {from here
on called PW}, and of ref, 2, the trial wa~
vefunction is of the form:

|y > = §S;ﬂ;Fij| | > (t.1)

where }{¢> is the non-interacting ground sta
te wavefunction, F,, is the correlation two-
body operator and Jit the appropriate symme
trizer since the operators F ., F, do not
in general commute. In PW the%ry JEhe gorre-
lation operator is taken to be:
= § ¢ of 1.2
Fij P4 f {rij) i3 {1.2)
where £(r,.} are fungtions of the internu-
cleon dis%Ance and Oi' are the operators:

r=1,8

g, =1 G, T,y O, T, .8, LTy :
i I R L & A ij'tijle’bij
DyaTiy {1.3)
3->-+ > >
G..T,, O
+ + li}jl}"“""
=g, =%, .T, .8, = o O
c;ij %5 Gj' i3 T3 Tj' i r2 £
i3
1 = g
h,, == (o, + 9,}). L.
ij 2 i ij

e &';are the Pauli spin-isospin matrices,t;
is the tensor operator and b,, is the spin-
orbit operator. +J

Then one calculates and minimizes:

g o SY|H Y

T o<ty

to get an upper bound for the ground state
energy of NM. The method employs a diagram-—
matic cluster expansion, described in PW,
which has been proven to be very convenient
for caleulaticons of this kind., Since the
exact calculation is a impossible task, se-
veral approximations are used. For instance
only central chains are hypernetted, while
operator chains are not. Furthermore, the

operator chains are calculated in the 'sin-
gle operator' scheme {80C), while multiple
operator chains are neglected. Wiringa3) te~-
sted the validity of those approximations,

by evaluating the supposedly leading terms of hi
gher order corrections.The net contribution to
the energy from those terms was found to be

- guite small indeed, inspite the fact that se

perately some of them were appreciable, due
to cancelation of different corrections. Wi
ringa calculated these terms at densities
around the eguilibrium density of NM. Howe-
ver at higher densities these terms become
wmore important. For asymmetric NM or for Neu
tron-matter calculations, much higher d&en-~
sities are relevant and so one may need a
more accurate calculation,

Fantoni et al4) developed an approximate
treatment of hyperneted operator chains (HOC)
which neglects various different operator or-
ders. Their results for the Reid V-6 model
are cquite different (as quoted in PW) from
the results of other calculations, such as
owen's5), PW, BBGE), which are in resonable
agreement. This suggests that one has to take
seriously in account the various orders in
the operator products.

The present work intents to illustrate
the general idea of a method which may lead
to an accurate calculation ofe«hnigher order
operator terms of the cluster expansion., We
picked two examples to illustrate the techni
gque., First is the hypernation of "the simplest
g{or.1} chain (which can be extended to more
complicated ofor 1} chains). This is descri~
bed in section 3. Second is the calculation
of double U(or T7) chains {without any exchan
ge linke). This is described in section 4.
The necessary mathematical notation is pre-
sented in section 2.

The weight is put on the development
of the method and our choice of what to cal-~
culate at a first stage was made on these
grounds. 50 no claim.is made about the impor
tance of the contributionte the energy of the
above particular terms.
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2. - Notation and formalism.-

Since we deal with spin operators
-+ -+ >
Our Toreeeys O
17 T2’ * “n

that correspond to particles 1,2,..., n, it
is proper to introduce a convenient notatlon.
Let 9y be denoted simply by 1, 5 by 2 and
s0 on. Then one can write the scilar pro-
duct of two spin operators as: .
R + o

U493 50,.0, = 1.3 = 1i3i (2.1)
where the summation convention over repeated
indices is implied. Also the Pauli Identlty
iz written as:, .

1 S Lo . 2.2
1i 3 613 ieijk1k‘ { )
From here on we will denote the product’
1j1j1k ...15
by
1ijk"'s

The C-part of the ith ~component of the o~

perator 1, i.e. 11 is defined as:

5+§1i§+> + <+§1il+>
C(1i) 5<1i> E {(2.3)
<t 4> + <44
obvously: <1i> =
=<8, kle, 1 »=5 4+
and <1i3> <6ij leljk k> 5;3 1zljk<1k>—5
(2.4)

As example note that:
=gl 21,2 5= = 2
<c12012> < LI j> <1£jzij> <1ij>< ij>
=$,8,.=3
131 1]

<943%932% 2 T135352 M 207N >30T

“$® 5l =3
In the above example the C-part operation

was extended for two and three particles
correspondingly. The subscripted C-part:

913723712
stands for: <1, 3 2 33>12 = 1i2j <3i3j> {(2.5)
i.e. C-part operation over the states of par
ticles indicated by the subscripts is inhi-
hited. So one obtains:

<g. G = 1 2'5 = 1,2 =g

13923712 12849 = 142 =9y, (2.8

Generalizing, the C~part of an operator
product is:
c(n g,.) 2 < v,.)>

i ij i i3

(2.7}

LAGARIS

where the brackets denote expectation over
all particles appearing in the operator pro-
duct. Note that since:

AT TR 3 A L
- % N L L L
= % LT Lo Ll
= % %,(mi 1j...k m »>=< 1, ...ki
(2.8)

One realilzes that under the C~-part operation
cyclic permutations are allowed.

In what follows some useful quantities are
defined,

(2.9

Diji'j' E<1i1j1i,1j,> = <1ijiij'>

B =D = < > (2.10)
SEAS M S 1 A E I '
iiji'j' Esii’ﬁjj' (2.11)

Explicitly one obtains:

Dijijjy =G..6 f.;"'s 15 5 ;6 s (2-12)

ij i3 FRNG T MR & LS R
Some properties of the above quantities are
given below:

Pigir3Pskgrkr = 2 Pigirer FOipr S (213
or in shorthand: D2 = 2D+T
Dysar9" Torgrk” 857 Sexer (2.14)
or in shorthand: DI = - I
Similarly one can show that:
ny A
DDb=DD=-1I
a2 Y
D = 2D + I {2.15)
BI = 31
II = 3I

By repeated application of the above "multi-
plication® properties one obtains:

RPN L l(zn"1+(w1)n) I

L S LAl (2.16)
amd DS = (1% 3571 1
Also note that:

Tiir2y30 595047 = 0

1550255/ Pyg0047 = = 3 (2.17)

(. ny
1347254 Pg94r9r =2 7 4 9y,
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3. - Fermi hyperneted o-chains.

3.a Preliminary analysis

In this and in the following sections
we adopt the diagrammatic technigque and texr
minclogy of PW. Some of the diagrams that
we are interested in, are displayed in fig,

Ay

Figure 1
Diagrammatic representation on terms in the
cluster expansion - Diagram 1(a) is contai-
ned in the S0C calculation of PW - Diagrams
{1{b) and 1(c} are examples of terms asso-
ciated with the hypernetted o (or T) chains.

Note that each wiggly line corresponds
to:
c a ¢ o]
¥ \ ith FP,, = 2f £
13 %5 VEER Fyy T 2y Py
and the thick line, between the interacting
; oo
ggrticles 1 and 2, corresponds to: 512 H12
12 It is instructive to examine in detail
a simple diagram. Look for example at dia-
gram 1(b). The relevant operators are:
612, 014, Oyqt 624, and they can come from

either side of the Hamiltonian in the ex-
pression: <V¥|H|¥>. The possible operator
configurations are listed in table 1.

Configuration Nurber of terms welght

1} Hyp 5(0y40,0,40,,1 &1 141
uﬁu‘z S(czau“cz.) 3t t731

0 "u“:z $0y4924923) 3 172
Saatia Soraytyyd 3 1734

Tagtip Hoy30559) 2 13!

- (c'3¢23} Hyy 5M0400.,) %2 174

$ {90040 Hyp $109305) 22 A

§ {05t} Hey Sopq0,,) 2x2 1/4

R S logyUq)d Byg Slugeey) 2 174
5 {03,05,) Hyp Sloy 05,1 22 174

TS {opg0y) Wyp Sloggeyd L 2e2 HA

5 {030,400 Wy 0y .3t 1731

§ 1043054003} Hyy oy 3l 1731

" 5 (9530540y,) Hip 0ay 3 7£1]
5 {04395984) Hyy Gag at 1731

v) 5 {0439,055ty) Hyo 44 1741

Table 1

The various different cases can be grouped
as follows:

i) ALl four operators are on the right si-
de of H
i1) Three operators are on the right side
of H one on the left
iii) Two operators are on the right side of
H and two on the left
iv) One operator is on the right side of
B and three on the left
v) All four operators are on the left side
of H
In table I,.H12 stands symbolicaly instead
of f12 312 f?z . Also the spatial product:

c c o fe) a o o] a 16 .6 0
f13 f23 f24 f24 f13 f23 f14 f24 16F13F23F14
I+
Fou

has been omitted.

Since we are interested in calculating the
C-parts of " the operator configurations of ta
ble I, we are allowed to perform cyclic per=
mulations of the operators. For instance,
the C-part of:

139230 Byy 8 (04,0,

equals to the C-part of:

Hig 800,405, 8lo,50,,

slo

)

If one does that to all configurations shown
in table I, one realizes that all groups ha-
ve on the right side of the Hamiltonian the
same 24 terms, each one being a product of
the operators 013, 014, 523, 024 in all 24

possible orders. Each term has a weight W,
with:

11 1. 16
— LI r— TR —
an T Tt Tt T

i.e. there is no prefered operator order sin
ce all orders have the same weight. Each or-
der isg multiplied by the weight W, the

1 o
f12312f12 factor as we}l as by — 16 F13 F23
g o
F1a Fayr
This results to:
16 1 _o o ] o
22 © (75 T13 Fas F1q Fag) X (5, H, £1) x

x (All orders)

¢ o} a g c c
={r . F__F  F_ ) (£  H f12) 5(013 o

13 723 14 T 24 12 712 23
14 %24 -

The quantity of interest is:

ClH 5 81043 0p3 Ty Ogg) ) = CH, 0,.) (3.7)
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with

0 §<S{c13 G, 0> . (3.2}

12 %33 Y14 24’7 12

One can easlily generallze this result for
any diagram of the structure shown in fig.
2. Hence one has always to calculate the
key-quantity: .

0,., = 8¢

12 )

{3.3)

13 14777 23 24777 12

Figure 2
Diagrammatic representation of a general

term considered in the hyperneted o(1) chain
caleulation. ‘

The general diagram of fig. 2, consists of
two factors. One is the correlation spatial
part involving the products of ¥0’'g integra
> S . Coud -
tad over r3, rd,..., which is trivial to
caleulate, (see PW); the other involves the

e c :
C-part of (f12312f12)012 the calculation of

which is the main task of the following
paragraph.

3.b Calculation of 012

Starting from the definition for 012
(equation (3.3)), and noting that:

<lc1i, =0 1i#1,2 {(3.4)

9511712
one realizes that 0 remains uwnaffected
upon commutation of the s1i and Yoy opera-

tors. That means that one can symmetrize as
follows:

g = <8(¢

12 cee) 8¢

NS (3.5}

13%14 9939247777 42

Using the notation of section 2 one can
write:

- DAY JRUR - DU | PO ...3
13714 23724 5152 .r1r2 s1r1
45 r
27277
and since: <3S ¢ >=6$ . ! 4 " =§ r ato.
151 T4 F2F2 Saha
one obtains: '
0 = g(1 ...) 8 {2 e} £3.6)
12 51 2 $1sz

et n be the number of indices 51,52...,5

in each of the symmetrized products of eq.
(3.6). Clearily 012 depends on n. It will

be shown that:

n+1l (if n is even

olm) o : (3.7}

12 1
3{n+2}u12,i£ n is odd

where the superscript n ig added to egplici
tly display the dependence of ¢ 5 on the
number of indices. Consider first the case
where n is even. Then:

s{1 -ea)=501 1 c.)=8{(8 +
5,8 5

152 5152 %35 152
+ie 1.)(8 +ig T Vaaa} =
5152k k 5394 s1szm m
= S(ﬁs s as o wen) (3.8}
172 "3°4
This is so because the € P pee s
s1szk 5354m

terms drop out since they are antisymmetric

- in the (s1,52), (53's4)"°' in@ices. The

‘number of terms in 8(3 & el dis{n-t} Ut
S,5, 5.8
172 34
. . {n)
Consider the quantity 8123

(n)

defined :
a efined by

5

S5 .es } 12...10 {3.9}
4 — e e et
12 3 n-1,n fne1) Lt
Where 8 ,., 5.,+..- stand for § P =
127 734 $,8, 5,5,
(n} {n)
s s
Oég)ﬂ 12...n 12...1 (3.10)
| (n~1) ¢
The quantity S can be

123...n,n+1,n+2
constructed as:
{n+2) = () +
12...n,n+1,n+2 12...0 ntl,n+2

{n)
nt1,2, ..., 1,042

(n}

+ 8 ot

* S12,...n~1,n+1 5n,n+2 (3.11)
2
¥S(n+2)I S(n+2) S(n+2) -
12...n+2 12...012
2 2
= 3(n+1)ls(n)l + n{n+1)§s(n)l

(n)2
(n+1) (n+3) |5 '} {3.12)

{contraction over all repeated indices is
impliied)
In the first term of eq. (3.12) the factor
of 3 comes from contracting two identical
Kronecker deltas. There are (n+1) such term
2
inis(n+2§ and thus the factor n+i. The se-
cond term contains all the “cross" terms of
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the form:

S(n) 8
12...k,n0+1 ,k+2,...n kK, n+d

2
12, .. 8,041, 042,...0 L,n+2

There are n{n+1) terms of this kind and hen
ce the Ffactor of ni{n+t}.

2
0(1’1"!"2) 1S(n+2)lz - (n+3) {n+1) ls(n)l - _

12 | ne1) 11 }2 | (n-1) 112
: . pint2}  p+3 o (n)
i.e.: 012 = 012 {3.13)
2
: {2)
SN ¢ - Rl T -
Since 012 TP e 612512 3,

(i’

the above recursion relation, (3.13), for
0?;, ig easily scolved to give: D;g) = n+1t
(for even n}. Now for odd number of indices,

{n+1), one should calculate

g (nt) 4 (nt1)
0:;&1)u 12...,n,n+12 12,..n,n+1 (3.14)
| (n+1) 1t
. n+1} o lm) (n)
VAR Sia. mnr iz okl Tonkt, 2,0 n b
{n)
oot 512...n_1’n+11n_ (3.15)
v{n+1) L ln) {n}
and 515 Lt TB2. L a%ee a2, L0ttt
{n)
*"'+S12...n-1,n+12n (3.16)
: 2
(n+1) L in+1) - (n})
S12. net Sz, .pem @O, ISTTL
2
1 (n) (3.17)
+ 3 n(n+1)012 s

The first piece comes from contracting terms
in which the operators 1 and 2 carry the sa-
me index. For instance:

S{n) {n}
12...n n+t 12...n ntl

2
i ln)

s o,
‘Phere are (n+i) such terms and hence the
factor (n+1). The second piece comes from
"oross" terms.

: {n) (x)
H 2
For istance: ;5 ;lnet Snet,2,... 0%
Since S(n) S(n) is symmetric with

12...n n+t,2...,n
respect to the indices 1 and (n+1) it must
be proportional to § . I.e. one has:

1,041
{n) (n} -
S12...n Sn+1,2...n N 861,.11—!»‘1
(n)’ {n) _ _
Then: 8,5 o, Sya...n = 80q,q 7 3P

2

or % = % Sn and
{n) {n)
. 2 m
S12...n Sn+1,2...n 1n+1 1
2
st s 1 2 =2 gs(n)lz
3 1,n¢1 n+t 1 3

There are n{n+1) such terms and hence the

. factor n{n+1). From eg. (3.14) and (3.17)

ane obtains:

(n+1)_ 1 n+3 {n)

12 R I P PR
{(n+t1)_ 1) B .
012 = 3(n+3)c12 or 1f m=n+1 {(m is odd)
(m)_ 1
O0rp = 3 (W+2) 0yy
If by X,., we denote the spatial part of the

diagram of figure 3, the guantity of inte-
rest is given by:

n n

o X X
h,.= L 12 b 12 (n+2)g
22,4, (n+1)+ e
12 n32,4 o (n+1) n=3,5,... 0t 3 12
{3.18)
3
1 . 2
Figure 3

The basic ¢(r) chain~diagram that is hyperne
ted in the present work,

Which is trivial to calculate. One otains:

G _ 1 .
h12—cosh(x12)+x sinh(x12) 1+3012]251nh(x12)+

12

+ X c05h(X12)-3X

i2 12l

4, - pirect, double cg—-chains.-

4.a Preliminary analysis

The general diagram whose C-part we
wish to calculate is shown in figure 4. The
quantity of interest is:

.
y rat

t tn? nad

Figure 4
A general double o(t) diagram whose c-part is

considered in the present work.
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C€S(G1z“23"'dn,n+1)ﬂ1,n+45{“12923"“xhn+1ﬂ=
= C{H1,n+10§,n+1} (4.1}
with
04 et T<S09450030 049 nyq)
8104393 %, 01 "1,n+1 4.2)

This guantity contains (ni}x{n!)} texms.
Using the notation of section 2 we write:

= {1, 2, ) {2, 3_) ...
i, i i

¢ o _,,.0
12 23 n,n+l 1 14 2 i2

(n1 (n+1)i }
n il

(4.3)

We choose the indices i, .1 ...in for the
symmetrized product on the left in (4.2)

and the primed indicesi), ié,...i'forthesyg
metrized product on the right correspondin-
gly. Then any term in (4.2) will consist of
a factor 11 i,(n-H)i and a product of

if
171 nn
the form:
- T 2 T M S
1,14 11t

or with some other ordering of the indices
depending on the particular term in question.
So in general, the structure of any single
term in (4.2} will be:
n=1-g ms%

Ti i,(n+1) (4.4}

D
il 2 3 s vt
11 in n l1ln111n
o
where the guantities D and D are those defi
ned in section 2.
Then one can writes .
n-1 Mn s
=t ., (n+1), . Tt

+1 i i ’
tem 1ty “ntn =0 (n!)

-1-5vs
i

0

(4.5}
+ : ¥
lainl1ln
where My, g the number or terms in (4.2}
whose contribution is that given by (4.4).
Using the properties l%sted in gection 2
for the quantities I, D and D one obtains:

n-1t M
n,s

= I
= 2
1,n+1 s=( (n1)
M
n n,n-1
2
(nl)

One nhow needs to £ind a way of calculating
the M, . coefficients, which is the subject
of the next paragraph.

' -1~ i+
0 (-7 53T

-2 {4.6)

1,041

4.b The calculation of Mn
r
The guantity 04 .4 ;defined by (4.2),

involves two symmetrized operator products.
Each of +these products

contains n! terms, so that 01,n+icontains a
total of (n!)2 terms. Bach of these terms
congists of two parts, one comes from the
left and the other comes from the right sym
metrizer. If two operators that share a com
mon particle index (for instance 0j..q j and
Ui,i+1) are arranged with the same, relative
to each other, order in both the left and
the right part of same term, a D-factor will
Ee associated with +hat index, otherwice a
D-factor will result. The relative ordexs of
operators that do not share a comon index
are irrelevant. Let P(n) be a set with ele-
ments the (n!)% operator products associated
with 01 a1’ Any element of P{n) whose left
part haf s different relevant orders from
its right part, and hence it will contribute
according to (4.4}, is said to be of order s.
et P{n,s) be a subset of P(n) that consists
of all elements of P(n) of order s. The num-
ber of elements of P{n,s) is the guantity
Mp,s We wish to calculate.

Let l?'§ be the number of elements of P(n,s)
that hi¥e theo n,np+i Operator placed at the
i1th position in their left part andat the
jth position in their right part. Clearly
then:
n
Mn,s = iEq 3

n,s
1 i3

fies 3

(4.7}

n+l,s
i, !

P{n+1,s) that have the operator o at
_th th . . . n+1,n+2
the i and 3j position in their left and

right parits respectively is given by:

Then A i.e. the number of elements of

n+l,s i=1t §=1 .n,s n,s
= +
5,5 B e
i=1 n,s-1 a j=1 n,s-1
.;,
* 251 r=i Ai‘.,r Léi r§1 g,r
{4.8)

The first (second) term in {4.8), takes in
account all elements of P{n,s) that have the
& operator in the left partbefore (after)
n,n+t £

the i h positiontﬁn& in the, right part be-
fore {(after) the j position, thus when in-
serting at the ith and 3R positions, in the
left and right parts respectively, the

Un+1;n+2 operator we obtain elements of the

set P{n+1,s), since the relevant relative
orders of op,p+t 204 Opeq,pe2  BFC the same
in both parts of every element. The third
(fourth) term, takes in account all terms
of P(n,s-1) that have the O pniq © erator in
the left part before (after)the i position
and in the right part after (before) the ]
position, thus when ‘inserting at the ith ana
jt positions, in the left and right parts
respectively, the Opn,q p4p Operator, we
obtain elements of the P{n+i,s) set since
the relevant relative orders of Up:q niz 858
different in the two parts of everv element.:
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There is no other scheme by which one can ge
nerate elements of P(n+t,s), and so {4.8) is
complete. Using the recursion relationi.8)

along with (4.7} one can easily compute M

Initial values for n=1 and n=2
calculated. We find:

n,s*
are easily

1,0 _ 2,0 _ ,2,0 _ 2,1 _ 2,1

"1,1 =t A1,1 B J‘:z,z - A1,2 )‘2,1 !
2,0 _ .2,0 2,1 _ 2,1 _
A1,2 - l2,1 A1 17,270

In table II we give the Ffirst few Mn,s ki ity
bers calculated using the method described
above.

S 2 3 4 5 [ 7 8
0 2 10 88 1216 2417 654424 23136128
1 # 16 200 3536 85872 2743728 111842432
2 10 200 4896 145152 5714472 270769536
3 B8 3536 149152 7176352 407103104
4 1216 85872 5714472 407103104
5 24176 2743728 270769536
: 654424  $11842432

23136128
Table II
Tabulation of the Mn coefficients for
n=2,3,...,8 and for the corresponding rele-
vant s-values.

5. - Discussion.-

The hypernation of o(or 1) chains pre-
sented in section 3, can be rather easily
extended te treat ¢t chains as well. Inclu-
sion of exchanges, or of more complicated
chains, as well as provision for ring dia~
grams can be carried out following the same
general line with a few modifications in the
details of the calculation. Hypernation of
chains including tensor operators is certain
ly more involved.

It is straight forward to extend the
method presented in section 4 to treat dou-
ble vt~chains or g~ , T-07T or o-t double
operator chians. Inclusion of exhanges is
possible but not as easy. For double tensor
chains the counting part is the same as for
double ~-chains but the spatial part needs
special merit. We want to remark that since
it is not always easy to derive a recursiocn
relation that will solve the enumeration
problem, one can explicitly generate the
various permutations imposed by the symme-
trizers and count the required orders one
by one using a fast digital computer. A me-—
thod for generating all permutations of n~
different objects is given by Johnson
TrotterS) .

Although these methods as they are de-
scribed above, are suitable for symmetric
Nuclear Matter calculations, they can be
extended to facilitate spin and/or isospin
polarized matter calculations; also they can

play the role of a guide in approximating
other more complicated terms of the cluster
expansion,

The author would like to acknowleddge
illuminating discussions with 8. Fantoni, A.
Fabrocini, S. Rosati, M. Viviani, V.A.Voutsa
dakis and INFN for partial support.
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