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Abstract We introduce a new variant for the constriction

coefficient model of the established particle swarm optimi-

zation (PSO) algorithm. The new variant stands between the

synchronous and asynchronous version of PSO, combining

their operation regarding the update and evaluation frequency

of the particles. Yet, the proposed variant has a unique feature

that distinguishes it from other approaches. Specifically, it

allows the undisrupted move of all particles even though

evaluating only a portion of them. Apparently, this implies a

loss of information for PSO, but it also allows the full

exploitation of the convergence dynamic of the constriction

coefficient model. Moreover, it requires only minor modifi-

cations to the original PSO algorithm since it does not

introduce complicated procedures. Experimental results on

widely used benchmark problems as well as on problems

drawn from real-life applications, reveal that the proposed

approach is efficient and can be very competitive to other

PSO variants as well as to more specialized approaches.

Keywords Particle swarm optimization � Asynchronous

models � Loss of information

1 Introduction

Particle swarm optimization (PSO) is a population-based

heuristic algorithm for numerical optimization. It was first

introduced by Eberhart and Kennedy (1995) and Kennedy

and Eberhart (1995) as an alternative to evolutionary

algorithms (EAs) (Bäck et al. 1997) that were dominant at

that time. PSO has many in common with EAs (Bäck et al.

1997). For instance, it uses a population of search points,

new potential solutions are stochastically generated based

on the information drawn from the best ones, and it

requires only function values disregarding the existence of

gradient information. These properties allow PSO to effi-

ciently work on problems where only limited information

on the objective function is available or accessible. Such

problems are met in black-box optimization as well as in

cases where computation is characterized by uncertainties,

inaccurate data, noisy and time-dependent environments

(Parsopoulos 2002, 2010).

Since its introduction, PSO has gained increasing popu-

larity. This can be ascribed to its experimentally verified

efficiency in challenging optimization problems as well as its

easy implementation. The minor effort required to implement

PSO in modern programming languages has attracted

researchers from different scientific disciplines in search of a

simple yet efficient optimization algorithm that can tackle

complicated problems without strong mathematical prereq-

uisites. As a result, there is a remarkable number of PSO-based

applications in diverse scientific fields (Poli 2007), although

several modifications in the original PSO model were neces-

sary to enhance its performance on some occasions.

Clerc and Kennedy (2002) derived the stability analysis of

PSO, which was later extended by Trelea (2003). In their

analysis, several PSO models were considered and theoreti-

cally analyzed to distinguish the most promising one. These

works revealed that a model with a constriction coefficient on

the velocities, along with proper parameter configuration,

could alleviate the deficiencies of the first PSO model. The

parameter setup of this model was theoretically justified,
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resulting in a PSO variant that proved to be popular especially

among non-expert practitioners with limited knowledge of

such algorithms, their operation and manipulation.

The theoretical investigation of the constriction coeffi-

cient model was mostly based on loose assumptions.

However, due to the necessity for particular mathematical

manipulations, the memory of the algorithm was unavoid-

ably considered to remain fixed during its execution. In

other words, the information that is used to attract the

particles towards specific (promising) regions of the search

space was not updated throughout the algorithm’s run. Yet,

in practice this memory is frequently updated. Hence, every

change in memory can be considered as a restarting of the

algorithm’s dynamics. This observation has not attracted

much attention although it can be highly related to PSO’s

efficiency. Indeed, it is easily verified that in a typical PSO

run, even on a problem of moderate difficulty, the infor-

mation stored in PSO’s memory may continually change.

Thus, the question naturally comes up: how crucially is the

performance of PSO affected by the continuously restarted

dynamics? Newer theoretical studies such as (Blackwell

2006) shed some light on this issue. Nevertheless, it still

remains a rather neglected aspect of the PSO algorithm.

The present paper aims at experimentally probing this

attribute of PSO. More specifically, we propose a con-

striction coefficient PSO model, called Particle Swarm

Optimization with Deliberate Loss of Information (PSO-

DLI), equipped with a stochastic decision-making scheme

that determines whether a particle shall be evaluated and

update its memory at each iteration. This scheme can be

considered as a hybrid combination of the standard (syn-

chronous) and the asynchronous PSO model, which is

mostly used in parallel implementations. However, the

proposed approach has a unique characteristic: every par-

ticle’s motion is undisrupted even if it is not selected for

evaluation and memory update. Thus, the algorithm can

deploy its dynamic without continuous disruptions imposed

by the dynamic’s restarting described above.

On the other hand, it is easily understood that such a model

suffers from loss of information at each iteration, namely

unevaluated new particle positions. Thus, the current study

has the mission to experimentally investigate the impact of

such a loss of information on the algorithm’s performance.

For this purpose, experiments are conducted on a number of

widely used benchmark problems as well as on problems

drawn from real-life applications. More specifically, the

standard test suite that consists of the Sphere, Rosenbrock,

Rastrigin, Griewank and Ackley function, both in their ori-

ginal, generalized forms as well as in their rotated and shifted

forms that were used for the CEC2008 competition on large-

scale global optimization (Tang et al. 2007), were consid-

ered. Additionally, a set of nonlinear systems stemming

from neurophysiology, chemical equilibrium, kinematic,

combustion and economic modeling applications (Grosan

2008), was considered and solved with the proposed PSO-

DLI approach. Finally, we considered a set of 19 benchmark

problems that served as test suite for the recently published

special issue on ‘‘scalability of evolutionary algorithms and

other metaheuristics for large-scale continuous optimization

problems’’ of the present journal (Lozano et al. 2011). The

special issue was devoted to empirical evaluations of several

algorithms on large-scale instances of the specific problems.1

In our experiments, PSO-DLI was compared against the

asynchronous PSO model on the standard test suite and,

additionally, against genetic algorithms, differential evo-

lution and the more sophisticated MONS approach (Grosan

2008) on the nonlinear systems. On the CEC’2008 test

suite, it was compared also to more specialized and com-

plicated algorithms such as EPUS-PSO and DMS-PSO

(Hsieh et al. 2008; Zhao et al. 2008). The results revealed a

remarkable potential of PSO-DLI to compete with all these

algorithms on these problems. Finally, on the special

issue’s test suite, PSO-DLI was compared to the 16 algo-

rithms that participated in the competition, exhibiting rea-

sonably good performance. Considering that its

implementation practically requires only marginal alter-

ation of the existing PSO models and codes, we can suggest

PSO-DLI as a very promising PSO variant that can be very

useful especially to non-expert practitioners that wish to

use a simple PSO model such as the constriction coefficient

(or the algebraically equivalent inertia weight) one.

The rest of the paper is organized as follows: Sect. 2

offers the necessary background on PSO, both in its syn-

chronous and asynchronous version. The proposed PSO-

DLI algorithm is presented in Sect. 3 and experimental

results are reported and discussed in Sect. 4. Finally, the

paper concludes in Sect. 5.

2 Background information

For completeness purpose, a brief presentation of the

required background information is given in the following

sections. This includes the standard (synchronous) PSO

algorithm as well as its asynchronous counterpart. These

approaches will constitute the ground for the presentation

of the proposed PSO-DLI scheme in a later section.

2.1 Particle swarm optimization

Consider the n-dimensional global optimization problem:

min
x2X�Rn

f ðxÞ:

PSO employs a set of potential solutions,

1 Detailed descriptions are available at http://sci2s.ugr.es/EAMHCO.
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S ¼ fx1; x2; . . .; xNg; xi 2 X; i 2 I ¼ f1; 2; . . .;Ng;

to probe the search space. This set is called a swarm, while

each vector in S corresponds to a particle:

xi ¼ ðxi1; xi2; . . .; xinÞ> 2 X; i 2 I:

Each particle is randomly initialized in X and allowed to

iteratively move within it. Its motion is determined by an

adaptable velocity, while it retains in memory the best

position it has ever visited. These quantities are denoted as:

vi ¼ ðvi1; vi2; . . .; vinÞ>; pi ¼ ðpi1; pi2; . . .; pinÞ>; i 2 I;

respectively. Thus, if t denotes the current iteration of the

algorithm, it holds that:

piðtÞ ¼ arg min
q2f0;1;...;tg

ff ðxiðqÞÞg; i 2 I:

Best positions constitute the memory of the particles and it

is used to guide them towards the promising regions of the

search space, i.e., regions that posses lower function

values.

In order to avoid the premature convergence of the

particles on local minimizers due to the sole use of own

gathered information, the concept of neighborhood was

introduced (Kennedy 1999; Suganthan 1999). Specifically,

each particle assumes a set of neighboring particles with

which it exchanges information, i.e., the best position

among all the particles that constitute a neighborhood is

communicated only among them and it is used for their

velocity update. To put it formally, a neighborhood of the

ith particle is defined as a set:

NBi;s ¼ fj1; j2; . . .; jsg; jk 2 I;

k ¼ 1; 2; . . .; s; i 2 NBi;s;

which consists of the indices of all the particles with which

it can exchange information. Then, the neighborhood’s best

position:

pgi
¼ arg min

j2NBi;s

ff ðpjÞg; ð1Þ

is used along with pi to update the ith particle’s velocity at

each iteration. The parameter s defines the number of

particles that constitute the neighborhood and it is often

called the neighborhood size. Obviously, it must hold that

1 B s B N. By definition, the ith particle is included in its

own neighborhood. In the special case where s = N, the

whole swarm constitutes the neighborhood. The latter case

defines the so-called global PSO model (denoted as gbest),

while strictly smaller neighborhoods correspond to the

local PSO model (denoted as lbest).

The schemes that are used for determining the particles

that constitute each neighborhood are called neighborhood

topologies and they have a crucial impact on PSO’s

performance. Probably, the most trivial choice is the ran-

dom selection of s neighbors per particle. However, this

scheme is accompanied with an undesirable lack of control

of the information flow among the particles, which may

prohibit the effective exploration of the search space within

a reasonable number of iterations. Therefore, in practice it

is rarely favored against alternative topologies, such as the

ring topology. According to it, each particle assumes as

neighbors the particles with its adjacent indices. The

number of neighbors is determined by a parameter,

r, called the neighborhood radius. Thus, a ring neighbor-

hood of radius r of the ith particle, is defined as the set of

indices:

NBi;r ¼ fi� r; i� r þ 1; . . .; i; . . .; iþ r � 1; iþ rg;

where the indices recycle after the value N, i.e., the index 1

is assumed to follow immediately after N. The recycling

gives the sense of moving on a clockwise ordered ring,

justifying the name of this topology.

Based on the definitions above, the iterative scheme of

PSO is defined as follows (Clerc 2002):

vijðt þ 1Þ ¼ v½vijðtÞ þ c1R1ðpijðtÞ � xijðtÞÞ
þ c2R2ðpgi;jðtÞ � xijðtÞÞ�; ð2Þ

xijðt þ 1Þ ¼ xijðtÞ þ vijðt þ 1Þ; ð3Þ
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where, i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; n; the parameter v is

the constriction coefficient; acceleration constants c1 and c2

are called the cognitive and social parameter, respectively;

and R1;R2; are random variables uniformly distributed in

the range [0, 1]. It shall be noted that a different value of

R1 and R2 is sampled for each i and j in Eq. (2). Also, the

best position of each particle is updated at each iteration, as

follows:

piðt þ 1Þ ¼ xiðt þ 1Þ; if f xiðt þ 1Þð Þ\f piðtÞð Þ;
piðtÞ; otherwise;

�
i 2 I:

ð4Þ

The PSO variant described above was introduced by Clerc

and Kennedy (2002) and it has gained increased popularity,

especially in interdisciplinary applications. This comes on

account of its close relevance to the original PSO model,

which implies simplicity and efficiency, as well as on its

theoretical support. Based on the stability analysis (Clerc

2002), the parameter set:

v ¼ 0:729; c1 ¼ c2 ¼ 2:05; ð5Þ

was determined as a satisfactory setting that produces a

balanced convergence speed of the algorithm. Neverthe-

less, alternative settings have been introduced in relevant

works (Trelea 2003).

The initialization of swarm and velocities is usually

performed randomly and uniformly in the search space,

although more sophisticated techniques can enhance the

overall performance of PSO as reported in (Parsopoulos

2002a, b). Pseudocode of PSO is reported in Algorithm 1,

where its essentially synchronous nature becomes apparent.

By this, we mean that all particles update their velocities

and current positions (lines 8–14 of Algorithm 1) prior to

the update of their memory (lines 15–18). Alternative

models that work rather asynchronously have also been

proposed. Their basic elements are briefly presented in the

next section.

2.2 Asynchronous particle swarm optimization

Asynchronous PSO models (henceforth denoted as PSO-

ASY) have been developed as alternatives to the syn-

chronous model described in the previous section. The

main difference from the synchronous PSO is that, in a

given iteration, each particle updates and communicates its

memory to its neighbors immediately after its move to a

new position. Thus, the particles that remain to be updated

in the same iteration can exploit the new information

immediately, instead of waiting for the next iteration as in

the synchronous model.

The differences from the synchronous PSO model

become apparent in the pseudocode of Algorithm 2, where

we can see the existence of a single for-loop (lines 8–18) on

the number of particles. Thus, for the determination of pgi
in

line 10 of Algorithm 2, the latest findings of all particles in

the neighborhood are taken into consideration even if they

were achieved at the same iteration. This is the reason for

dropping the iteration index of pgi
in line 12, simply denoting

pgi
instead of pgi

ðtÞ: Contrary to this, the corresponding

velocity update in line 11 of Algorithm 1 is solely based on

the information coming from the previous iteration.

The impact of the asynchronous update in PSO’s per-

formance heavily depends on the given optimization

problem and the considered implementation. In general, the

asynchronous model is characterized by faster disclosure of

new best positions than in the standard (synchronous) PSO

model, thereby increasing convergence speed. This comes

at the cost of getting trapped by rapidly attracting all par-

ticles to a deceitful solution. Thus, the preference between

synchronous or asynchronous PSO shall be dictated by the

specific problem at hand.

However, in practice it may also be dictated by the

available hardware. For example, in parallel environments

it is desirable to have the smallest possible idle time per

processor. In such environments, the time required per

function evaluation plays a significant role. If the

1376 C. A. Voglis et al.
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evaluations require almost identical time for any point in the

search space, the synchronous PSO is satisfactory since all

particles will be evaluated and updated almost concurrently.

On the other hand, if there is significant time deviation for

the evaluation of different points in the search space, the

asynchronous model is expected to outperform the syn-

chronous one with respect to the required running time.

Actually, Algorithm 2 introduces a parametric PSO-

ASY model. The parameter qasy is used to simulate both

the serial (single-processor) and parallel implementation of

PSO-ASY by properly tuning its value in line 9, as follows:

qasy ¼ 0 (serial PSO-ASY);

0\qasy\1 (parallel PSO-ASY):
ð6Þ

Several asynchronous PSO variants have been proposed

in the literature (Akat 2008; Desell et al. 2009; Gaz 2007;

Hernane et al. 2010; Koh et al. 2006). Most of these

approaches refer to parallel implementations of PSO that were

shown to be competitive or even superior to the synchronous

ones. Nevertheless, even in serial implementations the

asynchronous models have exhibited promising results.

In the next section, the proposed PSO-DLI algorithm is

described.

3 Particle swarm optimization with deliberate loss

of information

The inspiration behind the development of the proposed

Particle Swarm Optimization with Deliberate Loss of

Information (PSO-DLI) algorithm, sprang from the analy-

sis of Clerc and Kennedy (2002) on the dynamics of the

PSO variant defined by Eqs. (2) and (3) in Sect. 2.1. Based

on this analysis, the constriction coefficient model of PSO

was distinguished among others on the basis of its good

convergence properties. The analysis was based on the

assumption that the best positions of the particles remain

fixed throughout the algorithm’s execution, aiming at the

determination of proper model and parameter configura-

tions such that the swarm consistently converges on sub-

optimal solutions. In fact, Clerc and Kennedy proved

convergence towards a state where the velocities vanish,

while the particles’ positions approximate a linear combi-

nation of the two (fixed) best positions involved in Eq. (2).

However, in realistic cases the best positions of the par-

ticles do not remain fixed. Even in problems of moderate

difficulty, it is experimentally verified that the best positions

are frequently changing. This implies that the dynamics of

the model are restarted after each best position update,

prohibiting the particles from taking full advantage of the

model’s convergence properties. Moreover, it has been

experimentally observed that, especially at the later stages of

the optimization procedure, only some of the best positions’

updates offer critical new information to the particles, while

the rest lead only to marginal improvements.

These critical observations suggest that a particle may

not be able to deploy its exploration/exploitation capability

due to frequent changes of its best position, which may be

rather unnecessary with respect to the gained improvement.

In addition, each best position update implies that a func-

tion evaluation preceded. It is widely accepted that the total

number of function evaluations constitutes the main com-

putational cost of optimization algorithms. This is based on

the reasonable assumption that, in difficult problems, the

time required for the evaluation of the underlying objective

function dominates the rest of the algorithm’s operations.

Thus, the regular evaluation of each particle and its best

position update at every single iteration of the algorithm,

may not only disrupt its convergence dynamics but also

aggravates it with possibly futile additional cost whenever

its discoveries are of minor importance.

The main idea behind PSO-DLI is the alleviation of

consistent evaluation and best position update of each

particle at each iteration, without disrupting the particles’

motion. This can be achieved by allowing each particle to

move to a new position using Eqs. (2) and (3) but proba-

bilistically deciding whether it shall be evaluated and
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update its best position or not. If the particle is eventually

evaluated then its best position update follows the standard

procedure of Eq. (4). On the other hand, if it is not selected

for evaluation then it simply remains to the new current

position, ignoring its function value and retaining its pre-

vious best position.

By accepting this loss of information, i.e., the neglected

function value at the new position, the available compu-

tational budget (maximum number of function evaluations)

of the algorithm is retained, without interrupting the par-

ticle’s convergent motion towards the already detected best

positions. Naturally, this fosters the danger of possibly

disregarding significant information. Nevertheless, the

proposed scheme is expected to be advantageous under the

(experimentally verified) assumption that a large number of

best position updates do not offer radical information, i.e.,

they do not enhance the particle’s exploration capability. In

fact, they suppress its exploitation activity stemming from

its theoretically implied tendency for convergence towards

an aggregation of previously detected best positions.

A simple scheme for probabilistically selecting the

particles that will loose information, can be based on a

fixed user-defined probability value, qloss 2 ½0; 1�: Then, for

the ith particle at iteration t, a uniformly distributed ran-

dom number, R 2 ½0; 1�; is sampled and the particle is

evaluated and updates its best position only if:

R[ qloss: ð7Þ

Otherwise, it retains its best position and suffers the loss of its

current position’s function value. At a first glance, the pro-

posed scheme seems to simply resemble the procedure of the

asynchronous PSO model described in Sect. 2.2. This is

partially true, since the evaluation procedure of PSO-DLI is

asynchronous in nature. However, it has the unique charac-

teristic that the particles that suffer loss of information are

not held at their previous positions but they are allowed to

follow the dynamics of the constriction coefficient model by

moving to a new (unevaluated) current position. This way, it

is expected that the gain from the particle’s exploitation

capabilities, along with its convergent behavior, will offer

significantly better information when it will be eventually

evaluated at a later iteration. To the best of the authors’

knowledge, this property has not been considered in the

established asynchronous models up-to-date.

The PSO-DLI scheme is clarified in the pseudocode of

Algorithm 3. The main difference from Algorithms 1 and

2, lies beneath line 15 of Algorithm 3 where the random-

ized evaluation and update decision takes place. Notice that

the particle moves without intervention to the new position

(lines 11–12) regardless of the decision taken for its eval-

uation and best position update. Obviously, since PSO-DLI

is expected to perform less function evaluations per itera-

tion than the original PSO, the total number of iterations

that can be conducted for a specific budget of Fmax function

evaluations is higher for PSO-DLI than the standard syn-

chronous PSO.

Also, the implementation of PSO-DLI requires only

minor additional effort than PSO, since there are no com-

plicated procedures incorporated into the algorithm. Thus,

it is easily understood that it can be very useful in appli-

cations where the original constriction coefficient (or its

equivalent inertia weight) PSO model is frequently used.

Moreover, PSO-DLI retains all the advantages of the PSO

scheme regarding its potential for parallelization and

combination with other global or local optimization algo-

rithms. Additionally, this is accompanied by a remarkable

increase in efficiency as it is shown in the next section.

4 Experimental results

PSO-DLI constitutes a minor modification of the standard

constriction coefficient PSO model, although with a great

performance impact. It aims at offering an efficient alter-

native to the standard PSO model in relative applications.

Thus, the experimental setting in the present work pri-

marily targeted at a first validation of PSO-DLI in widely

used test problems and challenging applications, against

the specific PSO model as well as standard versions of

different popular EAs for tackling such problems.

For this purpose, four rounds of experiments were

conducted. In the first round, PSO-DLI was validated

against the standard synchronous and asynchronous PSO

model on five widely used benchmark problems, providing

the first evidence on its efficiency. In the second round of

experiments, the same algorithms were applied on six real-

world application problems modeled as systems of non-

linear equations. Additionally to the aforementioned com-

parisons, PSO-DLI was also compared against different

evolutionary approaches on these problems. For this pur-

pose, a Genetic Algorithm (GA), the basic Differential

Evolution (DE) variant as well as the MONS approach

(Grosan 2008) was considered.

In the third round of experiments, PSO-DLI was further

assessed against established EAs on harder instances of the

five benchmark problems used in the first round. More

specifically, rotated and shifted versions of these problems,

which have been used as benchmarks for the IEEE CEC’08

large-scale optimization competition (Tang et al. 2007),

were considered. In this framework, we probed PSO-DLI’s

competitiveness against two specialized PSO-based

approaches for large-scale optimization, namely the Effi-

cient Population Utilization Strategy for Particle Swarm

Optimizer (EPUS-PSO) (Hsieh et al. 2008, 2009) and the

Dynamic Multi-Swarm Particle Swarm Optimizer with

local search (DMS-PSO) (Zhao et al. 2008).
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In the last round of experiments and despite the fact that

PSO-DLI was neither designed nor tuned for large-scale

problems, we took a further step and applied it on the test

suite used in a recently published special issue of Soft

Computing (Lozano et al. 2011). Our main consideration

in this case was the evaluation of its ability to perform

closely to the 16 algorithms presented in the special issue.

In all experiments, the employed PSO-DLI was based on

the lbest variant of the constriction coefficient PSO model

with a ring topology of radius 1. This choice was driven

mostly by its popularity and good exploration properties.

Regarding its parameters, the default values,

v = 0.729, c1 = c2 = 2.05, defined in Eq. (5) were used.

All the considered test problems are described in Appendix

with the exception of the 19 problems of the fourth round

of experiments that were omitted due to space limitations.

However, the interested reader can have full access in all

relevant information and sources through the web site

http://sci2s.ugr.es/EAMHCO. In all experiments, the

swarm was randomly and uniformly initialized within the

corresponding search space.

4.1 First round of experiments: standard test suite

In the first round of experiments, the performance of PSO-

DLI was assessed on the five widely used benchmark

problems defined in ‘‘Standard test suite’’ of Appendix.

These problems constitute the standard test suite and will

be henceforth denoted as TP0–TP4. Their popularity is

attributed to their different features, including unimodality/

multimodality, separability/non-separability, generalization

in arbitrary dimension as well as strongly/loosely corre-

lated variables. The dimensions and range considered for

each problem of the standard test suite in our experiments

are reported in Table 1.

A number of comparative experiments were conducted

on the standard test suite. More specifically, we employed

the synchronous lbest PSO model, the corresponding

asynchronous PSO-ASY model as well as the proposed

PSO-DLI algorithm. The PSO-ASY model was considered

with probabilities:

qasy 2 f0:0; 0:3; 0:6; 0:9g;

which correspond to both its serial and parallel variant. The

corresponding variants will be henceforth denoted as

ASY0.0, ASY0.3, ASY0.6 and ASY0.9, respectively.

PSO-DLI was considered with the same loss probabilities:

qloss 2 f0:0; 0:3; 0:6; 0:9g:

Notice that qloss = 0.0 corresponds to the standard PSO

algorithm (no information loss). The rest will be henceforth

denoted as DLI0.3, DLI0.6 and DLI0.9, respectively.

For each problem instance and algorithm variant, 100

independent experiments were conducted. At each experi-

ment, the algorithms were allowed to perform a total

number of Fmax = 1000 9 n function evaluations using a

swarm of N = 10 9 n particles, where n is the dimension

of the corresponding problem instance. The employed

parameter values are summarized in Table 2.

At the end of each experiment, the following quantities

were recorded:

(a) the best detected solution and its function value;

(b) the number of iterations performed until Fmax was

reached;

(c) the total number of best positions updates, i.e., the

total number of times where the particles discovered

better best positions than the ones they had possessed.

Obviously, for the standard synchronous PSO model the

number of iterations referred in (b) was always equal to

Fmax /N. This is a consequence of the fixed number of

function evaluations performed per iteration in standard

PSO. However, this is not always the case for PSO-ASY

and PSO-DLI since some particles may skip evaluation.

Thus, these approaches are expected to perform more

iterations than PSO for a given number of function

evaluations. Also, the recorded quantity in (c) was consid-

ered as a measure of the swarm’s exploitation activity.

The results are numerically reported in Table 3. More

specifically, for each problem instance, the mean and the

standard error (sample’s standard deviation) of the best

attained solution values are reported, along with the

Table 2 Parameter values for the considered PSO, PSO-ASY and

PSO-DLI algorithms

Parameter Value

PSO parameters v = 0.729, c1 = c2 = 2.05

Neighborhood topology Ring

Neighborhood radius 1

qasy 0.0, 0.3, 0.6, 0.9

qloss 0.0, 0.3, 0.6, 0.9

Problem dimensions n = 10, 50, 100

Function evaluations Fmax = 1000 9 n

Swarm size N = 10 9 n

Table 1 Dimension and range considered for each problem of the

standard test suite

Problem Dimension (n) Range

TP0 10, 50, 100 [-100, 100]n

TP1 10, 50, 100 [-30, 30]n

TP2 10, 50, 100 [-5.12, 5.12]n

TP3 10, 50, 100 [-600, 600]n

TP4 10, 50, 100 [-20, 30]n
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Table 3 Results for the standard test suite

Prob. Dim. Alg. Best function value Iterations Best pos. updates

Mean St. err. Mean St. err. Mean St. err.

TP0 10 PSO 3.6083e?00 2.0382e?00 100.00 0.00 2852.52 65.80

ASY0.9 2.0666e?00 1.0908e?00 990.73 9.15 2923.25 62.55

DLI0.9 1.8243e201 1.1637e201 990.50 9.81 5073.08 56.84

50 PSO 8.8099e?03 9.5958e?02 100.00 0.00 12340.75 111.06

ASY0.0 7.1619e?03 7.7548e?02 100.00 0.00 11817.68 141.32

DLI0.9 4.9309e103 6.7732e102 991.46 4.10 21468.76 155.98

100 PSO 4.8083e?04 2.9125e?03 100.00 0.00 21907.76 168.02

ASY0.0 3.8759e?04 2.4937e?03 100.00 0.00 20452.06 189.29

DLI0.9 3.6088e104 2.3608e103 991.73 3.02 40540.21 190.18

TP1 10 PSO 2.3688e?03 1.7897e?03 100.00 0.00 2879.06 73.15

ASY0.0 1.2695e?03 8.7053e?02 100.00 0.00 2801.65 75.80

DLI0.9 3.7761e102 3.0100e102 991.82 8.55 4836.70 77.18

50 PSO 7.3816e?08 1.5687e?08 100.00 0.00 11947.84 141.34

ASY0.0 5.1863e?08 1.2137e?08 100.00 0.00 11382.51 157.89

DLI0.9 4.2367e108 8.7230e107 991.23 5.05 20391.61 144.05

100 PSO 7.7595e?09 1.1348e?09 100.00 0.00 20954.89 190.16

ASY0.0 5.5733e109 7.7423e108 100.00 0.00 19551.07 200.96

DLI0.6 6.3030e?09 8.3405e?08 248.82 0.69 30397.02 200.18

TP2 10 PSO 1.5974e?01 3.7729e?00 100.00 0.00 1606.52 103.41

ASY0.6 1.5632e?01 3.9773e?00 248.96 1.84 1634.77 95.19

DLI0.9 1.2054e101 3.5569e100 991.67 9.61 3303.87 133.73

50 PSO 3.5077e?02 2.0980e?01 100.00 0.00 7249.33 166.52

ASY0.0 3.3301e?02 1.7513e?01 100.00 0.00 7170.33 206.54

DLI0.9 2.9829e102 2.0173e101 991.93 4.22 14960.16 244.08

100 PSO 9.2889e?02 3.0456e?01 100.00 0.00 13745.24 204.94

ASY0.0 8.8769e?02 3.1189e?01 100.00 0.00 13349.63 235.92

DLI0.9 8.4038e102 2.7152e101 991.22 2.88 28936.89 304.30

TP3 10 PSO 8.5357e-01 1.1730e-01 100.00 0.00 2757.86 74.05

ASY0.9 7.3688e-01 1.5981e-01 989.61 9.99 2777.12 74.67

DLI0.9 3.9775e201 1.1857e201 990.94 10.37 4570.84 91.24

50 PSO 8.0954e?01 9.0157e?00 100.00 0.00 12370.88 122.43

ASY0.0 6.4251e?01 7.9251e?00 100.00 0.00 11841.51 135.51

DLI0.9 4.4798e101 5.7317e100 991.63 4.63 21478.51 122.69

100 PSO 4.3306e?02 2.5046e?01 100.00 0.00 21891.44 167.52

ASY0.0 3.5199e?02 2.3117e?01 100.00 0.00 20436.88 193.86

DLI0.9 3.2245e102 1.9926e101 991.02 3.56 40528.91 213.32

TP4 10 PSO 2.0594e?00 4.4949e-01 100.00 0.00 2481.98 59.29

ASY0.0 1.7063e?00 5.1973e-01 100.00 0.00 2459.59 58.48

DLI0.9 5.5583e201 3.6882e201 991.00 9.92 4370.18 79.85

50 PSO 1.3696e?01 4.0415e-01 100.00 0.00 10408.97 113.09

ASY0.0 1.2839e?01 4.0867e-01 100.00 0.00 10159.90 106.90

DLI0.9 1.2168e101 4.3272e201 991.50 4.03 17455.21 161.02

100 PSO 1.7297e?01 2.3998e-01 100.00 0.00 17190.70 182.37

ASY0.0 1.6362e101 2.4880e201 100.00 0.00 16611.49 161.07

DLI0.9 1.6582e?01 3.4494e-01 991.46 3.12 30724.13 239.18

The best-performing PSO-ASY and PSO-DLI variants are reported. The best mean value per dimension appears boldfaced
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corresponding numbers of iterations and best position

updates (all averaged over 100 experiments) for the stan-

dard PSO as well as for the best-performing PSO-ASY and

PSO-DLI variants. The smallest mean function value per

problem instance is boldfaced along with its standard error.

The results are also graphically illustrated in Fig. 1.

Specifically, the distributions of the attained best solution

values are depicted in boxplots per problem instance and

algorithm. On each box, the central mark is the median, the

edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points not con-

sidered outliers, and outliers are plotted individually (red

crosses). Moreover, the notches define 95 % confidence

intervals of median equality for box-to-box comparisons.

Each row of boxplots in Fig. 1 corresponds to a specific

problem dimension (10, 50 or 100) and it is followed by a

corresponding row of bargraphs that demonstrate the per-

centage (%) of performance improvement achieved by

PSO-ASY and PSO-DLI against PSO, with respect to the

mean (black bars) and standard error (white bars) of the

best attained solution values. Obviously, negative bars

indicate percentage of performance decline. These graphs

aim at providing visual comparisons between the algo-

rithms, using the standard PSO as reference point. A more

compact graphical representation of the relative perfor-

mance of PSO-DLI and PSO-ASY with respect to PSO, is

offered in the left part of Fig. 3.

The derivation of sound conclusions regarding the per-

formance differences between the algorithms was further

facilitated by statistical significance tests. For this purpose,

the nonparametric Wilcoxon rank-sum test was used for

pairwise comparisons of PSO-DLI with PSO-ASY and

PSO under the null hypothesis that ‘‘the best solution

values achieved by the compared algorithms are drawn

from identical continuous distributions with equal medi-

ans’’ at a 95 % level of significance. Then, the total number

of cases (out of 15) where PSO-DLI had statistically sig-

nificant better performance than the other approaches was

recorded and it is reported in Fig. 2i. Finally, the frequency

of appearance of each variant of PSO-ASY and PSO-DLI

as the best-performing among all variants of the same

algorithm per problem dimension is reported in Fig. 2ii and

iii, respectively.

A first inspection of the results presented in Table 3 and

Fig. 1 offers some interesting conclusions. As we can see,

both PSO-ASY and PSO-DLI clearly outperformed the

standard PSO in all cases. PSO-DLI achieved the overall

best performance in all but two cases, namely the

100-dimensional instances of TP1 and TP4, where it was

highly competitive to the dominant PSO-ASY variant. This

is clearly derived also from Figs. 2i and 3. Moreover,

DLI0.9 was the most promising PSO-DLI variant in almost

all problem instances, with a single exception in TP1. This

is depicted also in Fig. 2iii. The superiority of DLI0.9 with

respect to the mean attained best solution value was habit-

ually accompanied by the smallest standard errors, which is

indicative of its robustness. On the other hand, ASY0.0 was

the dominant among the PSO-ASY variants especially for

higher-dimensional cases as we can see in Fig. 2ii. How-

ever, in the 10-dimensional cases the other PSO-ASY

variants were also distinguished. This indicates sensitivity

of PSO-ASY on the problem’s dimension and structure.

A closer inspection of the results enriches our knowl-

edge on PSO-DLI’s performance. The last two columns of

Table 3 show that PSO-DLI always performs the largest

number of best position updates. This is a sound indication

of PSO-DLI’s better exploitation activity that is evidently

promoted by the undisrupted motion of the particles. This

evidence, combined with the dominance of DLI0.9 against

the other PSO-DLI variants, suggests that higher values of

the loss probability can be associated with better perfor-

mance. As expected, the higher number of best position

updates is associated with a higher mean number of itera-

tions as it is displayed in the corresponding columns of

Table 3. This is a natural consequence of PSO-DLI’s

probabilistic particle-update scheme as it was explained in

Sect. 3.

Regarding the effect of problem’s dimension on per-

formance, Fig. 1 draws a clear picture. Observing the

provided bargraphs in columns (same problem, increasing

dimension), we can see an undisputed decline of the

attained improvement (recall that bargraphs denote per-

centage of improvement/decline). This can be attributed to

the total number of function evaluations, Fmax, which was

linearly increased with the dimension (recall that

Fmax = 1000 9 n), while there are experimental evidence

that the degree of difficulty of a given problem increases

exponentially with its dimension.

Additionally, the verified influence of the swarm size on

PSO’s dynamic (Bartz-Beielstein et al. 2004) impelled us

to consider the case of swarm size scaling in order to verify

the potential superiority of PSO-DLI against PSO. For this

purpose, the experiments for PSO-DLI and PSO were

repeated for all problems and dimensions, with different

swarm sizes, N ¼ 1� n; 2� n; . . .; 10� n: Statistical sig-

nificance tests were conducted between the algorithms to

reveal the dominant approach. The results are reported in

the right part of Fig. 3. More specifically, for each problem

and dimension, a bar illustrates the number of different (out

of 10) swarm sizes where the one algorithm outperformed

(with statistical significance) the other as well as the

number of cases with statistically indistinguishable per-

formance. As we can see, the results are in good agreement

with those previously presented for higher swarm size, with

PSO being competitive only on a few cases, mostly for

lower dimensions.
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Fig. 1 Graphically illustrated results for the standard test suite
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In conclusion, the experiments on the standard test suite

suggest that PSO-DLI can be very competitive to funda-

mental synchronous and asynchronous PSO schemes. In

order to attain further intuition on PSO-DLI’s performance

on less typical benchmark problems, further experiments

were conducted on a set of challenging applications that

involve the solution of nonlinear systems. The obtained

results are reported in the next section.

4.2 Second round of experiments: nonlinear systems

In the second round of experiments, the real-world appli-

cations defined in ‘‘Nonlinear systems’’ of Appendix were

considered. The corresponding problems are modeled as

systems of nonlinear equations and they are formulated as

global optimization problems through a transformation

described in ‘‘Nonlinear systems’’. These problems will be

henceforth denoted as TP5–TP10 and their dimensions and

ranges are reported in Table 4. The same variants of the

algorithms as in the previous section were considered,

along with the parameter values reported in Table 2

(excluding problem dimensions). The presentation of the

results follows closely the one in the previous section.

Thus, data are numerically reported in Table 5 and

graphically illustrated in Figs. 4 and 5.

The general picture of the results is aligned to that of the

previous section. Namely, PSO-DLI outperformed PSO-

ASY and PSO in all test problems, offering significant

solution improvements that range from almost 30 % up to

more than 90 % as it is depicted in the bargraphs of Fig. 4.

This superiority was also supported by the statistical tests
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Fig. 2 Frequencies of domination among different algorithm variants

Table 4 Dimension and range for the nonlinear systems

Problem Dim. (n) Range

TP5 10 [-2, 2]10

TP6 6 [-10, 10]6

TP7 5 [-10, 10]5

TP8 8 [-10, 10]8

TP9 10 [-10, 10]10

TP10 20 [-10, 10]20
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Fig. 3 Left relative performance of PSO-DLI and PSO-ASY with respect to the standard PSO. Right domination scaling between PSO-DLI and

PSO for different swarm sizes
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and it is reflected in PSO-DLI’s domination depicted in

Fig. 5i. Moreover, the relative improvements achieved by

PSO-DLI and PSO-ASY against PSO were always in favor

of the proposed approach as illustrated in Fig. 5iii. Indeed,

as we can see PSO-ASY’s improvements were limited in a

range between 10 % and slightly over 20 %, while at the

same time PSO-DLI’s improvements soared over 80 %.

The two distinguishable clusters in the scatter plot of

Fig. 5iii may be the results of possible structural resem-

blance of the corresponding problems, although this spec-

ulation requires further investigation that lies out of the

scope of this paper.

An interesting evidence from this round of experiments

was the designation of DLI0.6 as the best among PSO-DLI

variants in more than half of the problems. This is in

agreement with the expectation of better PSO-DLI per-

formance under higher loss-probability values, which was

identified in the standard test suite. However, it can be

conceived also as an evidence of a plausible dependence of

the most efficient variant on the corresponding problem at

hand. Nevertheless, either PSO-DLI variants retained the

highest number of best positions updates in all cases.

The second round of experiments was enriched with

further comparisons of PSO-DLI with other established

algorithms. More specifically, a steady state Genetic

Algorithm (GA) (Goldber 1989) as well as the Differential

Evolution (DE) (Storn 1997) algorithm were tested against

different PSO-DLI variants under the configuration

reported in Table 6. The employed GA approach was

implemented using the GAlib2 software. In order to facil-

itate comparisons also with the results provided in Grosan

(2008) for the multi-objective MONS approach, the

experimental setup reported in Table 7 was adopted for all

algorithms.

In accordance to the previous experiments, we per-

formed 100 independent runs per algorithm using the

provided maximum number of function evaluations and

recording the best solution value attained per experiment.

The obtained results are reported in Table 8 with respect to

the mean and standard error of the best function values.

The results of the MONS approach were adopted from the

original source (Grosan 2008) where no standard errors are

reported.

Some interesting observations can be made in Table 8.

Firstly, we can observe that all PSO-DLI variants were

among the best-performing algorithms in all problems.

Particularly in TP5, TP6 and TP10, they outperformed the

rest of the algorithms. However, DE was shown to out-

perform PSO-DLI in the rest of the test problems. Also,

contrary to our previous findings, DLI0.3 was shown to be

superior than DLI0.6 and DLI0.9.

A reasonable explanation for this outcome lies in the

specific experimental setup. More specifically, the number

of function evaluations adopted from (Grosan 2008) was

Table 5 Results for the nonlinear systems

Prob. Dim. Alg. Best function value Iterations Best pos. updates

Mean St. err. Mean St. err. Mean St. err.

TP5 10 PSO 6.9206e-02 1.7539e-02 100.00 0.00 2643.84 64.31

ASY0.6 6.2136e-02 1.7546e-02 249.00 2.16 2655.26 55.02

DLI0.9 7.3004e203 2.8412e203 991.20 7.78 4976.99 61.87

TP6 6 PSO 2.7646e-02 2.4823e-02 100.00 0.00 1151.45 55.97

ASY0.0 2.0806e-02 1.3875e-02 100.00 0.00 1127.38 52.72

DLI0.9 4.2369e203 7.5450e203 992.15 11.38 2405.93 77.88

TP7 5 PSO 2.6403e-01 1.2727e-01 100.00 0.00 1018.52 49.26

ASY0.0 2.1918e-01 1.2151e-01 100.00 0.00 998.23 48.10

DLI0.6 1.7708e201 1.0610e201 249.05 2.77 1513.34 64.95

TP8 8 PSO 6.1197e-01 2.0500e-01 100.00 0.00 1783.93 74.10

ASY0.9 5.3958e-01 1.9739e-01 990.99 11.44 1800.48 65.31

DLI0.6 4.2925e201 2.0520e201 249.05 2.33 2556.96 85.26

TP9 10 PSO 2.9799e-01 1.5649e-01 100.00 0.00 2248.40 76.63

ASY0.0 2.3905e-01 1.3167e-01 100.00 0.00 2198.38 81.57

DLI0.6 1.7411e201 9.0344e202 248.84 2.18 3102.72 96.39

TP10 20 PSO 4.6172e-03 4.5435e-03 100.00 0.00 3016.80 78.69

ASY0.6 3.3771e-03 2.5183e-03 249.11 1.46 3010.53 99.24

DLI0.6 1.6098e204 1.9826e204 249.15 1.46 4232.29 108.90

The best-performing PSO-ASY and PSO-DLI variants are reported. The best mean value per dimension is boldfaced

2 http://lancet.mit.edu/galib-2.4.
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Fig. 4 Graphically illustrated results for the nonlinear systems
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significantly higher by several orders of magnitude than the

one used in our previous experiments. This was beneficial

both for the DE approach as well as for DLI0.3, since any

possible gain produced by the proposed loss of information

scheme was absorbed by the competency of the algorithm

due the excessive computational budget. Thus, it can be

inferred that increasing the available computational budget

produces a tendency of PSO-DLI to approximate the

behavior of the standard PSO.

Although the reported results for the rest of the algo-

rithms are rather indicative, PSO-DLI has shown con-

vincing evidence that it can reach high performance

standards. This was further verified on harder instances of

the standard test suite as reported in the following section.

4.3 Third round of experiments: modified standard test

suite

In the third round of experiments, the performance of PSO-

DLI was assessed on shifted and rotated versions of the

problems of the standard test suite, henceforth called the

shifted test suite. These problems, denoted as SH-TP0–SH-

TP4, were proposed in the IEEE Congress on Evolutionary

Computation 2008 (IEEE CEC’08) for large-scale optimi-

zation competition (Tang et al. 2007) and they are defined

in ‘‘Shifted test suite’’ of Appendix. The PSO-DLI variants

used in our previous experiments were applied on the

shifted test suite and their performance was compared with

that of two PSO-based approaches that participated in the

aforementioned competition at IEEE CEC’08, namely the

Efficient Population Utilization Strategy for Particle

Swarm Optimizer (EPUS-PSO) (Hsieh et al. 2008, 2009)

and the Dynamic Multi-Swarm Particle Swarm Optimizer

with local search (DMS-PSO) (Zhao et al. 2008).

The test problems were all considered in their

100-dimensional instances, while their ranges were the

ones reported in Table 1 for n = 100. The parameter

configuration of the PSO-DLI variants was identical to that

of Table 2 for n = 100. This setting is in accordance to the

one used for EPUS-PSO and DMS-PSO in Tang et al.

(2007) with respect to the available computational budget,

i.e., the total number of function evaluations.

The obtained results are reported in Table 9. As required

for the specific test problems, the algorithms were com-

pared with respect to the absolute error of the obtained best

function value to the true global minimum, averaged over

all experiments. The results for EPUS-PSO and DMS-PSO

were adopted from their original references (Hsieh et al.

2008; Zhao et al. 2008). In the case of DMS-PSO, the

minimum resolution close to zero was not explicitly

reported. These cases are marked in Table 9.

As we can see, the PSO-DLI variants produced com-

petitive results. In SH-TP0 and SH-TP3, DLI0.9 strikingly

achieved the best performance (excluding the marked

Table 6 Configuration of the employed GA and DE algorithm

Algorithm Parameter Value

GA Representation Binary with 32-bit encoding

Crossover Single point with probability 0.9

Mutation Uniform bit mutation with

probability 0.001

Population update Replacing 25 % of the

population per generation

DE Variant rand/1/bin

F 0.5

CR 0.7

Table 7 Swarm size and maximum number of function evaluations

for the nonlinear systems in Grosan (2008)

Problem Swarm size Func. eval.

TP5 500 15 9 104

TP6 300 6 9 104

TP7 500 25 9 104

TP8 500 50 9 104

TP9 500 15 9 104

TP10 500 15 9 104
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cases). This is surprising if we take into consideration that

PSO-DLI constitutes a very simple approach that does not

employ local search or any other sophisticated mechanism

specifically suited to this kind of problems, in contrast to

the other two approaches. Even for the rest of the problems

its performance was highly competitive to the specialized

algorithms. This is a very promising evidence that offers

motivation for the development of hybrid PSO-DLI vari-

ants that can incorporate mechanisms for enhancing their

performance in large-scale optimization problems.

4.4 Fourth round of experiments: large-scale

competition problems in special issue

Recently, a set of 19 benchmark functions was proposed as

a common test suite for the assessment of scalability of

metaheuristics on large-scale problems. The test suite

constituted the experimental basis for the ‘‘special issue on

scalability of evolutionary algorithms and other

metaheuristics for large-scale continuous optimization

problems’’ of the Soft Computing journal. General infor-

mation can be found in the editorial of the special issue

(Lozano et al. 2011), while their definitions are freely

available on the internet,3 hence they are omitted due to

space limitations. Sixteen algorithms appeared in the spe-

cial issue and competed against each other on the specific

problems for dimensions ranging from 50 up to 1000. The

average performance for each algorithm is summarized in a

table posted on the previously mentioned web site.4 The

size of the table is prohibitive for replication here, thus we

refer the reader directly to the web source.

We considered the specific test suite as our last exper-

imentation framework in the present study, with the 19 test

problems being henceforth denoted as SC-TP1–SC-TP19.

Since the tuning of PSO-DLI for tackling large-scale

Table 9 Results for the 100-dimensional instance of the shifted test suite

SH-TP0 SH-TP1 SH-TP2 SH-TP3 SH-TP4

EPUS-PSO Mean 7.470e-01 4.990e?03 4.710e?02 3.720e-01 2.060e?00

St. err. 1.700e-01 5.350e?03 5.940e?01 5.600e-02 4.400e- 01

DMS-PSO Mean 0.000e?00a 2.830e?02 1.829e?02 0.000e?00a 0.000e?00a

St. err. 0.000e?00a 9.402e?02 2.164e?01 0.000e?00a 0.000e?00a

DLI0.3 Mean 6.066e-04 9.366e?02 4.649e?02 4.153e-04 1.830e?00

St. err. 1.425e-04 2.194e?02 4.529e?01 1.459e-04 7.017e-01

DLI0.6 Mean 9.594e-05 7.130e?02 4.634e?02 6.830e-05 2.374e?00

St. err. 3.038e-05 1.641e?02 4.851e?01 2.144e-05 4.181e-01

DLI0.9 Mean 5.989e-05 7.412e?02 4.566e?02 4.660e-05 2.562e?00

St. err. 1.789e-05 2.292e?02 5.222e?01 2.570e-05 3.800e-01

The performance of EPUS-PSO and DMS-PSO is reproduced from their original references (Hsieh et al. 2008; Zhao et al. 2008)
a It was unclear how close to zero they lie

Table 8 Comparative results of PSO-DLI with the MONS, GA and DE algorithm. Results for MONS are reproduced from (Grosan 2008) were

no standard errors are reported

TP5 TP6 TP7 TP8 TP9 TP10

MONS Mean 1.8000e?00 1.0000e-01 6.0000e-01 1.1000e?00 2.0000e-01 2.0000e-02

St. err. – – – – – –

GA Mean 1.0090e-01 1.2900e-02 9.5690e-01 1.0280e?00 4.5340e-01 2.1000e-06

St. err. 6.2100e-02 2.2900e-02 6.7780e-01 5.5030e-01 4.7370e-01 1.0000e-06

DE Mean 1.4367e-16 1.2854e-03 1.0077e-02 1.2936e-16 5.2022e-04 6.3720e-03

St. err. 1.8920e-18 2.4667e-03 9.0729e-04 5.8712e-17 1.9224e-04 3.7393e-03

DLI0.3 Mean 1.4311e-16 6.7117e-11 4.5355e-02 4.9100e-02 2.8222e-03 2.5690e-08

St. err. 3.9642e-31 6.1695e-10 2.6900e-02 3.7633e-02 2.9754e-03 1.3515e-07

DLI0.6 Mean 1.4311e-16 5.7830e-08 4.7725e-02 6.1449e-02 7.6873e-03 1.9092e-07

St. err. 3.9642e-31 4.8674e-07 2.9271e-02 5.2835e-02 8.6158e-03 8.7543e-07

DLI0.9 Mean 1.4311e-16 2.4547e-06 5.8572e-02 1.2087e-01 1.8188e-02 1.5300e-06

St. err. 3.9642e-31 1.8963e-05 3.4466e-02 8.1642e-02 2.0028e-02 4.4812e-06

3 http://sci2s.ugr.es/EAMHCO/testfunctions-SOCO.pdf.
4 http://sci2s.ugr.es/eamhco/SOCO-results.xls.
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problems of very high dimensionality (e.g., 1000) was out

of scope of the present study, we restricted our experiments

to dimensions 50, 100 and 200, taking a further step from

the dimensions considered in the previous section. The

configurations of PSO-DLI that were used in the previous

sections, were also adopted in this set of experiments.

PSO-DLI was applied on all test problems according to

the experimental setup suggested in (Lozano et al. 2011).

Its average error was recorded and reported in Table 10.

The main purpose was to investigate its ability to approx-

imate the error achieved by the rest of the algorithms,

within a prescribed accuracy range. Thus, we compared

PSO-DLI’s average errors with the corresponding ones

reported in the web sources above, for the 16 algorithms

that competed in the special issue. The comparisons were

made for the different levels of accuracy defined in the

following set:

f10�5; 10�4; 10�3; 10�2; 10�1; 100; 101; 102; 103; 104; 105g:

If PSO-DLI was capable of achieving the same (or better)

performance with another algorithm with the selected

accuracy level on a specific problem-dimension pair, then

this was considered as a successful instance. We recorded

the successes of PSO-DLI for all test problems, dimen-

sions, algorithms and accuracy levels, which counts a total

of 19 9 3 9 16 = 912 instances per accuracy level.

Obviously, the remarkably high accuracy values included

above, were considered for revealing the scaling in the

successful instances.

The results are graphically illustrated in Fig. 6. Specif-

ically, for each accuracy level there is a bar that shows the

number of successful instances (out of 912). Also, each bar

is separated in three parts of different colors, denoting the

corresponding successful instances per problem dimension.

The figure clearly suggests that for demanding accuracies

PSO-DLI was capable of achieving the same (or better)

performance in more than 1/3 of the cases. This can be

consider as a promising sign since PSO-DLI was neither

designed nor tuned for such high-dimensional cases as the

rest of the algorithms. Nevertheless, it constitutes a strong

motivation for the future development and improvement of

PSO-DLI schemes in order to render it fully competitive to

the state-of-the-art in large-scale problems.

As a final observation, we shall mention the consistency

of PSO-DLI under dimension and accuracy scaling, as it is

implied by the smooth transition of the bars when accuracy

increases as well as by the retained proportion of each color

in the bars.

5 Conclusions

We introduced PSO-DLI, an algorithm based on the con-

striction coefficient model of PSO, which promotes asyn-

chronous update and undisrupted movement of the

particles accompanied by loss of information. Represen-

tative variants of the algorithm were extensively tested

both on benchmark problems and challenging applications.

Also, they were compared with other widely used algo-

rithms, some of which incorporate sophisticated techniques

to tackle specific types of problems.

The obtained results were very promising, offering

intuition on PSO-DLI’s performance under different

experimental settings. The proposed approach was able to

outperform the rest of the algorithms in many problem

Table 10 Average error of PSO-DLI in test problems SC-TP1–SC-TP19

Dim. SC-TP1 SC-TP2 SC-TP3 SC-TP4 SC-TP5 SC-TP6 SC-TP7 SC-TP8 SC-TP9 SC-TP10

50 0.00e?00 5.20e?00 7.40e?01 0.00e?00 3.10e-02 0.00e?00 0.00e?00 1.12e?03 1.81e?02 1.64e-01

100 0.00e?00 3.47e?01 2.07e?02 0.00e?00 0.00e?00 0.00e?00 1.40e-10 2.10e?04 5.67e?02 1.46e?01

200 0.00e?00 5.65e?01 5.70e?02 0.00e?00 0.00e?00 0.00e?00 1.33e?01 7.92e?04 1.40e?03 3.93e?01

SC-TP11 SC-TP12 SC-TP13 SC-TP14 SC-TP15 SC-TP16 SC-TP17 SC-TP18 SC-TP19

50 1.77e?02 3.93e?00 1.62e?02 1.28e?02 0.00e?00 1.27e?01 3.57e?02 7.60e?01 0.00e?00

100 5.72e?02 3.00e?01 4.18e?02 3.59e?02 0.00e?00 3.48e?02 7.90e?02 2.00e?02 4.89e?00

200 1.40e?03 3.97e?02 1.39e?03 9.04e?02 1.52e?00 8.96e?02 1.79e?03 4.58e?02 2.50e?01
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instances. It was also revealed that in cases where the

available computational budget was rather limited, the

proposed scheme with higher loss probabilities exhibited

very promising performance. On the other hand, in cases

where excessive computational budget was available, the

gain became higher for smaller loss probabilities indicating

that PSO-DLI tends to resemble the standard PSO model.

In addition, PSO-DLI is based on a simple idea that

takes full advantage of the dynamics of the constriction

coefficient PSO model. Its implementation requires only

minor modifications of the original PSO model and alle-

viates expensive bookkeeping operations. Taking into

consideration its encouraging results as well as its asyn-

chronous nature, PSO-DLI could be considered as an

effective basis for the development of hybrid PSO-based

algorithms for parallel systems and large-scale problems.

In fact, this can be a very interesting direction for future

research on the proposed algorithm.

Nevertheless, it must be emphasized that PSO-DLI is

designed to take full advantage of the exploitation prop-

erties that accompany the specific constriction coefficient

PSO model. Thus, the generalization of the derived anal-

ysis and conclusions in radically different environments

such as in integer, noisy or dynamic problems, where the

average behavior of the constriction coefficient PSO model

is altered, is not straightforward and can constitute a

challenging subject for further investigation, along with the

demanding large-scale cases.
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Appendix: Test problems

Standard test suite

The standard test suite consists of the following problems:

TEST PROBLEM 0 (TP0-Sphere) (Parsopoulos 2010). This

is a separable n-dimensional problem, defined as:

f ðxÞ ¼
Xn

i¼1

x2
i ; ð8Þ

and it has a single global minimizer, x� ¼ ð0; 0; . . .; 0Þ>;
with f(x*) = 0.

TEST PROBLEM 1 (TP1-Generalized Rosenbrock) (Parso-

poulos 2010). This is a non-separable n-dimensional

problem, defined as:

f ðxÞ ¼
Xn�1

i¼1

ð100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2Þ; ð9Þ

and it has a global minimizer, x� ¼ ð1; 1; . . .; 1Þ>; with

f(x*) = 0.

TEST PROBLEM 2 (TP2-Rastrigin) (Parsopoulos 2010).

This is a separable n-dimensional problem, defined as:

f ðxÞ ¼ 10nþ
Xn

i¼1

ðx2
i � 10 cosð2pxiÞÞ; ð10Þ

and it has a global minimizer, x� ¼ ð0; 0; . . .; 0Þ>; with

f(x*) = 0.

TEST PROBLEM 3 (TP3-Griewank) (Parsopoulos 2010).

This is a non-separable n-dimensional problem, defined as:

f ðxÞ ¼
Xn

i¼1

x2
i

4000
�
Yn

i¼1

cos
xiffiffi

i
p
� �

þ 1; ð11Þ

and it has a global minimizer, x� ¼ ð0; 0; . . .; 0Þ>; with

f(x*) = 0.

TEST PROBLEM 4 (TP4-Ackley) (Parsopoulos 2010). This

is a non-separable n-dimensional problem, defined as:

f ðxÞ ¼ 20þ expð1Þ � 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

x2
i

s !

� exp
1

n

Xn

i¼1

cosð2pxiÞ
 !

; ð12Þ

and it has a global minimizer, x� ¼ ð0; 0; . . .; 0Þ>; with

f(x*) = 0.

Nonlinear systems

This test set consists of six real-application problems,

which are modeled as systems of nonlinear equations.

Computing a solution of a nonlinear system is a very

challenging task and it has received the ongoing attention

of the scientific community. A common methodology for

solving such systems is their transformation to an equiva-

lent global optimization problem, which allows the use of a

wide range of optimization tools. The transformation pro-

duces a single objective function by aggregating all the

system’s equations, such that the solutions of the original

system are exactly the same with that of the derived opti-

mization problem.

Consider the system of nonlinear equations:

f1ðxÞ ¼ 0;
f2ðxÞ ¼ 0;

..

.

fmðxÞ ¼ 0;

8>>><
>>>:
with x 2 S � R

n: Then, the objective function:

f ðxÞ ¼
Xm

i¼1

jfiðxÞj; ð13Þ

defines an equivalent optimization problem. Obviously, if

x* with f(x*) = 0 is a global minimizer of the objective
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function, then x* is also a solution of the corresponding

nonlinear system and vice versa.

In our experiments, we considered the following non-

linear systems, previously employed by Grosan and

Abraham (2008) to justify the usefulness of evolutionary

approaches as efficient solvers of nonlinear systems:

TEST PROBLEM 5 (TP5-Interval Arithmetic Benchmark)

(Grosan 2008) This problem consists of the following system:

x1 � 0:25428722� 0:18324757 x4x3x9 ¼ 0;
x2 � 0:37842197� 0:16275449 x1x10x6 ¼ 0;
x3 � 0:27162577� 0:1695507 x1x2x10 ¼ 0;
x4 � 0:19807914� 0:15585316 x7x1x6 ¼ 0;
x5 � 0:44166728� 0:19950920 x7x6x3 ¼ 0;
x6 � 0:14654113� 0:18922793 x8x5x10 ¼ 0;
x7 � 0:42937161� 0:21180486 x2x5x8 ¼ 0;
x8 � 0:07056438� 0:17081208 x1x7x6 ¼ 0;
x9 � 0:34504906� 0:19612740 x10x6x8 ¼ 0;
x10 � 0:42651102� 0:21466544 x4x8x1 ¼ 0:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð14Þ

The resulting objective function defined by Eq. (13), is

10-dimensional with global minimum f(x*) = 0.

TEST PROBLEM 6 (TP6-Neurophysiology Application)

(Grosan 2008) This problem consists of the following system:

x2
1 þ x2

3 ¼ 1;
x2

2 þ x2
4 ¼ 1;

x5x3
3 þ x6x3

4 ¼ c1;
x5x3

1 þ x6x3
2 ¼ c2;

x5x1x2
3 þ x6x2

4x2 ¼ c3;
x5x2

1x3 þ x6x2
2x4 ¼ c4;

8>>>>>><
>>>>>>:

ð15Þ

where the constants, ci = 0, i = 1, 2, 3, 4. The resulting

objective function is six-dimensional with global minimum

f(x*) = 0.

TEST PROBLEM 7 (TP7-Chemical Equilibrium Application)

(Grosan 2008) This problem consists of the following system:

x1x2 þ x1 � 3x5 ¼ 0;
2x1x2 þ x1 þ x2x2

3 þ R8x2 � Rx5 þ 2R10x2
2 þ R7x2x3

þR9x2x4 ¼ 0;
2x2x2

3 þ 2R5x2
3 � 8x5 þ R6x3 þ R7x2x3 ¼ 0;

R9x2x4 þ 2x2
4 � 4Rx5 ¼ 0;

x1ðx2 þ 1Þ þ R10x2
2 þ x2x2

3 þ R8x2 þ R5x2
3

þx2
4 � 1þ R6x3 þ R7x2x3 þ R9x2x4 ¼ 0;

8>>>>>>>><
>>>>>>>>:

ð16Þ

where,

R ¼ 10; R5 ¼ 0:193; R6 ¼
0:002597ffiffiffiffiffi

40
p ;

R7 ¼
0:003448ffiffiffiffiffi

40
p ;

R8 ¼
0:00001799

40
; R9 ¼

0:0002155ffiffiffiffiffi
40
p ;

R10 ¼
0:00003846

40
:

The corresponding objective function is five-dimensional

with global minimum f(x*) = 0.

TEST PROBLEM 8 (TP8-Kinematic Application) (Grosan

2008). This problem consists of the following system:

x2
i þ x2

iþ1 � 1 ¼ 0;
a1ix1x3 þ a2ix1x4 þ a3ix2x3 þ a4ix2x4 þ a5ix2x7þ
a6ix5x8 þ a7ix6x7 þ a8ix6x8 þ a9ix1 þ a10ix2 þ a11ix3þ
a12ix4 þ a13ix5 þ a14ix6 þ a15ix7 þ a16ix8 þ a17i ¼ 0;

8>><
>>:

ð17Þ

with aki, 1 B k B 17, 1 B i B 4, is the corresponding

element of the kth row and ith column of the matrix:

A¼

�0:249150680 0:125016350 �0:635550077 1:48947730

1:609135400 �0:686607360 �0:115719920 0:23062341

0:279423430 �0:119228120 �0:666404480 1:32810730

1:434801600 �0:719940470 0:110362110 �0:25864503

0:000000000 �0:432419270 0:290702030 1:16517200

0:400263840 0:000000000 1:258776700 �0:26908494

�0:800527680 0:000000000 �0:629388360 0:53816987

0:000000000 �0:864838550 0:581404060 0:58258598

0:074052388 �0:037157270 0:195946620 �0:20816985

�0:083050031 0:035436896 �1:228034200 2:68683200

�0:386159610 0:085383482 0:000000000 �0:69910317

�0:755266030 0:000000000 �0:079034221 0:35744413

0:504201680 �0:039251967 0:026387877 1:24991170

�1:091628700 0:000000000 �0:057131430 1:46773600

0:000000000 �0:432419270 �1:162808100 1:16517200

0:049207290 0:000000000 1:258776700 1:07633970

0:049207290 0:013873010 2:162575000 �0:69686809

2
66666666666666666666666666664

3
77777777777777777777777777775

:

The corresponding objective function is eight-dimensional

with global minimum f(x*) = 0.

TEST PROBLEM 9 (TP9-Combustion Application) (Grosan

2008). This problem consists of the following system:

x2 þ 2x6 þ x9 þ 2x10 ¼ 10�5;
x3 þ x8 ¼ 3� 10�5;
x1 þ x3 þ 2x5 þ 2x8 þ x9 þ x10 ¼ 5� 10�5;
x4 þ 2x7 ¼ 10�5;
0:5140437� 10�7x5 ¼ x2

1;
0:1006932� 10�6x6 ¼ 2x2

2;
0:7816278� 10�15x7 ¼ x2

4;
0:1496236� 10�6x8 ¼ x1x3;
0:6194411� 10�7x9 ¼ x1x2;
0:2089296� 10�14x10 ¼ x1x2

2:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð18Þ

The corresponding objective function is ten-dimensional

with global minimum f(x*) = 0.

TEST PROBLEM 10 (TP10-Economics Modeling Applica-

tion) (Grosan 2008) This problem consists of the following

system:

xk þ
Pn�k�1

i¼1

xixiþk

� �
xn � ck ¼ 0;

Pn�1

l¼1

xl þ 1 ¼ 0;

8>><
>>:

ð19Þ
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where 1 B k B n - 1, and ci ¼ 0; i ¼ 1; 2; . . .; n: The

problem was considered in its 20-dimensional instance.

Thus, the corresponding objective function was also

20-dimensional, with global minimum f(x*) = 0.

Shifted test suite

The problems in the shifted test suite are defined as

follows:

SHIFTED TEST PROBLEM 0 (SH-TP0-Sphere) (Tang et al.

2007). This is a separable n-dimensional problem, defined as:

f ðxÞ ¼
Xn

i¼1

ðxi � oiÞ2 þ fbias; ð20Þ

and it has one global minimizer, x� ¼ ðo1; o2; . . .; onÞ>;
with f(x*) = fbias = - 450.

SHIFTED TEST PROBLEM 1 (SH-TP1-Generalized Rosen-

brock) (Tang et al. 2007) This is a non-separable n-

dimensional problem, defined as:

f ðxÞ ¼
Xn�1

i¼1

100 ziþ1 � z2
i

� �2þ zi � 1ð Þ2
� 	

þ fbias; ð21Þ

where z ¼ x� oþ ð1; 1; . . .; 1Þ>; and it has a global min-

imizer, x� ¼ ðo1; o2; . . .; onÞ>; with f(x*) = fbias = 390.

SHIFTED TEST PROBLEM 2 (SH-TP2-Rastrigin) (Tang et al.

2007). This is a separable n-dimensional problem, defined

as:

f ðxÞ ¼ 10nþ
Xn

i¼1

ðz2
i � 10 cosð2pziÞÞ þ fbias; ð22Þ

where z = x - o, and it has a global minimizer, x� ¼
ðo1; o2; . . .; onÞ>; with f(x*) = fbias = -330.

SHIFTED TEST PROBLEM 3 (SH-TP3-Griewank) (Tang

et al. 2007). This is a non-separable n-dimensional prob-

lem, defined as:

f ðxÞ ¼
Xn

i¼1

z2
i

4000
�
Yn

i¼1

cos
ziffiffi

i
p
� �

þ 1þ fbias; ð23Þ

where z = x - o, and it has a global minimizer, x� ¼
ðo1; o2; . . .; onÞ>; with f(x*) = fbias = -180.

SHIFTED TEST PROBLEM 4 (SH-TP4-Ackley) (Tang et al.

2007). This is a non-separable n-dimensional problem,

defined as:

f ðxÞ ¼ 20þ expð1Þ � 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

z2
i

s !

� exp
1

n

Xn

i¼1

cosð2pziÞ
 !

þ fbias; ð24Þ

where z = x - o, and it has a global minimizer, x� ¼
ðo1; o2; . . .; onÞ>; with f(x*) = fbias = -140.
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