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Abstract ; We report variational calculations of oe madds of nuclear matter which c".ontain central, spin,
isospin, tensor and spin-orbit potentials. These semi-realistic models can explain the nucleon-
nucloon scattering in'Se,'S,'D� 'P, and'P='F= states uP to ~ 300 MeV . The variational wave
fundian has two-body central, spin. ieoapin, tensor and spin-orbit correlationa. The terms in the
cluster expansion of the energy expectation value, that do not contain the spin-orbit correhùions
are summed by chain summation technique developed for the ~ models . Ofthe terms containing
spin-orbit corrdations, the two-body and threo-body-separable ones ere calculated, and the
magnitude of the teat is estimated . Results for three phase-equivalent os models, which differ
sigoit-scantly in the strength of tensor and spin-orbit p~entiala, are reported. They suggest that
simple n s modeb may not be able to simultaneously explain the binding energy and density of
nuclear matter .

1. IntroducHoo

Non-relativistic nuclear Hamiltonians containing only two-body forces can be
expressed in the form :

where v°(n1) are functions of fir,-r1~, andO~ are operators that operate on the spin,
isospin and position variables of particles i and j. In principle one should take as
many operators as are required to explain the NN scattering at non-relativistic
energies. Simpler models of nuclear matter are obtained by considering a few of the
most important operators in (1 .1). The so-callod "v 6 models" have p = 1, 6 and
the ~1 t " 6 are 1, to " irP it " tp (trt " Q1xi, " s1~ Si1 and st,~it " s1~ St1 being the tensor
operator. Many authors have studied v6 models based on dif%~t NN potentials.
Recent results have been reviewed by Pandharipande andWiringa t~ andparticularly
for the v6 model based on the Reid 2) potential, an agreement seems to be Merging.

In this paper we study the so-callt~d "va models� which contain the spin-orbit
potentials associated with the operators:
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in addition to the six contained in the v6 models . Very crude calculations of ve models
containing many approximations were reported earlier 3) .
A ve Hamiltonian can explain the elastic scattering in the'So, 3S, 3D 1, 1P 1 and

3P23FZ states. In this sense these are the simplest of the "realistic models. They
are, however, unable to explain phase shifts in D and higher waves. A Hamiltonian
containing the eight ve potentials, two quadratic spin-orbit potentials and four
momentum-dependent terms like (VZv"'(r)+ti"(r)V2) can explain all scattering data
up to 330 MeV [ref. °)] .
The variational method developed by Wiringa and Pandharipande (WP) [ref. 3)]

is used to calculate the E(p) ofthe vs models . The pair-correlation operator is assumed
to be :

F~~(d, ßp) _

	

~ ßpJLO(d+ ril~r

	

(1 .3)
p=1 .8

ßa and d are the variational parameters, and the functions 1~o(d, r, 1) are obtained by
minimizing the two-body cluster contribution to the energy under the healing con-
straint

.Îio(rr~ Z ~ = Spi .

	

(1 .4)

The variational wave function is assumed to be

where.5~ is a symmetrizing operator and ~(p) is the Fermi gas wave function. We will
refer to ßpfio(d, r;~) by ~;~ for brevity.
WP expand E(p, d, ßp),

<~IHI~)
E(p, d, ßp) _

	

~~~ SY)

	

,

in a diagrammatic series, and we will continue to use the diagrammatic notation
given in fig . 1 of ref. 3) . In vb models E(p, d, ßp) can be calculated, presumably quite
accurately s), by summing the important diagrams ofthis expansion by chain summa-
tion methods. In ve models the contribution of all diagrams that do not contain
either spin-orbit correlations (ftj ~ e) or potential (v,'M. e) links can be calculated with
the chain summation techniques developed for the v6 models. If this contribution
is called Ee(p, d, ßp) we have :

EIY+d~ ßp) - E6lY+d~ ßp)+ELS~F'+ d~ ßp)e

	

(l.%)

where ELS(p, d, ßp) is the contribution of diagrams having L ~ S correlation and/or
potential links. This paper primarily deals with the calculation of ELS, that of
f~o(d~ r;~) is given in ref. 3) .
The contribution of two-body clusters to E,,~ is calculated in sect . 2, and it is



generally much smaller than the two-body contribution in E6. The three-body
separable contributions to ELS are calculated in sect. 3, while the many-body chain
diagrams, and the results, are discussed in sects . 4 and 5 respectively .

We note that :

2. Two-body cluster coutribudoo

The two-body W-direct, W-exchange and WF diagrams are shown in fig. 1 . The
contribution of two-body W-direct diagrams, per nucleon, is given by :
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1.3
Fig . 1 . Diagrams 1 .1, 1 .2 and 1 .3 reapxtively give thetwo-body W~irect, W-exchange and WF contribo-

lions to ELS.

Here A is the number of nucleons, Ll the normalization volume, and

By convention the VZ in H° operates only on theFm�, the kinetic energy terms having
V~,FN�, ~ ~~,~ are included in WF and UF, while those having 0,�F��, ~ Dw,Fn~, form the
U. A sum over all occupied momentum, spin and isospin states m, n is implied in (2 .1).
The C-part ofa product is defined as the part independent of any Q or a operators,

and methods to calculate it are given in ref. 1). We can commute out the VZ in H~
and obtain :

~Un;~o;,~~,a~,I,~~n.J = (.f'H'1~k)~(o~nan~o~n)
~2

-a,~ m {2fineC(~ninl~fin )' (oo~))+1~1~~(o~oZo~J}~ (2.3)

(2.4)
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The operators O,t�� generally have two factors, O;�� which can be 1, tr,~ ~ rrM S��,
and (L ~ S)��� and Oi�;� which can be 1 or t~ ~ i�. We will use the abbreviations c, tr, t,
band T to denote these operators. Obviouslythe C-part of a product can be factorized
into a C-part of I70~° operators, and a C-part of IIOt° operators :

C(o;~a~,o~,) = C(o~,o~,o~C(o~~,o~~,o~ .

	

(2.s)

The (C(II T~ ~ s�) is trivial to calculate') and we will not discuss it . It is convenient
to use the following generalizations of tensor and L ~ S operators to calculate the
C(I7 O,',°n,) . Let A, 8 . . . be the vector operators r, D and L, the operators ß(A) are
defined as

and ß��,(L) = L ~ S. The operators a(A, B) are defined as :

a��,(A, B) = i{Q~ ' AQ� ' B+tr� ~ Atr~, ~ B)-A ~ Btr~, ~ tr�,

	

(2.7)

and a�� ,(r, r) = rZS~� . Even though the operators r, 0 and L do not commute, it
may be verified that a(A, B) = a(B, A). Some ofthe useful products of these operators
are given below:

Summary ofcontributions of two-bady W-diagrams to ELa ofReid o, (kF - 1 .7 fm- `, d = 2.5 ra) and
BJ-II o, (kF ~ 1 .4 fm- `, d ~ 2.4 r~ modela

tr~' Q�a�� ,(A, B) = a~(A,B~~' ~� = a��,(A, B),

	

(2.9)

(L ' S),;� _ ~L~�,~+w~, ' Q~��,~~{L ' S),~, +~~aC��,(L, L),

	

(2.10)

(L' S)��,S��, _ .-(L ~ S)��, - 3S,�� +a�� ,(r,a�, V��,)-S,~�(r~� ' V��,),

	

(2.11)

S,;�,(L ' S)��, _ -(L ' S)��,-a��,(r,~�,V~+ Su� ,(r��, ' V��,) .

	

(2 .12)

Since the operators ß��,(A) have two terms, one linear in Q~ and other in tr�, while
a�a,(A, B) is linear in tr~, andQ�, only products like ß,~,(A) ß,~,(B) anda�� ,(A, B~c��,(C, D)
can have a C-part .

T~ 1

Reid o,

direct eich. direct

BJ-II

eich.

tbt -18 3.43 -0.00 2.37 -0.45
cbb } L' -522 -3.72 -5.68 -4.51
abb } L= -O.OS -0.06 0.20 0.15
tbb -}C1 -0.15 -0.13 -0.14 -0.13
bcb } L= 1.40 1.02 1.37 1.07
bab } L= 0.13 0.10 022 0.18
btb -} L= -0.08 -0.06 -0.05 -0.04
66b - ; L' 029 +023 0.43 0.36
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Most of the two-body W-direct diagrams are included in E6, those that contribute
to Ecs must have one or more of i� ja and k, = b . Their contributions to the Ets
of Reid ve and BJ-II ve (based on Bethe-Johnson II potentials e . 3)) are summarized
in table 1 . The equilibrium values of ßn in the Reid ve (BJ-II ve) models are found
to be :

ßa = ßt = ß,L = 0.83 (090),

ßb = ße~ = 0.65 (0 .7) .

	

(2.13)

The ßa do not have appreciable dependence on kF in the density range investigated .
The Reid vs results are at kF = 1 .7 frn-1 , d = 2S r~, and BJ-II v8 results are at
kF = 1.4 fm- ', d = 2.4 ro. The equilibrium occurs at kF = 1 .7 and 1.38 fm- ' in the
present calculations of the Reid ve and BJ-II ve models.
Only the spin parts D~°O~°O~° are listed in the table, and all terms that differ in

isospin operators are grouped together. Thus the contribution listed as tbt is in fact
a sum of the eight terms in the product (t+ttxb+bTxt+tT) . The terms ijk and kji
have identical contributions, and when i ~ k the listed contribution is the sum of
ijk and kji terms.
The C-parts of0',~��0~,~"O,~ are also given in table 1. We note that :

where 4F�.=1, aO~ is simply the spin-isospin exchange operator. Thanks to eqs.
(2 .8) and (29) the C-parts in (2 .16) arevery simple to calculate; they are either numbers
or a number times the LZ operator, and

AA ~
e-i(k�,'r"+L"'r�,)ei(k�,'r�,+k.'r.J = p1~(~~..."

(2 .17)

(2.18)

=AdJ P~ (2.14)~,, �

~
e- ((~.w'rw.+~w'r.JLz~( ::" .'rw,+k"'r,J = ~~2P (2.15)Alï III ."

which makes the calculation rather simple.
The contribution of the two-body W-exchange diagram is given by

_ 11
.2 A9 ,~, � i.1 . k ~"= i, a

x C~o,~,f~o`~~a~1~a~J~`~ " r~+ii"'r,~d3rIM~ (2.16)



222

	

1. E. LAGARIS AND V. R. PANDHARIPANDE

where 1(kFr) is the familiar Slater function :

31(x) _ .
zs (sin x-x cos x) .

	

(2.19)

The two-body W-exchange contributions to ELS are also listed in table 1, and the
total contribution of two-body W diagrams to ELS is given in table 2.

T~t~ 2
Summary of contributions to E6 and ELS of us models (in MeV)

NC denotes terms that have not been calculated, while a " denotes cede estimates.

The only two-body WF terms (fig . 1 .3) that contribute to ELS have i, k = b or bT .
Their contribution is given by:

z (~

mPJ [(.Î°+3fn~)f'n+3(fn-fS`)f'~`][rll" +rl'Z-ll']d3r, (2 .20)

and is listed in table 2.
The two-body contributions to ELS are much smaller than those in E6 (table 2) .

This may appear surprising in view of the large magnitudes of v" and f° (figs. 5 and
6 of ref. a)] . But the important ELS contributions have a C-part of ~ ZLZ , which gives
a factor of ~ tôkFr 2 . At r < 1 fm, where the fn and vb are appreciable, it cuts down
all L ~ S contributions. However, at very high densities (kF Z 5 fm - t) the ELS con-
tributions may become comparable to those of E6.

3. Three-body separable diagrams

The separable diagrams give the dominant many-body cluster contribution
(MBCC) to E6 (WS of table 2), and since the (L ~ S) ��, operator does not commute
with any part of F,~t we may expect thaan to give the leading MBCC to ELS . The
three-body separable diagrams are shown in fig. 2. Since [(L ~ S)��� f~t] ~ 0 even
the p, q = c terms of diagrams 2.1-3 contribute to the ELS.

Reid-o s, kF ~

Es

1.7 fm''

ELS

BJ-II-us, kF =

Es

1.4 fm - '

Ets

TF 35 .95 0 24 .38 0
W-2 body -58.01 -2.88 -35.96 -4.65
W~2 body -5.43 -023 -7.04 -0.17
WS 14 .27 -0.53 14 .82 -0.46
Wo-MB -5 .38 023" -2.39 -0.03"
W~+ Wcs 4.88 0.32" 2.43 0.14"
W~MB -1.25 NC -0.28 NC
UF 1.34 NC 0.66 NC
U -0.45 NC -0.41 NC
total -14.09 -3.09 -3 .79 -5.17



2.3
Fig . 2 . Diagrams 2.1-3 give the threo-body separable contributions to Ecs .

The genéral acpression for the direct three-body Ws is :
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( ~â(m, it, 11"({fiu~~~,~lO~l } Hn~O~n{~nu0n~u~ ,~1 ~étl }
e,,~.1 i~1.k.P.9

-(feu,~,ia,",ôn~~fuku,~~unJw1~~1J~,1~~1))~3(m,n,1)d'r ��,d'T~,1, (3 .1)

where { , } denote anticommutators, and we must not let the O��, in the second,
so-called "separated», term of 3.1 operate on the f~, l Oml [ref. l)]. The~(m, n, l),
~(n, m, 1) etc. are given by

~ n m 1) = ei~tw,~rwtkw'r,wtkt~~,)
3( ~

(3.2)

The exchange diagrams 2.2, 3 respectively have a X3(1, n, m) or ~s`(n, m, l) instead
of the ~3(m, n,1~ and the corresponding spin-isospin exchange operator . On calcu-
lating the C-part and summing of k�, k� andkl the various terms of the threabody
WS contribution can be expressed in the convenient form ofthe product of an integral
over ru � with an integral over r�1 .
Most of the terms are included in E6, those that contribute to E,,x are classified

as follows: The so~alled BI terms have one or more (L ~ S)��, operators, but no
(L ~ S),~ 1 operators.Their contribution is divided into two parts BIF and BIK. The
HIF includes all terms in which one or more (L ~ S)��, operate on theF�1, while those
in which all (L ~ S),a, operate on F��, or the ~'s form the BIK. The terms which have
(L ~ S)~,1, but no (L ~ S')��, operators contribute to HPK and BPF. The BPF contains
contributions from (L ~ S)�1 operating on F,~� and the rest of BP is called HPK.
Only the terms in which p, q = 7, 8 contribute to HP, the tams having only one
(L ~ S),lopaator havezao C-part . Terms having botü(L ~ S),�, and (L ~ S)�1 opaators
are included in BB.
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The calculated values of BIF, BIK, BPF and BPK are given in table 3. The BIF
is large and attractive. It takes into account the increase in the average value L~,�
due to correlations of m and n with other particles. The ijk = cbb and bbc terms give
the dominant contribution to BIF, and so BIF is approximately linear in ß~ the
magnitude of L ~ S correlations . The BPF and BPK are respulsive and quaci~atic in
ßb. These terms are responsible for bringing down the equilibrium ßn to ~ 0.7 ; if
we include only two-body cluster contributions the equilibrium value of ßb is ~ 1 .

TeH~ 3
Summary of the contributions in MeV ofthree-body separable diagrams to ELS ofvs models

The order of magnitude of BB diagrams will be given by the product of the two-
body cluster contribution to ELS and f SkFr 2f~d3r. BB should be very small, and
is neglected . The many-body separable contributions to ELS are also neglected;
they should be a small fraction (typically a quarter to a third t)) of the calculated
three-body-separable contribution to ELS.

4. Many-body chain diagrams

The chain diagrams represent the influence of the medium on the distribution
function of the interacting pair. In v6 models the magnitude of the contributions
of chain diagrams is typically a tenth of the two-body energy. Accordingly we may
expect the contribution of chain diagrams to ELS to be of the order of 0.5 MeV and
thus not too important.
The terms of chain diagrams having L ~ S links can be grouped into two parts.

The "K-part includes those in which the L,j operate on the Ft~ or di . This part is
calculated, but the "F-part in which one or more Lt~ operate on F,~ is neglected. Since
the two-body and BIF diagrams have similar contributions we may expect the
neglected F-part to be comparable to the calculated K-part . In this sense the present
calculation of the chain diagrams in ELS is just an order of magnitude estimate .
The ELS dïagrams with central chains (W~MB) are illustrated in figs. 3.1-x. The

K-part of diagrams of type 3.1 and 3 .2 having one or more G~ chains are calculated
by inserting an exp (Gâa)-1 in the integrands of the two-body diagrams . Similarly
the terms of diagrams 33 and 3.4 containing only k~ are obtained by respectively
inserting a Gâ~ andG~ in the two-body integrals . Theterms having k,~ give derivatives

Reid va 13J-II ve

kF 1 .7 1 .4
BIF - 3.17 -3.89
HIK 0.19 0.38
BPF 1 .25 1 .83
BPK 1 .20 1 .22
total -0.53 -0.46
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ilk

	

ijk
3.1

	

3.3

3.5

	

3.6
Fig. 3 . Diagrams 3.1~ give to Wo-MBcontribution to ELB, whereas 2.x-6 areexemples of W~ diagrams

y,e,., .. ., G.6 .is .

of 1~, t , and they have to 1`e calculated explicitly as three-body integrals . The K-part
ofmany Wo-MB diagrams is summed by dressing diagrams 3.3 and3.4 by Ga d chains .
The total estimated Wa-MB contribution to EMS is quite small and it is given in
table 2.
The contribution of W-diagrams having operator chains is called W~ . Of these

we first consider those that have (L ~ S)��, operators and a Gp��; 2 . 6 chain which does
not contain L ~ S correlations. We may generate the leading terms of such diagrams
by replacing an f°- Z. e in the two-body integrals by f`G°. The f`Gp are much
smaller than fp in general, and so the W~ is typically ~ 10 ~ of the two-body W
A glance at table 1 then suggests that from this class ofdiagrams, we need to consider
only those in which an f`Gn replaces an fn in the tbt terms. However, since the
Gh are very mall, and they change sign's the contribution of these diagrams would
be negligible .
Diagrams having L " S links in the chains can also contribute to W~. Of these we

estimate only 3S and 3.6 which can be thought ofas the leading three-body terms of
G°6 ' " e. From table 1 we see that the terms having G"'' "e and iejQIcQ = 6cc, cbc and
ccb may be important, and so only these are calculated . The contribution of the
K-part of diagram 3S with p = b and ijk = cbc is, for example, gives by:

PZ
J
(~./`~)~(2./'°~~i~Î`=-1).ir~~i cos 9~,dar,~�d3r�t .

	

(4.1)
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The diagrams 3S and 3.6 can also be dressed by Gad chains, the contribution of
their K-parts is given in table 2 as the order of magnitude ofthe W~ of ELS. It is quite
small.
WF is generally the largest of the terms having V,~F��,' ~,�~ and 0�,F~, ' ~~F~i

contributions. Since the two-body WF contribution to ELS is itself very small, we
expect the many-body contributions WF-MB, OF and U to ELS, to be negligible .
These have not been calculated at all .

The minimum energy E(v6) for the Reid v6 model at kF = 1.7 fm- t is found to be
-17.2 MeV by the WP variational calculation with the wave function Y~6 having
correlation operators F6 :

The energy of the ve model obtained by treating the L ' S potentials in first order
perturbation theory, is given by

~~s~ ~ v°(r~p~~`pei
E(v8)pert . = E(a6)+ ~

	

~ ~~6~~6~

	

~

	

(5 .2)
p=7,8

5. Resalts

F6 =

	

~

	

f6~p.

	

(5 .1)
p=1,6

Fig. 4. The calculated energies of Reid, BJ-II snd BJ-IIA madds . The full curves give E(oe), dashed
curves giveE(ob ) from ref. ~), and thedot-dash curve gives Fxo s) P, � . for the Reid modd . Thecurve labelled
"EXPT' assumes equilibrium kF = 1 .3 fm- ', Eo = -16 MeV and a compressibility of250 MeV.
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It is much simpler to calculate than E(v8). The ELS diagrams having only v° or v°`
lines contribute to the second term of (52), and of these the two-body tbt diagram is
dominant. The quantity E(ve)~~, is the expectation value of the vB Hamiltonian
with the optimum wave function Sfe for the v6 model. It is thus an upper bound to
E(ve); but it is much to high (fig . 4). For example, E(ve)~~. for the Reid model at
kF = 1 .7 is -102 MeV.
The operator F8 in the Y' e of v8 models have (i) L ~ S correlations absent in F6,

and (ü) spin, isospin and tensor correlations fj='~ 6 that are slightly dif%rent from
those in F6. We first discuss the effect of the difference between fâ=1 ~ e and 16=' ~ e .

Let
~`6

denote the wave function

(5.3)

It is simply the 9rs without its spin-orbit correlations.l'he quantityE6 is the expecta-
tion value of the v6 Hamiltonian with ~` 6. It is much higher (-14.1 MeV for Reid
models at kF = 1 .7) than E(v6). However, the expectation value ofthe ve Hamiltonian
with ~e is slightly lower than E(ve)~~,, (-10.7 MeV in Reid at kF = 1 .7).
TheL ~ S correlations in SY e lower the energy by several MeV. In Reid ve at kF = 1.7

(kF = 2.0) the energy goes down from -10.7 (+ 1.5) MeV to -172 (- lOS) on adding
L ~ S correlations. The effect of spin-orbit correlations is nevertheless much smaller
than the energy gain due to tensor correlations ( ~ 40 MeV at kF =1.7). In the Reid
models E(v6) and E(ve) (fig . 4) are almost identical due to accidental cancellations.
The dif%rence between E(UB)p~n. and E(ve) gives a better indication of the of%ct of
L ~ S correlations. The L ~ S force in the BJ-II model is approximately three times
larger than that in the Reid case, and it has a more evident influence on E(p).
The BJ-IIA v8 model uses the 3S,-3D1 potential "5.595" in the TS = Ol states

where BJ-II uses potential "6S5». BJ label 3S,-3D, potentials by the D-state percent-
age they predict in the deuteron. The interaction in TS = 00, 10 and 11 states in
BJ-IIA models is identical to that in BJ-II. Thus BJ-IIA and iteid ve models respec-
tively have weaker tensor and L ~ S potentials than BJ-II ve models have. The
equilibrium pôints of these three v8 models (fig. 4) lie on an almost straight "Coaster
line" that misses the empirical equilibrium point. The energies given by the ve models
at low densities are perhaps more distressing. At kF = 12 fm-' thesephase-equivalent
ve models give rather similar energies between 8-11 MeV, whereas the empirical
E(p) obtained with a compressibility of 250 MeV [ref.')] suggests that E(kF = 12)
should be ~ 15 MeV. This undesirable behavior of the E(p) at small densities may
be responsible for the fact that calculations with the Reid potential generally under-
bind light nuclei such as ' 60and <°Ca by 2-3 MeV per nucleon'), and overbind
nuclear matter.

Earlier estimates by WP, of the effct of L ~ S potentials on the E(p) were much
too large, by a factor of ~ 2, primarily because they neglected the repulsive BPK
and BPF terms which limit the size of f° and f°`. All the two-body E,~, and all
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the important three-body separable ELS diagrams have been calculated exactly in
the present work. Crude estimates of the neglected ELS diagrams suggest that these
should be less than 1 MeV which is probably the accuracy of the E6 calculation .
If we trust these error estimates of the present many-body calculation then the need
for a three-body force that gives a few MeV more binding at small densities, and
possibly becomes repulsive at high densities is indicated . It is well known that two-
body forces alone cannot provide all the binding energy of the triton a).

In the density range (kF < 2.2 fm-1 ) investigated the va models do not exhibit
instability towards a collapse as predicted by Calogero and Simonov 9). However,
it is possible that at very high densities some of the attractive terms in ELS, which
grow as kF, may become dominant and produce a collapse .
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