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Abstract: We report variational calculations of v, models of nuclear matter which contain central, spin,
isospin, tensor and spin-orbit potentials. These semi-realistic models can explain the nucleon-
nucleon scattering in 'S, °S,-°D,, !P, and *P,—°F, states up to ~ 300 MeV. The variational wave
function has two-body central, spin, isospin, tensor and spin-orbit correlations. The terms in the
cluster expansion of the energy expectation value, that do not contain the spin-orbit correlations
are summed by chain summation techniques developed for the o, models. Of the terms containing
spin-orbit correlations, the two-body and three-body-separable ones are calculated, and the
magnitude of the rest is estimated. Results for three phase-equivalent v, models, which differ
significantly in the strength of tensor and spin-orbit potentials, are reported. They suggest that
simple v, models may not be able to simultancously explain the binding energy and density of
nuclear matter.

1. Introduction

Non-relativistic nuclear Hamiltonians containing only two-body forces can be
expressed in the form:

2
H=Y -2 Vit To,0} (L)
i Y i<j p

where #(r,)) are functions of |r;,—r/, and Of, are operators that operate on the spin,
isospin and position variables of particles i and j. In principle one should take as
many operators as are required to explain the NN scattering at non-relativistic
energies. Simpler models of nuclear matter are obtained by considering a few of the
most important operators in (1.1). The so-called “v; models” have p = 1, 6 and
the Of~1:6 are 1, 0,0, ;" 1,, (0, 0 )7, 1)), S; and 5,z 7)), S, being the tensor
operator. Many authors have studied v; models based on different NN potentials.
Recent results have been reviewed by Pandharipande and Wiringa *), and particularly
for the vg model based on the Reid ?) potential, an agreement seems to be emerging.
In this paper we study the so-called “v, models” which contain the spin-orbit

potentials associated with the operators:

0* =8, L -y 1) | (12)
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in addition to the six contained in the v, models. Very crude calculations of vg models
containing many approximations were reported earlier 3).

A vy Hamiltonian can explain the elastic scattering in the !S,, 3S,-*D,, 'P, and
3P,-F, states. In this sense these are the simplest of the “realistic” models. They
are, however, unable to explain phase shifts in D and higher waves. A Hamiltonian
containing the eight vy potentials, two quadratic spin-orbit potentials and four
momentum-dependent terms like (V2o™(r)+ v™(r)V?) can explain all scattering data
up to 330 MeV [ref. 4)].

The variational method developed by Wiringa and Pandharipande (WP) [ref. *)]
is used to calculate the E(p) of the vg models. The pair-correlation operator is assumed
to be:

F ij(d! ﬂp) = ﬁpffo(da "u)ofjs (1.3)
p=1,8
B, and d are the variational parameters, and the functions f/,(d, r,) are obtained by
minimizing the two-body cluster contribution to the energy under the healing con-
straint

flolry 2 d)=6,,. (14)
The variational wave function is assumed to be
¥ = [ []F, o) (1.5)
i<j

where ¥ is a symmetrizing operator and &(p) is the Fermi gas wave function. We will
refer to B, ff(d, r;)) by fF for brevity.
WP expand E(p, d, 8,),

_<PHY)
<Yy

in a diagrammatic series, and we will continue to use the diagrammatic notation
given in fig. 1 of ref. %). In v, models E(p, d, B,) can be calculated, presumably quite
accurately °), by summing the important diagrams of this expansion by chain summa-
tion methods. In vy models the contribution of all diagrams that do not contain
either spin-orbit correlations (f;]'®) or potential (v.,®) links can be calculated with
the chain summation techniques developed for the v, models. If this contribution
is called Eg(p, d, B,) we have:

E(p,d, ﬂp) = E¢lp. d, ﬂp)+ELS(p’ d, ﬁp)’ (L7

where E; ((p, d, B,) is the contribution of diagrams having L- § correlation and/or
potential links. This paper primarily deals with the calculation of E;q that of
ffold, r;) is given in ref. 3).

The contribution of two-body clusters to E, is calculated in sect. 2, and it is

E(p,d, B,) (1.6)
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generally much smaller than the two-body contribution in E,. The three-body
separable contributions to E, ¢ are calculated in sect. 3, while the many-body chain
diagrams, and the results, are discussed in sects. 4 and 5 respectively.

2. Two-body cluster contribution

The two-body W-direct, W-exchange and W, diagrams are shown in fig. 1. The
contribution of two-body W-direct diagrams, per nucleon, is given by:

1
TAg L L | € 00 HE, O, S 0k e e e O, (21)
m,nij.k
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Fig. 1. Diagrams 1.1, 1.2 and 1.3 respectively give the two-body W-direct, W-exchange and W contribu-

tions to £, 5.
Here A is the number of nucleons, 2 the normalization volume, and

hZ
Hy = vh= 8, — V2, 22)

By convention the V2 in H* operates only on the F,,, the kinetic energy terms having
VoF o V@ are included in W; and Uy, while those having V,.F,, " V,F,, form the
U. A sum over all occupied momentum, spin and isospin states m, n is implied in (2.1).

The C-part of a product is defined as the part independent of any & or 7 operators,
and methods to calculate it are given in ref. !). We can commute out the V2 in H,
and obtain:

CUmnOrnt 100 0n fnnOra) = (1 HY*)C (07, 070,070)
2
—0y h; {YmnC O Vinn) (VORD) +fan (00 ?0L)} . (23)

We note that:

VAL:S),, =0,

1k
(V2): (VL o) = (L5, 4
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The operators O, generally have two factors, Oz, which can be 1, 6,," g, S,
and (L- S),,, and O%, which can be1 or t,, - ,. We will use the abbreviations c, g, ¢,
b and  to denote these operators. Obviously the C-part of a product can be factorized
into a C-part of ITO% operators, and a C-part of [TO™ operators:

C(0},08,0%,) = C(055,0%,0%)C(0%,0%,0%,). (2.5)

The (C(II t,, - 1,) is trivial to calculate ') and we will not discuss it. It is convenient
to use the following generalizations of tensor and L- § operators to calculate the
C(IT Ols).Let A4, B... be the vector operators r, V and L, the operators f(4) are
defined as

BonlA) = Lon+a,) 4, (2:6)
and §,,(L) = L-S. The operators a(4, B) are defined as:
.4, B) = ¥o,,* Ao, B+0," Ao, B)—A - Bo,,- g, @7

and a,(r,r) = r’S,,. Even though the operators r, V and L do not commute, it
may be verified that (4, B) = a(B, A). Some of the useful products of these operators
are given below:

On’ OuBuald) = B AN G = Bl ), @8)
O O 0niA, B) = 2, (A4, B, 0, = a,(A4,B), 29)
(L S = 42 +30," 0 Loy~ HL* Shput S, (L, L), (2.10)
(L S)puSun = —(L* S)pu— 38,‘“ + 0Py Vouw) = ST rmn * Viru)s (2.11)
S;,,(L *8)n = —(L- S)m—a_;,(rm, Vo TSP * V- (2.12)

Since the operators 8,,,(4) have two terms, one linear in ¢,, and other in g,, while
(A, B) is linear in ¢,, and a,, only products like f,,.(4) B,..B) and a, (4, Bx,,(C, D)
can have a C-part.
TasLE 1
Summary of contributions of two-body W-diagrams to E, ; of Reid vy (kg = 1.7fm~', d = 2.5 r;) and
BJ-1 oy (ky = 1.4 fm~1, d = 2.4 r;) models

Reid v, BJ-IT
iJjk, C(0'0'0*)
direct exch. direct exch,
tht ~18 343 -0.00 237 —045
cbb 3P -522 -3 —5.68 —451
obb B ~0.05 -0.06 0.20 0.15
thb 3B -0.15 -0.13 -0.14 -0.13
beb B 1.40 1.02 1.37 1.07
bab b & 0.13 0.10 022 0.18
btb -3 B —0.08 -0.06 —-0.05 -0.04

bbb -ip 029 4023 043 036
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Most of the two-body W-direct diagrams are included in E, those that contribute
to E, s must have one or more of i,, j, and k, = b. Their contributions to the E, g
of Reid vg and BJ-II vg (based on Bethe-Johnson II potentials $3)) are summarized
in table 1. The equilibrium values of B, in the Reid vg (BJ-II vg) models are found
to be:

B. = B. = B,. = 0.83(090),
B, = B. = 1.1(L.1),
By = By, = 0.65(0.7). (2.13)

The B, do not have appreciable dependence on k. in the density range investigated.
The Reid v, results are at k; = 1.7 fm™!, d = 2.5 r;, and BJ-II v results are at
ke = 14 fm™!, d = 2.4 r,. The equilibrium occurs at kg = 1.7 and 1.38 fm~* in the
present calculations of the Reid vy and BJ-II vg models.

Only the spin parts 0“0*0* are listed in the table, and all terms that differ in
isospin operators are grouped together. Thus the contribution listed as tbt is in fact
a sum of the eight terms in the product (t+tt)b+ brXt +tt). The terms ijk and kji
have identical contributions, and when i # k the listed contribution is the sum of
ijk and kji terms.

The C-parts of Ol Ol O%: are also given in table 1. We note that:

;ﬁ Z e"‘(km"m"'kn"n)el(kll"m+ku"n) =p, (2.14)
1
Z_é Z e—l(k...-r...+l',.-r,‘)L2el(k,..-rm+k..-r,‘) = ik:_rzp’ (2.15)

which makes the calculation rather simple.
The contribution of the two-body W-exchange diagram is given by

LZ D) *J‘e—t(k..-rn+k.-r...)

AQ mni,jhkn=14

BN -

x C(O. fLO H. 01, fk Ok Jeltbm rmtbn'rigd  (2.16)

where 1),._, 4O, is simply the spin-isospin exchange operator. Thanks to eqs.
(2.8) and (29) the C-partsin (2.16) are very simple to calculate; they are either numbers
or a number times the I? operator, and

‘41_9 Z e—l(k..'l'n"'l'n"m)e“kﬂ"ﬂ"'l‘ﬂ"") = plz(kFr), (2°l7)
A—l‘)— Ze_“k_.'-+h.r_)l‘ze“k,.-rm+ku"u) = prl(kpr)l'(kpf), ) (2.18)
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where l(k;r) is the familiar Slater function:
3
I(x) =3 (sin x—x cos x). (2.19)

The two-body W-exchange contributions to E;  are also listed in table 1, and the
total contribution of two-body W diagrams to E, ¢ is given in table 2.
’ TABLE 2
Summary of contributions to E, and E, ; of v, models (in MeV)

Reid-vg, ky = 1.7 fm™} BJ-Tl-vg, ky = 1.4 fm~*
Eg Eys Eq Es
T, 35.95 0 2438 0
W-2 body —58.01 -2.88 —3596 —4.65
W,-2 body -543 ~023 -7.04 -0.17
W 14.27 ~0.53 14.82 ~0.46
W,-MB -538 023+ -239 -0.03*
Wet Wes 4.88 0.32* 2.43 0.14*
W,.-MB ~125 NC -028 NC
U, 134 NC 0.66 NC
U —045 NC —041 NC
total ~14.09 ~3.09 —379 -5.17

NC denotes terms that have not been calculated, while a * denotes crude estimates.

The only two-body W terms (fig. 1 3) that contribute to E, ; have i, k = b or br.
Their contribution is given by:

:—m p J 2+ 3712+ 30 =) f o N[l + 102 — 1 ], (2.20)

and is listed in table 2.

The two-body contributions to E, 5 are much smaller than those in E (table 2).
This may appear surprising in view of the large magnitudes of v® and f° (figs. 5 and
6 of ref. 3)]. But the important E, ; contributions have a C-part of ~ 1I?, which gives
a factor of ~ {5kZr?. Atr < 1 fm, where the f® and v® are appreciable, it cuts down
all L- S contributions. However, at very high densities (kz * 5 fm~?) the E, 5 con-
tributions may become comparable to those of Eg,.

3. Three-body separable diagrams

The separable diagrams give the dominant many-body cluster contribution
(MBCC) to E4 (W of table 2), and since the (L - S),,, operator does not commute
with any part of F,,, we may expect them to give the leading MBCC to E, . The
three-body separable diagrams are shown in fig. 2. Since [(L - S)n, fi£,1 # 0 even
the p, g = c terms of diagrams 2.1-3 contribute to the E, ;.



2.3
Fig. 2. Diagrams 2.1-3 give the three-body separable contributions to E, s.

The general expression for the direct three-body W is:

2 T T [0smn DO 12,02 H O Ok 11081

m,n 1 Lk pe
—(f;uO:nHJmnOJmf:IO:NXfII 01 /2104.))®5(m, n, 1)d3’ mda" mis (3.1)

where {,} denote anticommutators, and we must not let the O, in the second,
so-called “separated”, term of 3.1 operate on the f, O, [ref.!)]. The &(m,n, 1),
@(n, m, 1) etc. are given by:

¢3(m’ n, 1) = e'(km"'m"'kn"n"'.l"'l)’

Dy(n, m, 1) = e®m rathn-rmtkicry) G2

The exchange diagrams 2.2, 3 respectively have a #%(1, n, m) or ®%(n, m, 1) instead
of the #%(m, n, 1), and the corresponding spin-isospin exchange operator. On calcu-
lating the C-part and summing of k,, k, and k, the various terms of the three-body
W contribution can be expressed in the convenient form of the product of an integral
over r,, with an integral over r,,.

Most of the terms are included in E, those that contribute to E, s are classified
as follows: The so-called BI terms have one or more (L S),, operators, but no
(L - S),,, operators. Their contribution is divided into two parts BIF and BIK. The
BIF includes all terms in which one or more (L - S),,, operate on the F,,, while those
in which all (L - S),,, operate on F,, or the #’s form the BIK. The terms which have
(L' S)ny, but no (L - S),, operators contribute to BPK and BPF. The BPF contains
contributions from (L - S),,, operating on F,,, and the rest of BP is called BPK.
Only the terms in which p, g = 7, 8 contribute to BP, the terms having only one
(L S),.operator have zero C-part. Terms having both (L - S),,, and (L - S),,, operators
are included in BB.
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The calculated values of BIF, BIK, BPF and BPK are given in table 3. The BIF
is large and attractive. It takes into account the increase in the average value I2,,
due to correlations of m and n with other particles. The ijk = cbb and bbc terms give
the dominant contribution to BIF, and so BIF is approximately linear in §,, the
magnitude of L - § correlations. The BPF and BPK are respulsive and quadratic in
B,. These terms are responsible for bringing down the equilibrium g, to ~ 0.7; if
we include only two-body cluster contributions the equilibrium value of 8, is ~ 1.

TABLE 3
Summary of the contributions in MeV of three-body separable diagrams to E,  of vy models

Reid vy BJ-1I v,
kg 1.7 14
BIF -3.17 -3.89
BIK 0.19 0.38
BPF 1.25 1.83
BPK 1.20 1.22
total —-0.53 —0.46

The order of magnitude of BB diagrams will be given by the product of the two-
body cluster contribution to E, 5 and {4kZr?f*dr. BB should be very small, and
is neglected. The many-body separable contributions to E, g are also neglected;
they should be a small fraction (typically a quarter to a third !)) of the calculated
three-body-separable contribution to E, ;.

4, Many-body chain diagrams

The chain diagrams represent the influence of the medium on the distribution
function of the interacting pair. In v; models the magnitude of the contributions
of chain diagrams is typically a tenth of the two-body energy. Accordingly we may
expect the contribution of chain diagrams to E; 5 to be of the order of 0.5 MeV and
thus not too important.

The terms of chain diagrams having L- S links can be grouped into two parts.
The “K-part” includes those in which the L;; operate on the F;; or &. This part is
calculated, but the “F-part” in which one or more L;; operate on F; is neglected. Since
the two-body and BIF diagrams have similar contributions we may expect the
neglected F-part to be comparable to the calculated K-part. In this sense the present
calculation of the chain diagrams in E,g is just an order of magnitude estimate.

The E, ; diagrams with central chains (W,-MB) are illustrated in figs. 3.1-4. The
K-part of diagrams of type 3.1 and 3.2 having one or more G§, chains are calculated
by inserting an exp (G5,)— 1 in the integrands of the two-body diagrams. Similarly
the terms of diagrams 3.3 and 3.4 containing only k, are obtained by respectively
insertinga G, and G¢, in the two-body integrals. The terms having k,, give derivatives
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ijk ijk
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Fig. 3. Diagrams 3.1-4 give to W, — MB contribution to E, 5, whereas 2.5-6 are examples of W diagrams
having G*-**.

of [,,, and they have to te calculated explicitly as three-body integrals. The K-part
of many W,-MB diagrams is summed by dressing diagrams 3.3 and 3.4 by G§, chains.
The total estimated W,-MB contribution to E, is quite small and it is given in
table 2.

The contribution of W-diagrams having operator chains is called W,. Of these
we first consider those that have (L - §),,, operators and a GE> %6 chain which does
not contain L - § correlations. We may generate the leading terms of such diagrams
by replacing an f?=26 in the two-body integrals by f°G”. The f°G® are much
smaller than f” in general, and so the W, is typically ~ 109 of the two-body W.
A glance at table 1 then suggests that from this class of diagrams, we need to consider
only those in which an f°G' replaces an f* in the tbt terms. However, since the
G™ are very small, and they change sign !), the contribution of these diagrams would
be negligible.

Diagrams having L - § links in the chains can also contribute to W,. Of these we
estimate only 3.5 and 3.6 which can be thought of as the leading three-body terms of
G?=7-8, From table 1 we see that the terms having G*=7*® and i,j,k, = bcc, cbc and
ccb may be important, and so only these are calculated. The contribution of the
K-part of diagram 3.5 with p = b and ijk = cbc is, for example, given by:

k2
E‘jp‘f(v"f“)..(zf'f")mu*‘— Dus el m1 008 Ol 8. 1)
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The diagrams 3.5 and 3.6 can also be dressed by G§, chains, the contribution of
their K-parts is given in table 2 as the order of magnitude of the W, of E, . It is quite
small.

W; is generally the largest of the terms having V,F,,-V,® and V_F,_ -V _F,,
contributions. Since the two-body W; contribution to E, g is itself very small, we
expect the many-body contributions W -MB, Ui and U to E, g, to be negligible.
These have not been calculated at all.

5. Resuits

The minimum energy E(vg) for the Reid v model at kp = 1.7 fm ™! is found to be
—17.2 MeV by the WP variational calculation with the wave function ¥4 having
correlation operators F:

Fg= POP. (5.1)

p=1,6

The energy of the v; model obtained by treating the L * § potentials in first order
perturbation theory, is given by:

(¥l 2 v(rm)OR¥6>

E(®g)pen. = E(ve)+ X bl . (52)
> 27,8 (PePe>
ke (Fm ")
o' 1.2 1.4 1.6 18 20 22
—h L) I Ll l
BJ IT E(vy)
8J-II E(v,) /A
-s|- o) \ | ; 4
g - /7 7 .
~
_ \\\ ’I / oid E (vg) pget.
S SQ / /> BJ-1IA Elvg)
® /7 . 8
Z -I0[- v / -
« e
~
1)
-5 Y \ —
“EXPT® Reid E (vg)
Reid E(vq)
-20 | " 1 1 l

Fig. 4. The calculated energies of Reid, BJ-II and BJ-IIA modeis. The full curves give E(v,), dashed
curves give E(v,) from ref. %), and the dot-dash curve gives HE(vg),,.. for the Reid model. The curve labelled
“EXPT" assumes equilibrium k, = 1.3 fm~!, E; = —16 MeV and a compressibility of 250 MeV.



v MODELS 227

It is much simpler to calculate than E(vg). The E, g diagrams having only v* or v
lines contribute to the second term of (5.2), and of these the two-body tbt diagram is
dominant. The quantity E(vg),.., is the expectation value of the vy Hamiltonian
with the optimum wave function ¥ for the v, model. It is thus an upper bound to
E(vg); but it is much to high (fig. 4). For example, E(vg),.,, for the Reid model at
kg = 1.7is —102 MeV.

The operator Fg in the ¥, of v; models have (i) L- S correlations absent in Fg,
and (ii) spin, isospin and tensor correlations ff~!'S that are slightly different from
those in F. We first discuss the effect of the difference between ff=!6 and f2=1:6.
Let ¥, denote the wave function

= {JI[ X §r)opl}e. 3

i<j p=1.6 _
It is simply the ¥4 without its spin-orbit correlations. The quantity E is the expecta-
tion value of the v5 Hamiltonian with ¥ . It is much higher (—14.1 MeV for Reid
models at k. = 1.7) than E(v). However, the expectation value of the v, Hamiltonian
with P is slightly lower than E(Vg)penr, (—10.7 M€V in Reid at kg = 1.7).

The L - S correlations in ¥ lower the energy by several MeV. In Reid vg atk; = 1.7
(kg = 2.0) the energy goes down from — 10.7 (+1.5) MeV to —17.2(—10.5) on adding
L - § correlations. The effect of spin-orbit correlations is nevertheless much smaller
than the energy gain due to tensor correlations (~ 40 MeV at kg = 1.7). In the Reid
models E(v¢) and E(vg) (fig. 4) are almost identical due to accidental cancellations.
The difference between E(vg),,.,. and E(vg) gives a better indication of the effect of
L- S correlations. The L - § force in the BJ-II model is approximately three times
larger than that in the Reid case, and it has a more evident influence on E(p).

The BJ-IIA vz model uses the 3S,-3D, potential “5.595” in the TS = 01 states
where BJ-II uses potential “6.55”. BJ label 3S,-3D, potentials by the D-state percent-
age they predict in the deuteron. The interaction in 7S = 00, 10 and 11 states in
BJ-IIA models is identical to that in BJ-II. Thus BJ-IIA and Reid v3 models respec-
tively have weaker tensor and L-S potentials than BJ-II vy models have. The
equilibrium points of these three vy models (fig. 4) lie on an almost straight “Coester
line” that misses the empirical equilibrium point. The energies given by the vy models
at low densities are perhaps more distressing. At k. = 1.2 fm ™! these phase-equivalent
vg models give rather similar energies between 8-11 MeV, whereas the empirical
E(p) obtained with a compressibility of 250 MeV [ref. !)] suggests that E(k; = 1.2)
should be ~ 15 MeV. This undesirable behavior of the E(p) at small densities may
be responsible for the fact that calculations with the Reid potential generally under-
bind light nuclei such as '°0 and 4°Ca by 2-3 MeV per nucleon ’), and overbind
nuclear matter.

Earlier estimates by WP, of the effect of L - § potentials on the E(p) were much
too large, by a factor of ~ 2, primarily because they neglected the repulsive BPK
and BPF terms which limit the size of f* and f%. All the two-body E,, and all
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the important three-body separable E, ; diagrams have been calculated exactly in
the present work. Crude estimates of the neglected E, g diagrams suggest that these
should be less than 1 MeV which is probably the accuracy of the E¢ calculation.
If we trust these error estimates of the present many-body calculation then the need
for a three-body force that gives a few MeV more binding at small densities, and
possibly becomes repulsive at high densities is indicated. It is well known that two-
body forces alone cannot provide all the binding energy of the triton 8).

In the density range (kg < 2.2 fm™!) investigated the v4 models do not exhibit
instability towards a collapse as predicted by Calogero and Simonov %). However,
it is possible that at very high densities some of the attractive terms in E; s, which
grow as k}, may become dominant and produce a collapse.
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