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Abstract

A quadratic programming problem with positive definite Hessian
and bound constraints is solved, using a Lagrange multiplier approach.
The proposed method falls in the category of active set techniques.
The algorithm, at each iteration, modifies both the minimization pa-
rameters in the primal space and the Lagrange multipliers in the dual

space. Comparative results of numerical experiments are reported.
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1 Introduction

The problem of minimizing a convex quadratic function subject to bound
constraints appears quite frequently in applications. For instance, many
problems in computational physics and engineering, are reduced to quadrat-
ic programming problems. Portfolio management can also be formulated as
quadratic programming problem [14]. In the field of Artificial Intelligence,
and especially in Support Vector Machines (SVM) an efficient quadratic
solver is crucial for the training process [7, 8]. Also methods for calculating
the radiation intensity in oncology treatment are formulated as quadratic op-
timization problems [18]. Finally, many non linear optimization techniques
are based on solving quadratic model subproblems [1, 2, 15].

The Quadratic Programming problem with simple bounds is stated as:
1
mwin §xTBx + 27d, subject to: a; < z; < b;,Vie I ={1,2,---,N} (1)

where z,d € RN and B a symmetric, positive definite N x N matrix.

For the problem in Eq. (1) two major strategies exist in the literature,



both of which require feasible steps to be taken. The first one is the Active
Set strategy [1, 2], which generates iterates on a face of the feasible box
until either a minimizer of the objective function is found or a point on the
boundary of that face is reached. The basic disadvantage of this approach,
especially in the large-scale case, is that constraints are added or removed one
at a time, thus requiring a number of iterations proportional to the problem
size. To overcome this, gradient projection methods [5, 6] were proposed. In
that framework the active set algorithm is allowed to add or remove many
constraints per iteration.

The second strategy consists in treating the inequality constraints using
interior point algorithms. In brief, an interior point algorithm consists of a
series of parametrized barrier functions which are minimized using Newton’s
method. The major computational cost is due to the solution of a linear
system, which provides a feasible search direction.

Our proposed approach to solve the problem of Eq. (1) is an active set
algorithm, which does not guarantee strictly descent iterations. In this paper
we investigate a series of convex quadratic test problems. We recognize that
bound constraints are a very special case of linear inequalities, which may

in general have the form Az > b, A being an mzn matrix and b is a vector



€ R™. Our investigation is also motivated by the fact that in the convex
case, every problem subject to inequality constraints can be transformed to

a bound constrained one, using duality, i.e. the problem:

17 T
min oz Bx +z°d (2)

subject to: Az > b

is equivalent to the dual:

1 - .
——y"By+y"d
max —oy By +y (3)

subject to: y > 0

where B = AB AT a positive definite matrix and d = AB~*d+b. The dual
problem in Eq. (3) is also a quadratic problem subject to bounds. Let y*
be the solution of the dual problem. We can then obtain the solution to the

initial problem of Eq. (2) as:
¥ =B 1(ATy* —d) (4)

The paper is organized as follows. The proposed algorithm is described
in detail in Section 2. In Section 3 we briefly present four quadratic pro-
gramming codes that were used against our method on five different problem
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types, that are described in Section 4. Finally, in Section 5 a new trust
region like method is proposed which takes full advantage of our quadratic

programming algorithm.

2 Solving the quadratic problem
For the problem in Eq. (1), we construct the associated Lagrangian:
1
L(w, A p) = 5o" B +2'd = X'z —a) - p' (b —2) (5)
The KKT necessary conditions at the minimum z*, \*, u* require that:
Br*+d—-X+u =0
N0, pgf>0,Viel
A(z; —a;)=0,Viel (6)
37:( S [ai,bi], Viel

A solution to the above system (6), can be obtained through an active set

strategy described in detail in Algorithm 1:

Algorithm 1 BOXCQP




Initially set: £ =0, A® = 4 =0 and 20 = —B~1d.
If z(© is feasible, Stop, the solution is: z* = z(©.

At iteration k, the quantities ), \*#) 4(¥) are available.

1. Define the sets:

L = 4. xgk) < a;, or xgk) = q; and /\Ek) >0}
vk = i xz(k) > b;, or a:z(k) =b; and ,uz(k) > 0}
Sk = fi:q < xgk) < b;, or xz(k) = a; and )\z(k) <0,

or xz(k) =b and p < 0}

1

Note that L*) yUu® y §*) = 1

2. Set:
xz(kﬂ) = a;, /Lgkﬂ) =0, Vie LW
2 = b, A =0, Wie u®
MWD =0, Y =0, Vies®
3. Solve:

B+ 4 g = A+ _ b+D)



for the N unknowns:

25 v e s
pF i e Ut

AFD Dy e L)
4. Check if the new point is a solution and decide to either stop or iterate.

If (z57 € [a;,b;] Vi € S® and p*) >0, Vie UW
and /\Ekﬂ) >0, Vi € L*)) Then
Stop, the solution is: z* = z*+1.
Else

set k < k + 1 and iterate from Step 1.

Endif

The solution of the linear system in Step 3 of Algorithm 2, needs further

consideration. Let us rewrite the system in a componentwise fashion.

S Byal* Y 4 d, = A Y e T (7)

Z] ]
jelI
Since Vi € S® we have that )\ (k1) ,u(kH) = 0, hence we can calculate

x§k+1), Vi € S® by splitting the sum in Eq. (7) and taking into account
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Step 2 of the algorithm, i.e.:
3 Byal™ =— 3 Bya;— Y Bib;—d;, Vie S® (8)
jesk) jeL®) FeU k)
The submatrix B;;, with 7,5 € S®*) is positive definite as can be readily
verified, given that the full matrix B is. The calculation of /\gkﬂ), Vie L*

and of ,quJr1 Vi € U® is straightforward and is given by:

MWD =3 Bl 1+ d;, vie L® (9)
jeI

pt = 3" Byatt) — 4y, i e U® (10)
jeI

The main computational task of the algorithm above, is the solution of
the linear system in Step 3. The size of the system may vary according to
the size of the active set in each iteration. In our implementation we solve
the linear system using either the conjugate gradient method (Variant 1) or a
direct solver via LDLT decomposition (Variant 2). For large scale problems

the conjugate gradient method may be preferable.



3 Other quadratic codes

3.1 QPBOX

QPBOX [11] is a Fortran77 package for box constrained quadratic programs
developed in IMM in Technical University of Denmark. The bound con-
strained quadratic program is solved via a dual problem, which is the mini-
mization of an unbounded, piecewise quadratic function. The dual problem
involves a lower bound of A, i.e the smallest eigenvalue of a symmetric,

positive matrix, and is solved by Newton iteration with line search.

3.2 QLD

This code [10] is due to K.Schittkowski of the University of Bayreuth, Ger-
many and is a modification of routines due to MJD Powell at the University
of Cambridge. It is essentially an active set, interior point method and sup-

ports general linear constraints too.

3.3 DUALQP

This method was originally proposed by Goldfarb and Idnani [12] for positive

definite quadratic programming problems. It takes advantage of the fact that



the unconstrained minimum of the objective function can be used as a start-
ing point (notice that we choose the same starting point). DUALQP can be
applied to problems with general linear constraints also. The implementation

is due to P. Spellucci of the Technical University of Darmstadt [17].

3.4 QUACAN

This algorithm combines conjugate gradients with gradient projection tech-
niques, as the algorithm of Moré and Toraldo [4]. A new strategy for the
decision of leaving the current face is introduced, that makes possible to ob-
tain finite convergence even for a singular Hessian and in the presence of
dual degeneracy. QUACAN [16] is specialized for convex problems subject

to simple bounds.

4 Experimental results

To verify the effectiveness of the proposed approach we used five differen-
t problem types, and measured cpu times to make a comparison possible.
We have implemented BOXCQP in Fortan 77 and used an Intel Pentium—4

processor with Linux operating system.
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In the subsections below we describe in brief the different test problems

used for the experiments, and report our results.

4.1 Random problems

The first set of experiments includes randomly generated problems. We cre-
ate random positive—definite B matrices, random bounds a and b and we

choose d so that the unconstrained minimum falls outside the box. (See

Table 1).

4.2 Circus Tent problem

The circus tent problem is taken from Matlab’s optimization demo as an ex-
ample of large-scale quadratic programming with simple bounds. The prob-
lem is to build a circus tent to cover a square lot. The tent is elastic and is
to be supported by five poles. The question is to find the shape of the tent
at equilibrium, that corresponds to the minimum of the energy function. As
we can see in Figure 1, the problem has only lower bounds imposed by the
five poles and the ground.

The surface formed by the elastic tent, is determined by solving the bound

constrained optimization problem:
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1
min flz) = §xTHx +2%¢ (11)

subject to: | <z

where f(z) corresponds to the energy function and H is a 5-point finite

difference Laplacian over a square grid.

4.3 Biharmonic Equation problem

We consider the problem of describing small vertical deformations of an hor-
izontal, elastic membrane clamped on a rectangular boundary, under the
influence of a vertical force. The membrane is constrained to remain be-
low an obstacle. For an in depth discussion of this problem see [21]. The

formulation of the problem is given by Eq.( 12).

1
muin iuTQu +ul'f (12)

subject to: u < ¥

We see an example in Fig 2 of a membrane under the influence of a vertical

force.
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4.4 Intensity Modulated Radiation Therapy

This problem arises in the field of radiotherapy and concerns the determina-
tion of the spatial distribution of the radiation, in a way that the patient’s
vital organs are minimally irradiated. Knowing the beam settings and the in-
tensity profile, one can calculate the radiation dose. Inversely, when a desired
dose is required, the proper intensity profile for given beam settings can be
retrieved by solving a quadratic problem. The beam settings are successively
modified in an effort to satisfy a set of clinical constraints, and hence the
quadratic subproblem (shown in Eq. (13)), must be solved a large number

of times [18].

mins(f) = /7Af + 7 (13)

subject to f >0

The results reported in Table 4, correspond to real world data, kindly
provided by S. Breedveld [19]. In this example, seven beams are combined

resulting to a quadratic problem with 2342 parameters.
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4.5 Support Vector Classification

In this classification problem, the goal is to separate two classes using a
hyperplane f(x) = wTz + b, which is determined from available examples
(D = {(z',9Y), (% v?),...(z",y")}, z € R", y € —1,1). Furthermore it
is desirable to produce a classifier that will work well on unseen examples,
i.e. it will generalize well. Consider the example in Fig. 3. There are many
possible linear classifiers that can separate the data, but there is only one
that maximizes the distance to the nearest data point of each class. This
classifier is termed the optimal separating hyperplane and intuitively, one
would expect that generalizes optimally.

The formulation of the maximum distance linear classifier (if we omit the
constant term b of the hyperplane equation') is a convex quadratic problem

with simple bounds on the variables. The resulting problem has the form:
1
min EaTQa —a'e (14)
subject to: 0 < a; < C

where e € R' and with ¢; = 1, Qi = y9’K(2%,27) and K(z,y) is the

kernel function performing the non-linear mapping into the feature space.

L Also known as explicit bias.
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The parameters a € R' are Lagrange multipliers of an original quadratic

problem, that define the separating hyperplane using the relation:
l . .
v’z =3 afy'K(7', 7) (15)
i=1
Hence the separating surface is given by:

f(@) = sgn(w*" z) (16)

In our experiments we used the CLOUDS [13] data set, which is a two-
dimensional data set with two classes. We have constructed the problem in
Eq. (15) using an RBF Kernel function K(z,y) = exp(%gyw), and setting

C = 100. The experiments conducted follow the procedure:

e Form the training set by extracting 1 examples from the dataset and

let the rest examples (5000-1) form the test set.
e Construct the matrix Q for the problem in Eq. (15)

e Apply each solver, obtain the corresponding separating surface and

test-set error.

In these experiments the large condition number of matrix ) leads to ill
conditioned problems. To circumvent this, we added in the main diagonal
of ) a small positive term. The resulting classification surfaces for [ = 200,
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500, 1000 and 2000 training examples from CLOUDS dataset are shown in

Fig. 4.

5 Bound Constrained Nonlinear Optimization

We present here a trust region method for non-linear optimization with bound
constraints, where the trust region is a hyperbox, in contrast with the usual
hypersphere or hyperellipsoid shapes. The rectangular trust region is natu-
ral for problems with bound constraints, because even when it overlaps with
the feasible region, its geometry is preserved. Trust region methods fall in
the category of sequential quadratic programming. These algorithms are it-
erative and the objective function f(z) (assumed to be twice continuously
differentiable), is approximated in a proper neighborhood of the current it-
erate (the trust region), by a quadratic model. Namely, at the k™ iteration

the model is given by:
1
f@k +5) = m®(s) = fa®) + sTg® + §STB(k)8 (17)

where ¢g¥) = V£(z®)) and B® in the case of Newton’s method is a posi-
tive definite modification of the Hessian, while in the case of quasi-Newton

methods is a positive definite matrix produced by the relevant update.
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The trust region may be defined by:
TW = {z e R" | ||z — 2V < AW} (18)

It is obvious that different choices for the norm lead to different trust region
shapes. The Euclidean norm || - ||2, corresponds to a hypershpere, while the
|| - ||oo norm defines a hyperbox.

Given the model and the trust region, we seek a step |[s®)|| < A®),
that minimizes m*)(s). We compare the actual reduction §f*) = f(2*)) —
f(z® + s®) to the model reduction §m®*) = m®*) (0) — m®*) (s*)). If they
agree to a certain extend, the step is accepted and the trust region is ei-
ther expanded or remains the same. Otherwise the step is rejected and the
trust region is contracted. The basic trust region algorithm is sketched in

Algorithm 2.

Algorithm 2 Basic trust region

1. Pick the initial point and trust region parameter z(9) and A© and set

k=0.
2. Construct a quadratic model:
1
f(@F +5) mmB)(s) = f(a®) + sTg® + §STB(k)S

3. Minimize m*)(s) and hence determine |[s*)|| < A®)
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4. Compute the ratio of actual to expected reduction: r*) = w, and
dm(k)

update the trust region, following the strategy of Dennis & Schnabel

[20] (Appendix A, page 338).

5. Increment k < k + 1 and repeat from 1.

Consider the bound constrained problem:
mmin f(z), subject to: I; < z; < uy (19)

(The unconstrained case is obtained by letting u; = —I; — 00.)
Let 2(¥) be the k-th iterate of the trust region algorithm.

Hence step 3 of Algorithm 2 becomes:

1
min m®(s) = sTg®) + ESTB(IC)S (20)

subject to: max(l; — x(k), —A(k)) <'s; < min(u; — :L'Z(k), A(k))

i

In the unconstrained case, our experiments (that used a BFGS update),
showed similar performance to spherical trust region implementations. For
the bound constrained case our method is obviously superior, since it main-
tains the simplicity of the rectangular trust region, where our efficient quadrat-
ic solver is applicable [15]. Note that the trust region formed by the intersec-

tion of a sphere with the rectangular box defined by the parameter bounds,
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is not easy to treat. Concluding, further numerical tests showed that our

method performs similarly to active set methods with line—search.

6 Conclusions

We have presented an active set algorithm for solving bound constrained con-
vex quadratic problems, using a Lagrange multiplier approach that modifies,
at each iteration, both the primal and the dual variables. Extensive experi-
mental testing showed significant improvement over several known quadratic
programming codes. In addition a trust region method for nonlinear objec-
tives has emerged, that takes advantage of the proposed algorithm in order

to efficiently solve unconstrained and bound constrained problems.
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Prob. Size | BOXCQP | QPBOX | QLD | DUALQP | QUACAN
100 0.41 1.22 | 0.61 0.91 1.33
200 0.48 153 | 0.83 | 1.06 1.63
300 0.67 1.74 | 0.91 1.12 2.05
500 0.8 1.93 | 1.32 1.67 2.22
1000 1.1 276 | 2.12 | 2.33 3.11
2000 1.8 317 | 237 | 313 4.12

Table 1: CPU times (secs) for the Random test problems.
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Prob. Size | BOXCQP | QPBOX | QLD | DUALQP | QUACAN
400 0.02 0.48 | 0.20 0.38 0.05
625 0.03 0.69 | 0.79 0.66 0.12
900 0.04 0.77 | 2.30 1.11 0.35
1225 0.05 0.93 | 5.57 1.61 0.69
1600 0.07 121 | 6.32 1.87 0.74
2025 0.10 156 | 8.11 2.16 0.89
2500 0.12 178 | 9.12 2.51 1.02
3600 0.17 201 |11.89| 3.24 1.23

Table 2: CPU times (secs) for the Circus Tent problem.
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Prob. Size | BOXCQP | QPBOX | QLD | DUALQP | QUACAN
400 0.05 0.07 | 0.56 | 0.38 0.18
625 0.42 0.65 | 1.13 | 1.71 1.12
900 0.81 1.07 | 1.20 | 2.23 1.65
1225 1.37 247 | 3.01 3.11 2.10
1600 2.18 298 | 3.87 | 421 2.76
2025 2.67 334 | 442 | 488 3.64
2500 3.52 407 | 510 | 543 4.41
3600 4.67 533 | 6.02 | 6.23 5.53

Table 3: CPU times (secs) for the Biharmonic Equation problem.
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Prob. Size

BOXCQP

QPBOX

QLD

DUALQP

QUACAN

2342

1.91

2.12

1.78

1.56

1.67

Table 4: CPU times (secs) for the IMRT problem.
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Prob. Size | BOXCQP | QPBOX | QLD | DUALQP | QUACAN
200 0.34 0.51 | 0.04 0.08 0.12
500 2.23 2.55 | 4.22 3.21 7.86
1000 3.45 412 |1081| 9.76 10.12
2000 15.66 18.63 |20.51| 29.01 25.11
3000 24.23 2991 |33.62| 52.11 31.49
4000 36.77 43.63 |50.04 | 69.94 45.22

Table 5: CPU times (secs) for the SVM training problem.
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Figure 1: Circus tent problem
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Figure 2: The force is presented on the left, and the deformation on the right
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/ optimal
separating hyperplane

Figure 3: Maximum distance classifier
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(a) 200 Training Examples (b) 500 Training Examples

(c) 1000 Training Examples (d) 2000 Training Examples

Figure 4: SVM classification surfaces
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