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Abstract

A novel method for solving ordinary and partial differential equations, based on grammat-
ical evolution is presented. The method forms generations of trial solutions expressed in an
analytical closed form. Several examples are worked out and in most cases the exact solution
is recovered. When the solution cannot be expressed in a closed analytical form then our
method produces an approximation with a controlled level of accuracy. We report results on
several problems to illustrate the potential of this approach.

Keywords: Grammatical evolution, genetic programming, differential equations, evolutionary
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1 Introduction

A lot of problems in the fields of physics, chemistry, economics etc. can be expressed in terms
of ordinary differential equations(ODE’s) and partial differential equations (PDE’s). Weather
forecasting, quantum mechanics, wave propagation and stock market dynamics are some examples.
For that reason many methods have been proposed for solving ODE’s and PDE’s such as Runge
Kutta, Predictor - Corrector [1], radial basis functions [4] and feedforward neural networks [5].
Recently, methods based on genetic programming have also been proposed [6], as well as methods
that induce the underlying differential equation from experimental data [7, 8]. The technique of
genetic programming [2], is an optimization process based on the evolution of a large number of
candidate solutions through genetic operations such as replication, crossover and mutation [14]. In
this article we propose a novel method based on genetic programming. Our method attempts to
solve ODE’s and PDE’s by generating solutions in a closed analytical form. Offering closed form
analytical solutions is very helpful and highly desirable. Methods that offer such type of solutions
have appeared in the past. We mention the Galerkin type of methods, methods based on neural
networks [5], etc. These methods choose a basis set of functions with adjustable parameters and
proceed approximating the solution by varying these parameters. Our method offers closed form
solutions, however the variety of the basis functions involved is not a priori determined, rather
is constructed dynamically as the solution procedure proceeds and can be of high complexity if
required. This last feature is the one that distinguishes our method from others. We have not
dealt with the problem of differential equation induction from data. The generation is achieved
with the help of grammatical evolution. We used grammatical evolution instead the ”classic” tree
based genetic programming, because grammatical evolution can produce programs in an arbitrary
language, the genetic operations such as crossover and mutation are faster and also because it is
far more convenient to symbolically differentiate mathematical expressions. The code production
is performed using a mapping process governed by a grammar expressed in Backus Naur Form.
Grammatical evolution has been applied successfully to problems such as symbolic regression [11],
discovery of trigonometric identities [12], robot control [15], caching algorithms [16], financial
prediction [17] etc. The rest of this article is organized as follows: in section 2 we give a brief
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presentation of grammatical evolution, in section 3 we describe in detail the new algorithm, in
section 4 we present several experiments and in section 5 we present our conclusions and ideas for
further work.

2 Grammatical Evolution

Grammatical evolution is an evolutionary algorithm that can produce code in any programming
language. The algorithm requires as inputs the BNF grammar definition of the target language and
the appropriate fitness function. Chromosomes in grammatical evolution, in contrast to classical
genetic programming [2], are not expressed as parse trees, but as vectors of integers. Each integer
denotes a production rule from the BNF grammar. The algorithm starts from the start symbol of
the grammar and gradually creates the program string, by replacing non terminal symbols with
the right hand of the selected production rule. The selection is performed in two steps:

e We read an element from the chromosome (with value V).

e We select the rule according to the scheme

Rule = V' mod NR (1)

where NR is the number of rules for the specific non-terminal symbol. The process of replacing
non terminal symbols with the right hand of production rules is continued until either a full
program has been generated or the end of chromosome has been reached. In the latter case we
can reject the entire chromosome or we can start over (wrapping event) from the first element of
the chromosome. In our approach we allow at most two wrapping events to occur.

In our method we used a small part of the C programming language grammar as we can see in
figure 1. The numbers in parentheses denote the sequence number of the corresponding production
rule to be used in the selection procedure described above.



Figure 1: The grammar of the proposed method
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The symbol S in the grammar denotes the start symbol of the grammar. For example, suppose we
have the chromosome x = [16,3,7,4,10, 28,24, 1,2, 4]. In table 1 we show how a valid function is
produced from x. The resulting function in the above example is f(x) = log(x?). Further details
about grammatical evolution can be found in [9, 10, 11, 13]

Table 1: Example of program construction

String | Chromosome || Operation |
<expr> 16, 3, 7, 4, 10, 28, 24, 1,2,4 || 16 mod 7 =2
<func>(<expr>) 3,7,4,10,28,24,1,2, 4 3mod 4 =3
log(<expr>) 7,4,10,28,24, 1,2, 4 7 mod 7 =0
log(<expr><op><expr>) 4,10, 28,24, 1,2, 4 4 mod 7 =4
log(x<op><expr>) 10, 28,24, 1,2, 4 10 mod 4 =2
log(x*<expr>) 28,24,1,2, 4 28 mod 7 =0
log(x*<expr><op><expr>) 24, 1,2, 4 24 mod 7=3
log(x*<digit><op><expr>) 1,2, 4 1 mod 10=1
log(x*1<op><expr>) 2,4 2 mod 4=2
log(x*1*<expr>) 4 4 mod 7=4

log(x*1*x)




3 Description of the algorithm

To solve a given differential equation the proper boundary / initial conditions must be stated. The
algorithm has the following phases:

1. Initialization.
2. Fitness evaluation.
3. Genetic operations.

4. Termination control.

3.1 Initialization

In the initialization phase the values for mutation rate and replication rate are set. The replication
rate denotes the fraction of the number of chromosomes that will go through unchanged to the next
generation(replication). That means that the probability for crossover is set to 1 —replication rate.
The mutation rate controls the average number of changes inside a chromosome.

3.2 Fitness evaluation

3.2.1 ODE case

We express the ODE’s in the following form:
f (w,y,y(”, ---,y(”_”,y(”)) =0, « € [a,0] (2)
where y(™) denotes the n-order derivative of y. Let the boundary or initial conditions be given by:

gi (x,y,y(l),...,y("_l)) =0,i=1,...,n

lomt;

where t; is one of the two endpoints a or b. The steps for the fitness evaluation of the population
are the following:

1. Choose N equidistant points (zg, 1, ..., 2x—1) in the relevant range.

2. For every chromosome i

(a) Construct the corresponding model M;(z), expressed in the grammar described earlier.

(b) Calculate the quantity

—

N—
2
BM;) = 3 (f (w5, MO (y), . M () (3)
§=0
(c) Calculate an associated penalty P(M;) as shown below.
(d) Calculate the fitness value of the chromosome as:
v = E(M;) + P(M;) (4)
The penalty function P depends on the boundary conditions and it has the form:
P(M) =2 g} (z,Mi,Mi(l),...,Mi("_l))| (5)
k=1 o=tk

where A is a positive number.



3.2.2 SODE case

The proposed method can solve systems of ordinary differential equations that are expressed in
the form:

fl(x7y1’y£;,y2’y%i;’“-,yk’yzi)) =0
:1:7 ) ) ) bR | =
f2( Y1,Y1 Y2 .yz Yk, Yy, ) ' ze [a,b] (6)
Fel@ oyt e us s ueyl)) = 0
with initial conditions:
yl(a) = Yia
y2(a) =  Y2a
S @
yk(a) = Yka

The steps for the fitness evaluation are the following:
1. Choose N equidistant points (zg, 1, ..., 2x—1) in the relevant range.
2. For every chromosome i

(a) Split the chromosome uniformly in k parts, where k is the number of equations in the
system.

(b) Construct the k models M;;, j=1...k
(c) Calculate the quantities

N—

,_.

(1) (1) W)’
(fJ w1, My (1), MY (22), Mo (1), M (27), . .., Mig (1), M (xl))
=0

Ni=1...k
(d) Calculate the quantity

Jj=1
(e) Calculate the associated penalties
P(Mij) = X (Mij(a) = yja)* Vi =1...k 9)
where A\ is a positive number.
(f) Calculate the total penalty value
k
P(M;) = (P(My)) (10)
j=1

(g) Finally, the fitness of the chromosome i is given by:

u; = E(M;) + P(M;) (11)



3.2.3 PDE case

We only consider here elliptic PDE’s in two and three variables with Dirichlet boundary conditions.
The generalization of the process to other types of boundary conditions and higher dimensions is
straightforward. The PDE is expressed in the form:

£ (2o wia), Lwe,y), Lwey), vy, vy =0 (12)
z,Y, 37,y7a$ 37,y7ay x7yaax2 may7ay2 z,y -

with @ € [zg,21] and y € [yo,y1]. The associated Dirichlet boundary conditions are expressed

ast U(zo,y) = fo(y), ¥(21,9) = f1(y), ¥(z,90) = go(z), ¥(z,y1) = g1 ().
The steps for the fitness evaluation of the population are given below:

1. Choose N? equidistant points in the box [zg,21] X [yo,y1], Nz equidistant points on the
boundary at * = x¢ and at x = x1, N, equidistant points on the boundary at y = yo and at

Y=y

2. For every chromosome i

e Construct a trial solution M;(z,y) expressed in the grammar described earlier.
e (Calculate the quantity

Al o o o2 92 2
E(M;)=>_f ($jvyj7Mi(xjvyj)7 - Mi(w5,y5), 7= Mi(@5,95), 75 Mi(z;,v5), _QMi(xjvyj))
st ox oy ox oy

e Calculate the quantities

N,
Pi(M;) = Z (Mi(zo,y;) — foly;))®

Py(M;) = ‘ ] (Mi(z1,y5) — fr(y;)?

Py(M;) = Z (M;(2,90) — go(;))?

P = S (Milayn) — 1)

=1
e Calculate the fitness of the chromosome as:

v; = B(M;) + MNPy (M;) 4+ Po(M;) + Ps(M;) + Py(M;)) (13)

3.2.4 A complete illustrative example

Consider the ODE

y" +100y =0, = € [0,1]
with the boundary conditions y(0) = 0 and y’(0) = 10. We take in the range [0,1] N = 10 equidis-
tant points xg, ..., z9. Suppose that we have chromosomes with length 10 and one chromosome is
the array: g = [7,2,10,4,4,2,11,20, 30, 5]. The function which corresponds to the chromosome g
is My(z) = exp(z) +sin(x). The first order derivative is Mél)(m) = exp(z) + cos(x) and the second



order derivative is M§2)(I) = exp(z) — sin(z). The symbolic computation of the above quantities
is described in detail in the section 2. Using the equation 3 we have:

BE(M,) = (Mg@)(xi) n 100Mg(zi)) ’

(101 exp(z;) + 99 sin(z;))*

1M- 14

0
= 48493324

The penalty function P(M,) is calculated following the equation 5 as:

P(My) = A(M,y(0) = y(0))* + (M (0)-)%)
= A((exp(0) +sin(0) — 0)* + (exp(0) — sin(0) — 10)?)
= MA4+0-0)2+(1-0-10)%

= 82\

So, the fitness value u4 of the chromosome is given by:

ug = E(Mg)+ P(M,)
= 4849332.4 + 82\

We perform the above procedure to all chromosomes in the population and we sort them in
ascending order according to their fitness value. In consequence, we apply the genetic operators,
the new population is created and the process is repeated until the termination criteria are met.
3.3 Evaluation of derivatives

Derivatives are evaluated together with the corresponding functions using an additional stack and
the following differentiation elementary rules, adopted by the various Automatic Differentiation
Methods [21] and used in corresponding tools [18, 19, 20]:

L (f(z) + g(2))" = f'(z) + ¢ (x)
2. (f(x)g(x)) = f(x)g(x) + f(z)g' (x)

(

)’ <z>g<z> g)(w)f(w)
)

flg(@))" = g'(x) [ (9(x))

To find the first derivative of a function we use two different stacks, the first is used for the
function value and the second for the derivative value. For instance consider that we want to
estimate the derivative of the function f(z) = sin(z) + log(z + 1). Suppose that Sy is the stack
for the function’s value and Sy is the stack for the derivative. The function f(z) in postfix order
is written as “x sin x 1 + log + 7. We begin to read from left to right, until we reach the end
of the string. The following calculations are performed in the stacks Sy and S;. We denote with
(ao, a1, ...,ay,) the elements in a stack, a,, being the element at the top.

3. Sop = (sin(z), z), S1 = (1cos(z),1)
4. Sp = (sin(z),z,1), S; = (1cos(x),1,0)



5. So = (sin(z),x 4+ 1), S1 = (1 cos(z),1 +0)

6. So = (sin(z),log(x 4+ 1)), S1 = (1 cos(z), %r?)

7. So = (sin(z) + log(z + 1)), S1 = (1 cos(x) + %ﬁ)

The S; stack contains the first derivative of f(z). To extend the above calculations for the second
order derivative, a third stack must be employed.

3.4 Genetic operations
3.4.1 Genetic operators

The genetic operators that are applied to the genetic population are the initialization, the crossover
and the mutation.

The initialization is applied only once on the first generation. For every element of each
chromosome a random integer in the range [0..255] is selected.

The crossover is applied every generation in order to create new chromosomes from the old
ones, that will replace the worst individuals in the population. In that operation for each couple
of new chromosomes two parents are selected, we cut these parent - chromosomes at a randomly
chosen point and we exchange the right-hand-side sub-chromosomes, as shown in figure 2.

Figure 2: One - Point crossover
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The parents are selected via tournament selection, i.e.:
e First, we create a group of K > 2 randomly selected individuals from the current population.

e The individual with the best fitness in the group is selected, the others are discarded.

The final genetic operator used is the mutation, where for every element in a chromosome
a random number in the range [0,1] is chosen. If this number is less than or equal to the
mutation rate the corresponding element is changed randomly, otherwise it remains intact.

3.4.2 Application of genetic operators

In every generation the following steps are performed:

1. The chromosomes are sorted with respect to their fitness value, in a way that the best
chromosome is placed at the beginning of the population and the worst at the end.

2. ¢ = (1 — s) * g new chromosomes are produced by the crossover operation, where s is the
replication rate of the model and g is the total number of individuals in the population. The
new individuals will replace the worst ones in the population at the end of the crossover.

3. The mutation operation is applied to every chromosome excluding those which have been
selected for replication in the next generation.



3.5 Termination control

The genetic operators are applied to the population creating new generations, until a maximum
number of generations is reached or the best chromosome in the population has fitness better than
a preset threshold.

4 Experimental results

We describe several experiments performed on linear and non linear first and second order ODE’s
and systems and PDE’s in two and three dimensions. In addition we applied our method to ODE’s
that do not posses an analytical closed form solution and hence can not be represented exactly by
the grammar. For the case of systems of ODE’s, each chromosome is split uniformly in M parts,
where M is the number of equations in the system. Each part of the chromosome represents the
solution of the corresponding ODE. We used 10% for the replication rate (hence the crossover
probability is set to 90%) and 5% for the mutation rate. We investigated the importance of these
two parameters by performing experiments using sets of different values. Each experiment was
performed 30 times and we plot the average number of generations for the ODE7 problem in figure
3. As one can see the performance is somewhat dependent on these parameters, but not critically.
The population size was set to 1000 and the length of each chromosome to 50. The size of the
population is a critical parameter. Too small a size weakens the method’s effectiveness. Too big
a size renders the method slow. Hence since there is no first principals estimation for the the
population size, we resorded to an experimental approach to obtain a realistic determination of
its range. It turns out that values in the interval [200,1000] are proper. We used fixed - length
chromosomes instead of variable - length to avoid creation of unnecessary large chromosomes
which will render the method inefficient. The length of the chromosomes is usually depended on
the problem to be solved. For the case of simple ODE’s a length between 20 and 50 is usually
sufficient, while for the case of SODE’s and PDE’s where the chromosome must be split into parts,
the length must be increased accordingly. The experiments were performed on an AMD ATHLON
24004 running Slackware Linux 9.1 The penalty parameter A\ in the penalty function was set
to 100 in all runs, except for PDE cases where the value A = 1 was sufficient. The maximum
number of generations allowed was set to 2000 and the preset fitness target for the termination
criteria was 10~7. From the conducted experiments, we have observed that the maximum number
of generations allowed must be greater for difficult problems such as SODE’s and PDE’s than for
simpler problems of ODE’s. The value of N for ODE’s was between 10 and 20 depending on the
problem. For PDE’s N was set to 5 (i.e. 52 = 25 points) and N, = N, = 50. We tried to select
the value for N and N, so as to minimize the computational effort without sacrificing quality.
The results were compared against the results from the DSolve procedure of the Mathematica
program version 5.0 running on Mandrake Linux v10.0. According to the manual of Mathematica
the DSolve procedure can solve linear ordinary differential equations with constant coefficients.
Also, it can solve many linear equations up to second order with non - constant coefficients and it
includes general procedures that handle a large fraction of the nonlinear ODE’s whose solutions
are given in standard reference books such as Kamke [22]. The evaluation of the derived functions
was performed using the FunctionParser programming library [3].



Figure 3: Average number of generations versus the replication rate for two values of the mutation
rate ( problem ODET)
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4.1 Linear ODE’s

In the present subsection we present the results from first and second order linear ODE’s. The
proposed was applied in each equation 30 times and in every experiment the analytical solution
was found.

ODE1
;2 —y
y = —
x
with »(0) = 20.1 and z € [0.1,1.0]. The analytical solution is y(z) = z + 2.

ODE2
, 1 —ycos(z)
Y=—""75
sin(x)
with y(0.1) = ﬁ and x € [0.1,1]. The analytical solution is y(x) = Sfj(i).

ODE3

1
y = —zy+exp(—3) cos(a)

with y(0) = 0 and z € [0, 1]. The analytical solution is y(x) = exp(—%) sin(z).

ODE4
Yy’ = —100y
with y(0) = 0 and 3’(0) = 10 and z € [0, 1]. The analytical solution is y(x) = sin(10x).

10



ODES5

y' =6y —9y
with y(0) = 0 and 3/(0) = 2 and z € [0, 1]. The analytical solution is y(x) = 2z exp(3z).

ODES®6

I 1 1

e A eXp(—g)COS(af)

with 3(0) = 0 and ¢(0) = 1 and x € [0,2]. The analytical solution is y(x) = exp(— %) sin(x).
ODE7

Yy’ = —100y
with y(0) = 0 and y(1) = sin(10) and z € [0, 1]. The analytical solution is y(z) = sin(10x).

ODES
vy +(1-2)y' +y=0
with y(0) =1 and y(1) = 0 and = € [0,1]. The analytical solution is y(z) =1 — z.

ODE9
1 1 T
n_ .0 I =
y' ==y —y— g exp(—) cos(z)
with y(0) = 0 and y(1) = eiipn((ol.)z) and z € [0, 1]. The analytical solution is y(x) = exp(— %) sin(z).

In table 2 we list the results from the proposed method for the equations above. Under the ODE
heading the equation label is listed. Under the headings MIN, MAX, AVG we list the minimum,
maximum and average number of generations (in the set of 30 experiments) needed to recover the
exact solution. The Mathematica subroutine DSolve has managed to find the analytical solution
in all cases.

Table 2: Method results for linear ODE’s

ODE | MIN | MAX | AVG
ODE1 8 1453 | 653
ODE2 | 52 1816 | 742
ODE3 | 23 1598 | 705
ODE4 | 14 1158 | 714
ODE5 | 89 1189 | 441
ODE6 | 37 1806 | 451
ODE7 | 42 1242 | 444
ODES 3 702 66
ODE9 | 59 1050 | 411

In figure 4 we plot the evolution of a trial solution for the fourth problem of table 2. At
generation 22 the fitness value was 4200.5 and the intermediate solution was:

ya2(x) = sin((sin(—log(4)z((— cos(cos(exp(7))) exp(cos(6))) — 5))))

At generation 27 the fitness value was 517.17 and the corresponding candidate solution was:

yar(x) = sin((sin(— log(4)x((— cos(cos(sin(7))) exp(cos(6))) — 5))))

11



Finally, at generation 59 the problem was solved exactly.

Figure 4: Evolving candidate solutions of y’ = —100y with boundary conditions on the left
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4.2 Non - linear ordinary differential equations

In this subsection we present results from the application of the method to non - linear ordi-
nary differential equations. In all the equations the method was applied 30 times and in every
application the exact solution was found.

NLODE1

1

=%

with y(1) = 1 and € [1,4]. The exact solution is y = \/z. Note that \/z does not belong to the
basis set.

/

Y

NLODE2
(y')? 4 log(y) — cos®(x) — 2cos(z) — 1 — log(x + sin(z)) = 0
with y(1) =1 4 sin(1) and = € [1,2] The exact solution is y = x + sin(z).

NLODES3
4
"or_
VY=g

with y(1) = 0 and x € [1,2]. The exact solution is y = log(z?).

NLODE4

1
2,1 /\2
=0
Ty @)+
with y(e) = 0, y'(e) = 1 and = € [e,2¢]. The exact solution is y(z) = log(log(z)) and it was
oth

recovered at the 3 generation. In table 3 we list results from the application of the method to

12



the equations above. The meaning of the columns is the same as 2. The Mathematica subroutine
DSolve has managed to find the exact solution only for NLODE1.

Table 3: Method results for non - linear ODE’s

NLODE | MIN | MAX | AVG
NLODE1 6 945 182
NLODE2 3 692 86
NLODE3 4 1564 | 191
NLODEA4 6 954 161

In figure 5 we plot intermediate trial solutions of the NLODES3.

Figure 5: Candidate solutions of third non-linear equation

15 2

At the second generation the trial solution had a fitness value of 73.512 and it assumed the

form:

ya2(x) = log(z — exp(—z — 1)) — cos(5)
while at the fourth generation it had a fitness value of 48.96 and it became:

ya(z) = log(log(z + )

Similarly at the gth generation the fitness of the intermediate solution was 4.61 and its functional

form was:

ys(x) = sin(log(z * x))

The exact solution was obtained at the 9B generation.

4.3 Systems of ODE’s
SODE1

1
Yy =

with y1(0) =0, y2(0) = 0 and z € [0, 1]. The exact solution is given by: y; = sin(x), y2 = z°.

2r—x

13

cos(z) + 47 + 2 — (& + sin? ()
sin(x) + y1y2

2



SODE2

Y = V2

Yy = Y1y2 +exp(x) — sin(z)

with y1(0) =0, y2(0) =1 and = € [0,1]. The exact solution is y; = es)i;((g;)) , Yo = exp(z).

SODE3
yy = cos(x)
Yo = —1
yé = Y2
yi = U3
ys = yd

with y1(0) =0, y2(0) =1, y3(0) = 0,y4(0) = 1, y5(0) = 0 and « € [0, 1]. The exact solutions is
y1 = sin(z), y2 = cos(x), y3 = sin(z), ys = cos(x), ys = sin(z).

SODEA4
i = —y;sin(exp(z))
yp = Y2
with y1(0) = cos(1.0), y2(0) = 1.0 and = € [0,1]. The exact solution is y; = cos(exp(x)),
y2 = exp(—x). In table 4 we list results from the application of the method to the equations
above. The meaning of the columns is the same as 2. The Mathematica subroutine DSolve has
managed to find the analytical solution only for SODE3.

Table 4: Method results for non - linear ODE’s

SODE | MIN | MAX | AVG
SODE1 6 1211 201
SODE2 15 1108 | 234
SODE3 | 30 1205 | 244
SODE4 5 630 75

4.4 An ODE without an analytical closed form solution

Example 1

with z € [0,1] and y(0) = 0 and 3'(0) = 1. With 20 points in [0,1] we find:
GP1(z) = z(cos(—sin(z/3 + exp(—5 + = — exp(cos(x)))))))

with fitness value 2.1 % 1076, The exact solution is :

ylx) = /0z wdt

In figure 6, we plot the two functions in the range [0,5]

14



Figure 6: Plot of GP1(z) and y(z) = [ —Sint(t) dt
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Example 2
Yy’ + 22y =0
with z € [0,1] and y(0) = 0 and y'(0) = 1. The exact solution is :
o) = [ exp(-)i
0
With 20 points in [0,1] we find:
GP2(z) = sin(sin(z 4 exp(exp(z) log(9)/ exp(8 + cos(1))/(exp(7/ exp(z)) + 6)))
with fitness 1.7+ 107°. In figure 7 we the plot the two functions in the range [0,5].

Figure 7: Plot of GP2(z) and y(z) = [; exp(—t?)dt

GP2(x)
¥
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Observe, that even though the equations in the above examples were solved for z € [0,1],
the approximation maintains its quality beyond that interval, a fact that illustrates the unusual
generalization ability.

4.5 A special case

Consider the ODE
y'(2*+1)— 20y —2®—1=0

in the range [0,1] and with initial conditions y(0) = 0 and y’(0) = 1. The analytical solution is
y(z) = (22 + 1)arctan(z). Note that arctan(z) does not belong to the function repertoire of the
method and this make the case special. The solution reached is not exact but approximate given
by:

GP(zx) = x/ sin(exp(cos(5/4/ exp(x))—
exp((— exp(((—((— exp(cos(sin(22))))))))))))
with fitness 0.0059168. Note that the subroutine DSolve of Mathematica failed to solve the
above equation. In figure 8 we plot z(z) ( obtained using the method of Lagaris et al [5]),
y(z) = (22 4 1)arctan(x) (which is the exact solution) and the above solution GP(x). From figures
6, 7 and 8 we observe the quality of the approximate solution even outside the training interval,
hence rendering our method useful and practical.

Figure 8: 2(z), y(z) = (22 + 1)arctan(x), GP(z)

4.6 PDE’s

In this subsection we present results from the application of the method to elliptic partial differ-
ential equations. In all the equations the method was applied 30 times and in every application
the exact solution was found.
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PDE1
V2U(z,y) = exp(—2)(z — 2 + y> + 6y)
with € [0,1] and y € [0,1] and boundary conditions:¥(0,y) = y3, ¥(1,y) = (1 + y3) exp(—1),
U(z,0) = zexp(—x), ¥(x,1) = (z+ 1) exp(—z). The exact solution is ¥(x,y) = (z+y>) exp(—x).
PDE2
VAU (z,y) = —2¥(z,y)
with z € [0,1] and y € [0,1] and boundary conditions: ¥(0,y) = 0, ¥(1,y) = sin(1) cos(y),
U(z,0) =sin(z), U(x,1) = sin(z) cos(1). The exact solution is ¥(z,y) = sin(x) cos(y).
PDE3
V3 (2,y) =4
with z € [0,1] and y € [0, 1] and boundary conditions:¥(0,y) = y2 +y+1, ¥(1,y) = y%2 +y + 3,
U(x,0) =22 +z+1, ¥(z,1) = 22 + 2 + 3. The exact solution is ¥(z,y) =22 +y> +x +y + 1.
PDE4
VAU (2, y) = — (2" + ) ¥(z,y)
with z €[0,1] and y € [0,1] and boundary conditions:¥(x,0) = 0, ¥(z,1) = sin(x), ¥(0,y) = 0,
U(1,y) = sin(y). The exact solution is ¥(x,y) = sin(zy).
PDE5
V2U(z,y) = (z - 2) exp(~) + z exp(~y)

with z € [0,1] and y € [0, 1] and boundary conditions: ¥(z,0) = z(exp(—x) + 1), ¥U(z,1) =
z(exp(—z)+exp(—1)), ¥(0,y) =0, ¥(1,y) = exp(—y) + exp(—1). The exact solution is ¥(x,y) =
a(exp(—x) + exp(—y)).

PDEG6
The following is a highly non - linear pde:

2 2, .2
VU (z,y) + exp(¥(x,y)) =1+ 2= +y° + m
with z € [-1,1] and y € [~1, 1] and boundary conditions: f(0,y) = log(1+%?), f(1,y) = log(2+
y?), g(z,0) = log(1+2?) and g(x, 1) = log(2+2?). The exact solution is ¥(z,y) = log(1+z%+y?).

PDE7
V2 (z,y,2) =6

with # € [0,1] and y € [0,1] and z € [0,1] and boundary conditions: ¥(0,y,z) = y? + 22,
U(l,y,2) = y> + 22+ 1, U(2,0,2) = 22 + 22, U(x,1,2) = 22 + 22 + 1, ¥U(2,9,0) = 22 + 32,
U(x,y,1) = 22 + y* + 1. The exact solution is ¥ (z,y, z) = 22 + 3% + 22 + 1.

In table 5 we list results from the application of the method to the equations above. The
meaning of the columns is the same as 2. The Mathematica subroutine DSolve has not managed
to find the exact solution for any of the examples above.
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Table 5: Method results for PDE’s

PDE | MIN | MAX | AVG
PDE1 | 159 | 1772 | 966
PDE2 5 1395 | 203
PDE3 | 18 311 154
PDE4 4 1698 | 207
PDE5 | 195 945 444
PDE6 | 185 | 1579 | 797
PDE7 | 10 1122 | 325

In the following we present some graphs for trial solutions of the second PDE. At generation

1 the trial solution was .
GP1(z,y) = =

with fitness value 8.14. The difference between the trial solution GP1(x,y) and the exact solution

U(x,y) is shown in figure 9. At the 10thgeneration the trial solution was
GP10(z,y) = sin(z/3 + x)
with fitness value 3.56. The difference between the trial solution GP10(z, y) and the exact solution

U(z,y) is shown in figure 10.

Figure 9: Difference between ¥(z,y) = sin(x) cos(y) and GP1(z,y)
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Figure 10: Difference between ¥(x,y) = sin(z) cos(y) and GP10(z, y)

At the 40th generation the trial solution was
GP40(x) = sin(cos(y)z)

with fitness value 0.59. The difference between the trial solution GP40(z, y) and the exact solution
U(z,y) is shown in figure 11.

Figure 11: Difference between ¥(x,y) = sin(z) cos(y) and GP40(x, y)

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06

5 Conclusions and further work

We presented a novel approach for solving ODE’s and PDE’s. The method is based on genetic
programming. This approach creates trial solutions and seeks to minimize an associated error.
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The advantage is that our method can produce trial solutions of highly versatile functional form.
Hence the trial solutions are not restricted to a rather inflexible form that is imposed frequently by
basis - set methods that rely on completeness. If the grammar has a rich function repertoire, and
the differential equation has a closed form solution, it is very likely that our method will recover
it. If however the exact solution can not be represented in a closed form, our method will produce
a closed form approximant.

The grammar used in this article can be further developed and enhanced. For instance it
is straight forward to enrich the function repertoire or even to allow for additional operations.
Treating different types of PDE’s with the appropriate boundary conditions is a topic of current
interest and is being investigated. Our preliminary results are very encouraging.
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