Nenral, Parallel & Scientific Compusations 14 (2006} 231-240

A Global Optimization Approach to
Neural Network Training

C. Voglis! and LE. Lagaris®

Dept. of Computer Science
University of Joannina, voglis@cs.uol.gr
2Dept. of Computer Science

University of Toannina, lagaris@cs.uol.gr

A‘bsﬁact

We study effective approaches for training artificial neural networks (ANN). We argue
that local optimization methods by themselves are not suited for that task. In fact
we show that global optimization methods are absolutely necessary if the training is
required to be robust. This is so because the objective function under consideration
possesses a multitude of minima while only a few may correspond to acceptable
solutions that generalize well.

Keywords- Artificial neural networks, global optimization, multistart.

1. INTRODUCTION

The minimization of multimodal functions with numerous local and global minima is
a problem that frequently arises in many scientific applications. In general the nature
of some applications is such that it is necessary to detect all the global minimizers
(e.g. computation of Nask equilibria (Goldberg, 1989) in game theory) or a set of min-
jma with objective function value in 2 specific range (energy values in the molecular
conformation problem (Saunders et al., 1890)). Another interesting application that
.requires the computation of more than one global minimizer is the computation of
periadic orbits of nonlinesr mappings {Floudas et al., 1999). Neural network training
is a problem of similar nature (Gori& Tesi, 1992); Le. the relevant objective function
possesses a multitude of local {and possibly global) minima.

Consider the classical data fitting problem: Given M points and associgted values
(Zoe), 2= 1,2,.... M, withz; € Re, 4 € R, draw a smooth hypersurfoce that is
optimal in the least square sense.

The traditional way of solving such problems is to assume a parametric model
{e.g. an Axtificial Neural Network) N(z;p) and adjust the parameters p, 80 35 ta
minimize the deviations, i.e. minimize the “Frror™;
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Thus the problem of training an ANN is transformed into an optimization one

min E{p) (2)
st peSCRH

Unfortunately the terrain modelled by the error function can be extremely rugged
and often has a multitude of local minima. Obvicusly, a methad that can not escape
from local minima has hardly any chance to find 2 solution to the problem. We must
add that smailer neural networks generalize better, since they avoid over-fitting and
this is the reason they are preferred for both classification and regression tasks. On
the other hand, training smaller networks is more difficult since the error surface iz
heavily rugged and there exist only a few good solutions.

2. MULTISTART BASED ALGORITHM IN GLOBAL
OPTIMIZATION

It is important to describe in brief the basic framework of 2 multistart based global
optimization method. In Multistart, 2 point is sampled uniformly from the feasible
region, and subsequently a Jocal search is started from it. The weakness of this
algorithm is that the same local minima may be found over and over again, wasting
so computational resonrees.

The “region of attraction” of a local minimum associated with a deterministic
local search procedure L is defined as:

A;={z €8, L(z) =z}} (3)

where £{z) is the minimizer returned when the local search procedure £ is started at
point 2.

The algorithm described above, returns a set ¥ = {y:} of the recovered local minima.
A lot of research is carried out on reducing the number of times, the local search
procedure is applied in 2 way that minimizes the rigk of missing a lecal minimum.

3. LOCATING MINIMA IN NEURAL NETWORK TRAINING

The main purpose of this work is to demonstrate the need of 2 multistart based global
optimization method for training NNs. In the literature so far we can distinguish three
major classes of methods:

« Local optimization procedures: All methods that attempt to find a local mini-
mum of the error function E(p). {Gradient descent, conjugate gradient, quasi-
Newton methods, Levenberg-Marquardt)
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Algorithm MA 1 Multistart framework
Initialize: Set k=1

Samplez € 5
yr = L(2)

Termination Control: I a stopping rule applies STOP.
Sample: Sample z € §

Main step: If (z ¢ UE 1 4;) Then

==l

y = L{z)
k=k+1
Y=Y

Eindif

Tterate: Co back to the Termination Control step.

a Clobal optimization procedures {(single global minimum): These methods em-
ploy probabilistic or deterministic strategies, to overcome focal minima and
locate a single global optimum. (Trajectory methods (Shang & Wab, 1996},
covering methods (Torn & Zilinskas, 1987), evolutionary algorithms (Torn &
Zilinskas, 1987; Goldberg, 1989), simulated annealing (Corana et al., 1987})

e Global optimization procedures {all global minima): These methods use global
strategies to locate all the existing global minima. (Interval methods (Hanses,
1992), Particle swarm (Parsopoulos & Vrahatis, 2004; Plagiannakos et al.,
1699)) :

In this section we are going 10 present real cases in neural network training that
the above mentioned procedures will not perform optimally. Note that:

o Local minima are often poor solutions to the training problem. Thus, local
optimization methods are out of question.

e The various global minima present different interpolation behavior, i.e they do
not generalize in a similar way.

e There are cases where some local minima generalize better than a global mini-
mim.

We list the two regression problems used to illustrate our points.
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Prohblem A: We used 40 evenly distributed points in [0, 20] and their corresponding
function values, to construct the training dataset Da = (z;, f{z:)), i = 1,...,40
and 500 points for the test set T3, with f(z) = zsin{z)

Problem B: We used 40 evenly distributed points in [0, 10] and their correspond-
ing function values, to construct the training data set Dp = {(zi, flz:)), i =
., 40 and 500 points for the test set T, with f(z) = zsin{z?).

3.1 Quality of loeal minima

Consider a feedforward artificial neural network, with sigmoid activation functions in
the hidden layer. This model can be written as:

Niz;p) = %Pai—ad(mi»w + pai) (4)

(133

with a{2) =

g™
where the weight parameters p are numbered as shown in Figure 1.

Figure 1: Neural network: Labelling of parameters

One easily realizes that problem (2) may be solved with a large number of different
values for the parameters.

In order to evaluate the quality of local minima for problem A, we optimized the
error function using a multistart-based global optimization method (Lagaris et al.,
2004). Our goal was to find as many local minima as possible. Using six nodes in the
hidden layer (ny = 6), we found more than 10,000 minima. In Table 1 we present
only a small subset of 20 minima.

‘We have sorted these solutions in ascending order of the E(p) value. Intmtwely

we can assume that the quality of the approximation is inversely proportional to
the Frror Function value achieved for each minimum, This is shown in the Figure 2,
where we plot 4 found solutions. Notice that only the first set of parameters (Solution
1) managed to approximate the target function accurately.
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Table 1: A set of 20 selected local minima (Problem A}

Consequently the probability that a local search method recovers such a solution,

is rather small considering the large number of existing local minima.
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(c) Solution 17

Figure 2: Quality of local minima found.

3.2 Quality of the global minima
In the past, many researchers used global optixhization algorithms to search for a gingle
global minimum. Such strategies perform better than local techniques, however they
do not take in account the existence of many global minima. If this is the case (which

{d) Selutian 20
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j | Train Error | Test Exror | ||t — fille
1 0.0013 4.38 0.0

2 0.0012 0.28 6246.69
3 0.0014 4.0 T017.74
4 0.0016 0.1 6162.54

Table 2: An example of 4 global minima

Volgis & Lagaris

is quite common), multistart based global optimization algorithms, that recover all
the global minima of the problem can be used to identify (by means of a test set) the

best parameter values.

To illustrate this we solved Problem B, using & neural network with 15 nodes in
the hidden layer. Four global minima were recovered, presented in Table 2. Equiva-
lent solutions generated by node-permutation were excluded. As can be realized by
inspecting Table 2, the four solutions perform quite differently in the test set, yielding
a clear winner {Solution #4, with test error 0.1). In Figure 3 we plot for each point
in the test set, the accuracy of the appraximation, i.e. the quantity |f(z;) — N{zs p)iv
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Figure 3: Quality of local minima found.
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Train Error | Test Error | ||p: — pille
1 1.10E-4 1L.7EAS 0.0
2 3.02E-2 .78 3914.18
3 7.9E-2 0.89 3631.74
4 0.22 2.13 1167.21
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Table 3: An example of overtraining.

3.3 Finding Multiple Minima vs. Overtraining

Overtraining is a frequently encountered problem in NN training. This happens when
the model parameters are extremely well tuned to the training data and interpolate
inaccurately in nearby points.

Such kind of solutions may correspond to global minima as well. So it is important
to maintain as candidate solutions giobal and local minima as well.

To illustrate the above, we soived Problem A, using TML and 3 neural network
consisting of 10 hidden nodes. In Table 3 we present the four best solutions found. It
is rernarkable that the solution with the lowest error in the training set displays the
worst error in the test set. The first wo solutions ave shown in Figure 4. Notice the
large oscillation near zero, a characteristic sign of overtraining.

0 ] w 2 L3 ) ] 3

{(z) Solution 1. CGvertrained solution
- Error in test get = 165953, Note the
behavior around 2 = 8

{b) Solution 2. Quality sohstion - Er-
ror in test set = 0.78

Figure 4: An example of overtraining.

4. CONCLUSIONS

The plethora of local minima inherent in the objective function that resnlte in the case
of peural network training, renders necessary the use of global optimization methods.
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Since generalization is a very important property that can be verified only a-posteriori
(i.e. by using a test data set), multistart-based methods that recover all the local
(and global minima) should be preferred.

In this article we presented a framework that can be used for achieving robust
neural network training. Almost any multistart-based method may be used since
most variations aim in eollecting all the local minima inside the feasible region.

‘The test problems presented here are constructed for illustration purposes, how-
ever they are typical and represent the difficulties of real world problems.
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