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Abstract

Given a {features , target} dataset, we introduce an incremental algorithm that
constructs an aggregate regressor, using an ensemble of neural networks. It is well
known that ensemble methods suffer from the multicollinearity issue, which is the
manifestation of redundancy arising mainly due to the common training-dataset. In
the present incremental approach, at each stage we optimally blend the aggregate
regressor with a newly trained neural network under a convexity constraint which,
if necessary, induces negative correlations. Under this framework, collinearity
issues do not arise at all, rendering so the method both accurate and robust.

1 Introduction

The combination of estimators has been studied by many research teams. Wolpert (1992)† was among
the first who studied the effect of estimator combination on the approximation accuracy. His work
was followed up by Breiman (1996), where an explanation for imposing convexity constraints on
the linear combination coefficients was offered, based on grounds of generalization quality. Perrone
and Cooper (1993) started a systematic study, developing the “Basic Ensemble Method” and the
“Generalized Ensemble Method”, that concluded in Perrone (1993) PhD Thesis. Independently, and
around the same time, Hashem and Schmeiser (1993, 1995) developed an optimal linear combination
method that led to Hashem (1993) PhD Thesis, and additional publications, Hashem (1996, 1997).

†This work was available since 1990 as LA-UR-90-3460 technical report
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The potential of ensemble methods to offer improved accuracy was also stressed by Krogh and
Vedelsby (1994), and by Meir (1995) whose work focused particularly on small and noisy datasets.
Early work on combining classification neural networks, was published by Hansen and Salamon
(1990) and later by Leblanc and Tibshirani (1996) and Zhou et al. (2002). A problem that emerges
when combining many estimators is that of collinearity. This is due to the linear dependence of
estimators that are trained on the same data. The relevant correlation matrix involved, becomes near
singular or even singular and one has to discard a number of estimators in order to circumvent the
problem, for example by using techniques such as principal component analysis, Merz and Pazzani
(1999). A different approach was followed by Liu and Yao (1999) and Chen and Yao (2009), termed
“negative correlation”, a technique that encourages the formation of diversity among the estimators
during the training process, by adding a proper term in the loss function. Diversity management
through negative correlation has been examined and reviewed by Brown et al. (2005), Brown et al.
(2005), Chan and Kasabov (2005) and by Reeve and Brown (2018) among others. For ensembles of
classifiers, Tumer and Ghosh (2002), have presented a fusion approach based on order statistics.

The structure of this paper is as follows. In section 2, we first provide a brief background on the
collinearity issue, and we proceed with the description and analysis of the proposed method. In
section 2.3, we lay out the algorithmic procedure aiming to aid the implementation. In section 3, we
present the results of performed numerical experiments on a number of test functions and network
architectures. A summary with conclusions and thoughts for future research are given in section 4.
There are also two short appendices describing technical matters.

2 Analysis and description of the approach

Let us begin with a few definitions. The problem is to approximate an unknown function y(x) by a
parametric model f(x), given a training set (Tr) and a test set (Ts):

Tr = {xi, yi = y(xi)}i=1,M , (1)
Ts = {x̂i, ŷi = y(x̂i)}i=1,L. (2)

The expected values of a function f(x) over Tr and over Ts, are denoted as 〈f〉 and 〈f〉s correspond-
ingly, and are given by:

〈f〉 ≡ 1

M

M∑
i=1

f(xi), (3)

〈f〉s ≡
1

L

L∑
i=1

f(x̂i). (4)

The “misfit” of a function f(x) is defined as:

mf (x) ≡ f(x)− y(x), (5)

In this article we will adopt for the model function f(x), neural networks of various architectures and
activation functions, all trained to fit y(x). Let these networks be denoted as:

Nj(x), ∀j = 1, 2, · · · ,Ke, (6)

with corresponding Mean Squared Error (MSE) values:

〈m2
j 〉 ≡ 〈(Nj − y)2〉. (7)

We will assume that each network Nj(x) has zero bias over Tr, namely:

〈mj〉 = 〈Nj − y〉 = 0, (8)

a property that can be easily arranged to hold (see Appendix A).
Let the ensemble estimator be a convex linear combination of ensemble members Ni(x),

Ne(x) =

Ke∑
i=1

aiNi(x). (9)
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Convexity imposes the constraints:
Ke∑
i=1

ai = 1 and ai ≥ 0, ∀i = 1, 2, · · · ,Ke. (10)

The ensemble misfit is:

Me(x) = Ne(x)− y(x) =
Ke∑
i=1

aimi(x), (11)

and its mean squared error is given by:

〈M2
e 〉 =

∑
i,j

aiaj〈mimj〉. (12)

To minimize 〈M2
e 〉, subject to the convexity constraints (10), it is necessary to construct the relevant

Lagrangian which is written using multipliers λ ∈ R and µ ∈ RKe as:

L(a, λ, µ) = 1

2
aTCa− λ(eTa− 1)− µTa, (13)

where eT = (1, 1, · · · , 1), and Cij = 〈mimj〉.

The first order optimality conditions and the equality constraint eTa = 1, yield:

λ =
1− eTC−1µ

eTC−1e
, (14)

a =
C−1e

eTC−1e
+

[
C−1 − C−1eeTC−1

eTC−1e

]
µ. (15)

Eq. (15) together with ai ≥ 0, µi ≥ 0 and the complimentarity conditions aiµi = 0, determine
the sought solution. Note that if the correlation matrix C is rank deficient, which is often the
case due to collinearity, the inverse C−1 is not defined and the above procedure is not applicable.
Some methods, in order to avoid the multicollinearity issue, use a simple ensemble average (i.e.
ai =

1
Ke
, ∀i = 1, · · · ,Ke). These methods lead to non-optimal results since they neglect the relative

importance of the various components, the remedy being the consideration of very large ensembles
(Ke � 1), a tactic that renders the procedure excessive and inefficient as well.

In the present article we propose a novel method which determines the coefficients ai without
having to deal with a potentially singular system, avoiding so the above mentioned issues due to
multicollinearity. Instead, an aggregate network is being built incrementally from ground up, by
optimally blending it with a single new network at every stage, via a convex linear combination. The
new network is trained so that its misfit is negatively correlated to the misfit of the current aggregate,
a constraint that is sufficient (although not necessary) to guarantee the convexity requirement. The
method takes in account the relative importance of the different networks, satisfies the convexity
requirements, and eliminates multicollinearity complications and associated numerical side effects.

2.1 The General Framework

Consider two zero-bias networks N(x) and N̂(x), with corresponding misfits:

M(x) = N(x)− y(x), and M̂(x) = N̂(x)− y(x). (16)

Then their convex blend may be defined as:

Ñ(x) = βN(x) + (1− β)N̂(x), β ∈ [0, 1], (17)

with misfit M̃(x) = βM(x) + (1− β)M̂(x), and MSE given by:

〈M̃2〉 = 〈(M − M̂)2〉β2 + 2〈M̂(M − M̂)〉β + 〈M̂2〉. (18)

Note that 〈M̃2〉 being quadratic in β, has a minimum at:

β∗ = max{min{1, βu}, 0}, with βu =
〈(M̂ −M)M̂〉
〈(M − M̂)2〉

, (19)
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where βu is the unconstrained minimizer of 〈M̃2〉. If βu /∈ [0, 1], then either β∗ = 1 or β∗ = 0 and
there is no blending, as can be readily deduced by inspecting eq. (17).
Note from (19) that βu ∈ (0, 1), implies:

〈MM̂〉 < min{〈M2〉, 〈M̂2〉}, (20)

and in this case β∗ = βu leading to:

〈M̃2〉∗ =
〈M2〉〈M̂2〉 − 〈MM̂〉2

〈M2〉+ 〈M̂2〉 − 2〈MM̂〉
. (21)

From eq. (21), one may deduce, after some manipulation, that 〈M̃2〉∗ < min{〈M2〉, 〈M̂2〉}.
The important conclusion is that a convex combination of two zero-bias networks may be arranged so
as to yield a zero-bias network with a reduced MSE.

2.2 Recursive Convex Blending

The idea is to construct recursively an aggregate network, by combining each time the current
aggregate with a newly trained network. Namely, if by N (a)

k (x) we denote the kth aggregate network,
then the (k + 1)th aggregate will be given by the convex blend:

N
(a)
k+1(x) = βk+1N

(a)
k (x) + (1− βk+1)Nk+1(x). (22)

Let Mk(x) ≡ N
(a)
k (x) − y(x) be the aggregate misfit. Then Nk+1(x) is trained so that its misfit

mk+1(x) satisfies:
〈Mkmk+1〉 < min{〈M2

k 〉, 〈m2
k+1〉}, (23)

in order to guarantee convex blending (i.e. βk+1 ∈ [0, 1]). This is a constrained optimization problem
stated formally as:

min〈m2
k+1〉, subject to: (24)

〈Mkmk+1〉 ≤ min{〈M2
k 〉, 〈m2

k+1〉}. (25)

Note that since the positive quantity: min{〈M2
k 〉, 〈m2

k+1〉}, is expected to be small, condition (25)
may be satisfied by imposing that the aggregate and the new network misfits are negatively correlated
or uncorrelated, i.e. 〈Mkmk+1〉 ≤ 0, which is a stronger requirement than (25), and which in addition
prevents βk+1 from assuming the limiting no-blend values of 0 and 1‡.
The next aggregate misfit is then given by:

Mk+1(x) = βk+1Mk(x) + (1− βk+1)mk+1(x), (26)

with βk+1 =
〈m2

k+1〉 − 〈Mkmk+1〉
〈(Mk −mk+1)2〉

. (27)

Setting M1(x) = m1(x) (and hence β1 = 0), and noting that Mk is a linear combination of m1(x),
m2(x), · · · ,mk(x), one may express Mk as:

Mk(x) =

k∑
i=1

a
(k)
i mi(x), (28)

with the coefficients a(k)i given by:

a
(k)
i =


1− βk, i = k

(1− βi)
k∏

l=i+1

βl, ∀i = 1, 2, · · · , k − 1
. (29)

One may verify that
k∑

i=1

a
(k)
i = 1 and a

(k)
i ≥ 0, and the aggregate network is then given by:

N
(a)
k (x) =

k∑
i=1

a
(k)
i Ni(x). (30)

‡For different blending restrictions see Appendix B
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Note that the aggregate network N (a)
k (x) is not the simple average of the member networks as is the

case in Ahmad and Zhang (2009) and in the negative correlation approaches Liu and Yao (1999); Chan
and Kasabov (2005); Chen and Yao (2009); Brown et al. (2005). The combination coefficients a(k)i
given by eq. (29 ), do take in account the relative importance of the different network contributions,
and are being built iteratively by optimal pairwise convex blending, avoiding so problems due to
multicollinearity. This is in contrast to the approach described by eq. (15) which had been adopted by
several authors in the past.

2.3 Algorithmic Procedure and Implementation

The above results and ideas are employed to design an algorithm for practical use.

Initialization
• Create the empty list, MList, to store the aggregate misfit in each step.
• Create the empty list, BList, to store β’s.
• Create the empty list, ModelList to store the trained neural network model.
• Set bL, bU both ∈ (0, 1), the lower and upper bound for the β’s.
• Set Ke, the number of networks to be contained in the ensemble.

Main Part
1. Train the first zero bias network, N1(x) and push it to the ModelList.
2. Set M1(xi) = N1(xi)− yi,∀{xi, yi} ∈ Tr and push it to MList.
3. Set β1 = 0 and push it to the BList.
4. k ← 1

5. Read Mk(x), ∀x ∈ Tr from MList.
6. Train the zero bias network Nk+1(x) s.t. 〈Mkmk+1〉 ≤ min{〈M2

k 〉, 〈m2
k+1〉}.

This can be facilitated via a penalty method, i.e. by optimizing:

〈m2
k+1〉+ λmax{〈mk+1Mk〉, 0}

for a sequence of increasing λ values, until βk+1 ∈ [bL, bU ]*.
7. Calculate Mk+1 from eq. (26) and 〈M2

k+1〉.
8. Push Mk+1 to MList, βk+1 to BList, and Nk+1 to ModelList.
9. k ← k + 1

10. If k < Ke repeat from 5 .
11. Training Task Completed.

Final Network Assembly
From BList and ModelList, recover the β’s and the trained networks respectively.

(a) From β1, · · · , βKe
, calculate the member coefficients a(Ke)

i using eq. (29).

(b) Construct the final zero-bias aggregate network N (a)
Ke

(x), according to eq. (30).

3 Numerical Experiments

We consider two model functions in our numerical study,

f1(x) = x sin(x2), and (31)

f2(x) = 10d+

d∑
i=1

[x2i − 10cos(2πxi)], with x ∈ [−1.5, 1.5]d. (32)

We have performed four different experiments to assess the effectiveness of the method. Common
features and practices shared across all experiments are listed below.

*βk+1 is calculated according to eq. (27)
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Figure 1: Plots for f1(x) of eq.(31) with x ∈ [−4, 4], and f2(x) of eq. (32) with d = 2

Datasets
For every experiment we define a dataset D, and we split it in two disjoint sets, the training
set Tr, and the test set Ts, with D = Tr ∪ Ts and Tr ∩ Ts = ∅.

Training
Training was performed using the BFGS Quasi-Newton optimization algorithm, contained
in “TensorFlow Probability” Abadi et al. (2015), with the maximum number of iterations set
to 20,000.

Regularization
We have used L2-mean weight decay, with regularization factor νreg , chosen so as to inhibit
excessive growing of the network weights.

Blending range
We set the lower and upper bounds for β’s to bL = 0 and bU = 0.99.

Penalty strategy
In step No. 6 of the section 2.3 algorithm, we set the initial penalty to λ = 4. At each
subsequent iteration, until condition bL < βk+1 < bU is satisfied, λ is doubled. If the above
condition is not satisfied within 10 iterations, we discard the model.

ANN architecture
For all the test cases we use a single hidden layer neural network of the form:

N(x) =

Nodes∑
i=1

γih(δ
T
i x+ φi), where h(x) is the network’s activation function.

We use three types of activation functions:

1. Sigmoid: h(z) = (1 + exp(−z))−1.
2. Softplus: h(z) = ln(1 + exp(z)).
3. Hyperbolic tangent: h(z) = tanh(z).

Notation
In all tables, “Nodes” denotes the number of neurons in the hidden layer, “Type” stands
for the activation type, “MSE” for the mean squared error over the training set, “β” for
the blending coefficient given by eq. (27), “AG. MSE” for the mean squared error of the
aggregate over the training set, “AG. MSE/TE” for the mean squared error of the aggregate
over the test set, and “a” for the member participation coefficient, given by eq. (29).

Randomness
To ease the reproduction of the numerical results, we set all random seeds to 12345 using
Python’s Numpy.

Code
We made the code publicly available via the Github repository with URL: https://github.
com/salarsk1/Ensemble-NN, under an MIT license.
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3.1 Test Case 1

Model function: f1(x), x ∈ [−4, 4]. We construct a set D containing MD = 1000 equidistant
points, xi = −4 + (i − 1) 8

999 . The training set Tr contains Mr = 38 equidistant points, zj =

−4 + (j − 1) 216999 = x27j−26. Note that Tr ⊂ D and the test set is Ts = D − Tr. The ensemble
contained six networks. Details of this experiment are listed in table 1. Among the 6 models, model
No. 5 has the minimum training MSE, which is 0.38498. The training MSE of the final aggregate is
0.14035, which is 63% lower than that of model No. 5. The plots of the six member-networks Ni(x)
together with the target function f1(x) are depicted in fig. 2. Likewise, plots of the corresponding
aggregate networks are depicted in fig. 3.

Table 1: Experiment with f1(x) with x ∈ [−4, 4] and a training set of 38 equidistant points.
Regularization factor: νreg = 0.002.

ANN Nodes Type MSE β AG. MSE AG. MSE/TE a
1 9 tanh 0.45326 0.00000 0.45326 0.32955 0.20175
2 11 sigmoid 0.85077 0.65221 0.29531 0.21960 0.10759
3 11 softplus 1.92921 0.94300 0.28932 0.22312 0.01870
4 9 tanh 0.43278 0.65750 0.23590 0.16807 0.17088
5 11 sigmoid 0.38498 0.63707 0.16427 0.10779 0.28423
6 12 sigmoid 0.45224 0.78315 0.14035 0.08970 0.21685

Figure 2: Plot of the ANN members related to table 1, along with the plot of f1(x).

3.2 Test Case 2

To escalate the difficulty of the task, in this case we have experimented with f1(x) in a wider range
x ∈ [−6, 6], which introduces intense oscillatory behavior illustrated in fig. 4. We construct a set D
containing MD = 1201 equidistant points, xi = −6 + i−1

100 . The training set Tr contains Mr = 121

equidistant points, zj = −6 + j−1
10 = x10j−9. Note that Tr ⊂ D and the test set is Ts = D − Tr.

The generalization performance is quite satisfactory but not of the quality of the first example, as
can be seen by inspecting table 2. This was expected since the rapid oscillations as |x| grows, render
the task harder. We have noticed that if one of the member networks Ni(x) overfits the data, then a
number of additional networks are necessary in the ensemble in order to eliminate the overfit effect.
So it seems that a preferred tactic would be to use small networks, that are less prone to over-fitting,
rather than large ones. This also serves the need of the so called “few-shot learning”, that refers to
problems with limited training examples Wang et al. (2020).
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Figure 3: Plot of the aggregate ANNs related to table 1, along with the plot of f1(x).

Figure 4: Plot of f1(x) with x ∈ [−6, 6], illustrating the rapidly oscillating pattern as |x| grows

Table 2: Experiment with f1(x) with x ∈ [−6, 6] and a training set of 121 equidistant points.
Regularization factor: νreg = 0.003.

ANN Nodes Type MSE β AG. MSE AG. MSE/TE a
1 23 tanh 2.87200 0.00000 2.87200 2.73192 0.04995
2 25 sigmoid 12.93168 0.86162 2.60566 2.62689 0.00802
3 27 sigmoid 3.19976 0.55508 1.53797 1.60549 0.04646
4 23 softplus 18.90312 0.95861 1.50554 1.56396 0.00451
5 24 sigmoid 5.05116 0.79406 1.24986 1.30413 0.02825
6 29 tanh 4.18786 0.81902 1.09904 1.13224 0.03032
7 26 tanh 4.07782 0.83087 0.97027 1.00334 0.03410
8 23 sigmoid 4.48691 0.88752 0.91286 0.93800 0.02555
9 24 tanh 3.70554 0.86650 0.84497 0.84990 0.03500

10 25 tanh 2.00931 0.73126 0.66317 0.68001 0.09634
11 28 sigmoid 0.98583 0.61088 0.44286 0.45987 0.22836
12 27 tanh 1.27605 0.78000 0.37085 0.38586 0.16552
13 26 softplus 10.20572 0.97406 0.36387 0.37846 0.02004
14 26 tanh 2.98190 0.95094 0.35688 0.37098 0.03985
15 26 tanh 1.12186 0.81227 0.31371 0.32395 0.18773
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Figure 5: Plot of the ANN members related to table 2, along with the plot of f1(x).
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Figure 6: Plot of the aggregate ANNs related to table 2, along with the plot of f1(x).
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In fig. 5, the member networks are plotted. Note that networks N2(x), N4(x), N5(x) and N13(x),
clearly overfit f1(x). However the aggregate networks, plotted in figure 6, eliminate this effect
gradually, by appropriate weighting. Note that the corresponding coefficients a2, a4, a5 and a13 are
among the lowest ones in the linear combination composing the final aggregate network. Among the
15 models, model No. 11 has the minimum training MSE, which is 0.98583. The training MSE of
final aggregate model is 0.31371, which is 68% lower than that of model No. 11.

3.3 Test Case 3

We have also experimented with the multidimensional function, f2(x), where we have set d = 4.
Again, we use MLP’s with one hidden layer. For this function, we have used a grid of 15 equidistant
points along each dimension, producing so a set D containing a total of 50,625 points. We have
chosen 2,000 of these points at random (seed is set to 12345) for the training set Tr, and the rest were
used for the test set Ts. Detailed results of the experiments with f2(x), are listed in Table 3. Model
No. 6 has a training MSE of 0.04537, which is the lowest among the 10 trained models. The training
MSE of the final aggregate is 0.02547, which is 43% lower than that of model No. 6.

Table 3: Experiment with f2(x) with x ∈ [−1.5, 1.5]4 and a training set of 2,000 points chosen
randomly from a set of 50,625 equidistant points. Regularization factor: νreg = 0.05.

ANN Nodes Type MSE β AG. MSE AG. MSE/TE a
1 38 sigmoid 0.25331 0.00000 0.25331 0.29718 0.06849
2 38 tanh 0.14980 0.37494 0.09163 0.10700 0.11418
3 37 sigmoid 0.35718 0.80263 0.07454 0.08540 0.04492
4 37 sigmoid 0.31343 0.82541 0.06335 0.07445 0.04814
5 39 sigmoid 0.54320 0.91340 0.05900 0.06983 0.02614
6 39 tanh 0.04537 0.40159 0.03420 0.04083 0.44982
7 40 sigmoid 0.17129 0.86819 0.03096 0.03691 0.11413
8 40 tanh 1.09517 0.95779 0.02889 0.03429 0.03815
9 41 sigmoid 0.33329 0.93684 0.02750 0.03331 0.06094

10 41 tanh 1.56689 0.96492 0.02547 0.03061 0.03508

3.4 Test Case 4

In this case we have experimented with noisy data. Model function: f1(x) with x ∈ [−5, 5]. We
construct a set D containing MD = 1001 equidistant points, xi = −5 + i−1

100 . The training set
Tr contains Mr = 101 equidistant points, zj = −5 + j−1

10 = x10j−9 and the target values are
contaminated with white normal noise (0.3N(0, 1)). The test set is left intact, i.e. without any added
noise. The ensemble comprises 15 different networks. In fig. 8, the plots of f1(x) and of the trained
member networks are displayed. The aggregate ANN’s are plotted in fig. 9. The noisy data are
depicted in fig. 7, where the dots correspond to the noisy training observations, while the solid line is
a plot of f1(x).

Figure 7: Plot of the noise-corrupted observations used for training, alongside f1(x)
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Figure 8: Plot of the ANN members related to table 4, along with the plot of f1(x).

Detailed results are listed in table 4. As expected, the aggregate training error decreases by adding
more networks and similar is the behavior of the test error. From column “AG. MSE/TE” of table 4,
we note that the aggregate network generalizes extremely well. Note, model No. 12 has the lowest
training MSE among all models which is 1.43211. The training MSE of the final aggregate is 0.45040,
which is 68% lower than that of model No. 12.
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Figure 9: Plot of the aggregate ANNs related to table 4, along with the plot of f1(x).
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Table 4: Experiment with f1(x) with x ∈ [−5, 5] and a training set of 101 equidistant points with
added normal white noise. Regularization factor: νreg = 0.1.

ANN Nodes Type MSE β AG. MSE AG. MSE/TE a
1 24 tanh 3.42492 0.00000 3.42492 3.60286 0.06919
2 25 sigmoid 12.89758 0.81382 2.90180 3.04288 0.01583
3 27 sigmoid 4.71427 0.62760 1.91684 1.92987 0.05045
4 23 softplus 5.21665 0.98091 1.91559 1.93207 0.00264
5 25 sigmoid 10.43508 0.92285 1.85563 1.88489 0.01155
6 29 tanh 2.28159 0.55624 1.10990 1.12316 0.11939
7 26 softplus 7.02311 0.96502 1.10213 1.11369 0.00975
8 24 sigmoid 5.98359 0.95641 1.09196 1.10721 0.01271
9 25 tanh 3.65851 0.86828 1.03151 1.05286 0.04422

10 25 tanh 2.72174 0.74489 0.80691 0.79448 0.11498
11 25 softplus 12.74256 0.96355 0.78981 0.77719 0.01705
12 27 tanh 1.43211 0.66732 0.57738 0.58926 0.23319
13 26 softplus 9.88673 0.97901 0.57310 0.57708 0.01503
14 25 tanh 2.31302 0.84593 0.51341 0.51266 0.13040
15 24 tanh 2.36287 0.84637 0.45040 0.45868 0.15363

4 Summary and Conclusions

In this article we have presented an ensemble method that is free of the multicollinearity issue, and
without having to resort to the ad-hoc choice of uniform weights. Instead, we build an aggregate
network, that does take in account the relative importance of the member networks. The aggregate
network is incrementally built by blending it at every stage with a newly trained network under a
negative correlation constraint. The blending is a convex linear combination as suggested in Breiman
(1996), in order to maintain high generalization performance. Indeed, this may be confirmed by
inspecting the “AG. MSE” and “AG.MES/TE” columns in tables 1, 2, 3 and 4. The experiment with
noisy data, summarized in table 4, indicates that the method is robust and keeps on delivering quality
generalization, as well as partial noise filtering.

Ensemble methods are useful in many applications. They have been used with success in econometrics
and statistics for quite some time, Granger (1989), Wallis (2011). Since ensembles may contain many
small networks, which are capable of being trained over datasets limited in size without over-fitting,
they seem to be suitable for the interesting “Few-Shot Learning” case, Wang et al. (2020).
The present method has been developed with regression problems in mind. Further work is necessary
to extend it properly for handling classification tasks as well.
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A Zero-Bias Networks

Let a network N(x) and a training set Tr = {xi, yi = y(xi)}i=1,M . Then the network

N(x) ≡ N(x)− 〈N〉+ 〈y〉, (33)

is by construction a zero-bias network on {Tr}. Clearly the misfit is

m(x) = N(x)− y(x) = N(x)− 〈N〉+ 〈y〉 − y(x), satisfying 〈m〉 = 0. (34)

At this point one may rewrite the misfit as:

m(x) = (N(x)− y(x))− (〈N− y〉) ≡m(x)− 〈m〉, (35)

and the MSE becomes:

〈m2〉 = 〈(m− 〈m〉)2〉 = 〈m2〉 − 〈m〉2. (36)

Thus minimizing 〈m2〉 subject to 〈m〉 = 0, is equivalent to minimizing 〈m2〉 − 〈m〉2, subject to no
constraints. The zero-bias network N(x), is then recovered from eq. (33).

B Blending Restriction

The blending coefficient may be further restricted to lay in a shorter interval, e.g.

ε ≤ βk+1 ≤ 1− ε, with ε ∈ [0, 0.5) (37)

This imposes a slightly different constraint on the correlation 〈Mkmk+1〉, instead of (25), i.e.:

〈Mkmk+1〉 ≤
1

1− 2ε

[
min{〈M2

k 〉, 〈m2
k+1〉} − ε

(
〈M2

k 〉+ 〈m2
k+1〉

)]
. (38)

A typical value, ε = 0.1 is restricting βk+1 ∈ [0.1, 0.9].
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