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Abstract: A quadratic programming problem with positive definite Hessian subject to
box constraints is solved, using an active-set approach. Convex quadratic programming
(QP) problems with box constraints appear quite frequently in various real-world appli-
cations. The proposed method employs an active-set strategy with Lagrange multipliers,
demonstrating rapid convergence. The algorithm, at each iteration, modifies both the
minimization parameters in the primal space and the Lagrange multipliers in the dual
space. The algorithm is particularly well suited for machine learning, scientific computing,
and engineering applications that require solving box constraint QP subproblems efficiently.
Key use cases include Support Vector Machines (SVMs), reinforcement learning, portfolio
optimization, and trust-region methods in non-linear programming. Extensive numerical
experiments demonstrate the method’s superior performance in handling large-scale prob-
lems, making it an ideal choice for contemporary optimization tasks. To encourage and
facilitate its adoption, the implementation is available in multiple programming languages,
ensuring easy integration into existing optimization frameworks.

Keywords: convex quadratic programming; machine learning; optimization; active set;
Lagrange multipliers; practical applications

MSC: 65K10

1. Introduction
Convex quadratic programming (QP) refers to optimization problems in which

a quadratic objective function is minimized subject to linear constraints. In the convex
case, the quadratic cost matrix is positive semidefinite, ensuring a unimodal (bowl-shaped)
objective so that any local minimum is global. The convex quadratic programming problem
with simple bounds is stated as:

min
x

1
2

xT Bx + xTd, subject to: ai ≤ xi ≤ bi, ∀i ∈ I = {1, 2, · · · , N} (1)

where x, d ∈ RN and B are a symmetric, positive definite N × N matrix. In this paper,
we propose a novel active-set strategy for solving problems of the form in Equation (1),
that in each step solves a linear system and updates the active set and the Lagrange
multipliers accordingly.
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This type of problem minimizing a convex quadratic function subject to bound con-
straints appears quite frequently in scientific applications as well as in parts of generic
optimization algorithms. Many non-linear optimization techniques are based on solving
quadratic model subproblems [1–4].

While much of the foundational work on convex quadratic programming with box
constraints originates from earlier research, there has also been a growing body of recent
literature proposing modifications and new approaches targeting higher efficiency [5–8].

Portfolio optimization problems often use QP to allocate assets efficiently [9–12]. In
Markowitz’s classic mean-variance portfolio model, the objective is quadratic (portfolio
risk) and constraints ensure that the allocation weights sum to a budget [10]. If short-selling
is disallowed (no negative weights), this imposes bound constraints xi ≥ 0, rendering the
model convex QP. Such QP formulations are central in financial risk management and
asset allocation.

Support Vector Machines (SVMs) for classification and regression are trained by
solving a convex QP that maximizes the margin between classes while penalizing errors.
The SVM optimization typically includes linear constraints and bound constraints on
the variables of the dual formulation (e.g., 0 ≤ αi ≤ C in the dual formulation) [13–16].
Specialized solvers like the sequential minimal optimization (SMO) algorithm exploit this
structure by breaking the problem into small QP subproblems. Similarly, in data-fitting
applications, non-negative least squares (NNLS) problems (which minimize a sum of squared
errors with xi ≥ 0) are convex QPs with simple bounds. NNLS [17,18] and its generalization
to bounded-variable least squares (constraining αi ≤ xi ≤ βi) are widely used in machine
learning and signal processing.

Many engineering optimization tasks are naturally cast as QPs with bounded controls
or resources. For instance, in model predictive control (MPC) [19,20]—a technique for
controlling processes and robots—the controller solves a QP at each time step to minimize
a quadratic performance index, subject to constraints like actuator limits and state bounds.
These actuator limits are simple bound constraints on the control variables. Likewise,
energy management systems, network flow optimization, and other resource allocation
problems often involve quadratic cost functions (e.g., minimizing power loss or deviation
from a target) with variables constrained by minimum/maximum operating levels.

The optimization of radiation intensity in oncology treatment [21] is a critical aspect
of radiotherapy planning, aiming to maximize the dose delivered to tumor regions while
minimizing exposure to surrounding healthy tissues. These methods are commonly for-
mulated as quadratic optimization problems, where the objective function represents the
trade-off between dose conformity and tissue sparing. The quadratic nature arises from
the squared deviation of the delivered dose from the prescribed dose, ensuring a smooth
and controlled distribution of radiation. Constraints are incorporated to enforce clinical
requirements such as maximum allowable dose limits for organs at risk and minimum dose
thresholds for tumor coverage. Various numerical techniques, including gradient-based
algorithms and interior-point methods, are employed to efficiently solve these optimization
problems, ensuring precise and effective treatment planning.

For the problem in Equation ((1)) two major strategies exist in the literature, both of
which require feasible steps to be taken. The first one is the active-set strategy [2,3], which
generates iterates on a face of the feasible box, never violating the primary constraints
on the variables. Active-set algorithms work by iteratively guessing which constraints
are “active” and which are not. They temporarily treat the active constraints as equalities,
solve the resulting reduced QP, then check optimality conditions (Karush–Kuhn–Tucker
conditions) to adjust the active set.
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The basic disadvantage of this approach, especially in the large-scale case, is that
constraints are added or removed one at a time, thus requiring a number of iterations
proportional to the problem size. To overcome this, gradient projection methods [22,23]
were proposed. In that framework, the active set algorithm is allowed to add or remove
many constraints per iteration.

The second strategy treats the inequality constraints using interior-point techniques. In
brief, an interior-point algorithm consists of a series of parametrized barrier functions which
are minimized using Newton’s method. The major computational cost is due to the solution
of a linear system, which provides a feasible search direction. Modern primal–dual interior-
point algorithms are known for their polynomial-time complexity and strong practical
performance on large-scale problems. In contrast to active-set methods (which pivot along
constraint boundaries), interior-point methods move through the interior and typically
require fewer iterations (albeit with more computation per iteration).

In this paper, we investigate a series of convex quadratic test problems. We recognize
that bound constraints are a very special case of linear inequalities, which may in general
have the form Ax ≥ b, with A being an mxn matrix and b a vector ∈ Rm. Our investigation
is also motivated by the fact that in the convex case, every problem subject to inequality
constraints can be transformed to a bound-constrained one, using duality [24,25]:

min
x∈Rn

1
2

xT Bx + xTd

subject to: Ax ≥ b

B̃=AB−1 AT , d̃=AB−1d+b−−−−−−−−−−−−−−−→
x∗=B−1(AT y∗−d)←−−−−−−−−−−−−−−−

min
y∈Rm

1
2

yT B̃y + yT(−d̃
)

subject to: 0 ≤ y ≤ In f
(2)

It is important to note, however, that the dual transformation from a general inequality-
constrained convex quadratic program to a bound-constrained dual problem does not
always result in a positive definite matrix B̃ = AB−1 A⊤. The positive definiteness of B̃ is
guaranteed only when the matrix A has full row rank and the original Hessian matrix B
is strictly positive definite. If A is rank-deficient or if B is only positive semi-definite, the
resulting B̃ may become singular or indefinite, which can negatively affect the stability and
solvability of the dual problem.

Our proposed approach to solving the problem in Equation (1) is an active-set algo-
rithm that, unlike traditional methods, does not require strictly feasible or descent directions
at each iteration. While an initial version of the algorithm was briefly introduced in [26],
this paper presents extended results and a detailed comparison. We provide a step-by-step
description of the algorithm, including the Lagrange multiplier updates, dual feasibil-
ity checks, and implementation insights. Furthermore, we demonstrate the algorithm’s
broad applicability and its consistently rapid convergence through extensive experiments
on a diverse set of benchmark problems, including synthetic, structured, and real-world
optimization tasks. Comparative results and a ranking-based evaluation confirm the ro-
bustness and efficiency of our method across a host of problems of varying dimensions
and conditioning.

The paper is organized as follows. The proposed algorithm is described in detail
in Section 2. In Section 3, we briefly present four quadratic programming codes that
were used against our method on five different problem types, which are described in
Section 4. Finally, in Section 5.6, a new trust-region-like method is proposed which takes
full advantage of our quadratic programming algorithm.
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2. Solving the Quadratic Problem
For the problem in Equation (1), we introduce Lagrange multipliers in order construct

the associated Lagrangian:

L(x, λ, µ) =
1
2

xT Bx + xTd− λT(x− a)− µT(b− x) (3)

The necessary optimality conditions (KKT conditions) at the minimum x∗, λ∗, µ∗

require that:
Bx∗ + d− λ∗ + µ∗ = 0 {first order stationarity condition } (4a)

x∗i ∈ [ai, bi], ∀i ∈ I {primal feasibility } (4b)

λ∗i ≥ 0, ∀i ∈ I {dual feasibility (lower bound) } (4c)

µ∗i ≥ 0, ∀i ∈ I {dual feasibility (upper bound) } (4d)

λ∗i (x∗i − ai) = 0, ∀i ∈ I{complementarity slackness (lower bound )} (4e)

µ∗i (bi − x∗i ) = 0, ∀i ∈ I {complementarity slackness (upper bound) } (4f)

A solution to all the equations of above system (4) can be obtained through an active-
set strategy sketched in the following steps:

1. At the initial iteration, we set the Lagrange multipliers µ and λ to zero and compute
the Newton point x = −B−1d.
If x(0) is feasible, it is accepted as the optimal solution.

2. At each iteration k, we define three disjoint index sets:

(a) L: indices where the lower bound is active or violated (Equation (4b));
U: indices where the upper bound is active or violated (Equation (4b));
S: indices where x is strictly feasible and no bound constraints are active
(Equation (4b)).

(b) For each i ∈ L, the corresponding variable xi is set to the lower bound, sat-
isfying primal feasibility (Equation (4b)), and µi is set to zero, satisfying the
complementarity condition (Equation (4e)).

(c) For each i ∈ U, the value xi is set to the upper bound, satisfying primal feasibil-
ity (Equation (4b)), and λi is set to zero, again satisfying the complementarity
condition (Equation (4f)).

(d) For all i ∈ S, where xi is strictly within bounds, both multipliers µi and λi are
set to zero, satisfying complementarity conditions (Equations (4e) and (4f)).

(e) The rest of the N unknowns—namely the λi for i ∈ L, the µi for i ∈ U, and
the xi for i ∈ S—are computed by solving the stationarity condition after
some rearrangement:

Bx + d = λ− µ.

The BoxCQP (abbreviation for box-constrained quadratic programming) algorithm is
formally presented below:

The solution of the linear system in Step 3 of Algorithm 1 needs further consideration.
Let us rewrite the system in a component-wise fashion.

∑
j∈I

Bijx
(k+1)
j + di = λ

(k+1)
i − µ

(k+1)
i , ∀i ∈ I (5)
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Since ∀i ∈ S(k), we have that λ
(k+1)
i = µ

(k+1)
i = 0; hence, we can calculate x(k+1)

i , ∀i ∈ S(k)

by splitting the sum in Equation (5) and taking into account Step 2 of the algorithm, i.e.,:

∑
j∈S(k)

Bijx
(k+1)
j = − ∑

j∈L(k)

Bijaj − ∑
j∈U(k)

Bijbj − di, ∀i ∈ S(k) (6)

The submatrix Bij, with i, j ∈ S(k) is positive definite as can be readily verified, given

that the full matrix B is. The calculation of λ
(k+1)
i , ∀i ∈ L(k) and of µ

(k+1)
i , ∀i ∈ U(k) is

straightforward and is given by:

λ
(k+1)
i = ∑

j∈I
Bijx

(k+1)
j + di, ∀i ∈ L(k) (7)

µ
(k+1)
i = −∑

j∈I
Bijx

(k+1)
j − di, ∀i ∈ U(k) (8)

Algorithm 1 BoxCQP

Initially set: k = 0, λ(0) = µ(0) = 0 and x(0) = −B−1d.
If x(0) is feasible, Stop, the solution is: x∗ = x(0).
At iteration k, the quantities x(k), λ(k), µ(k) are available.
1. Define the sets:

L(k) = {i : x(k)i < ai, or x(k)i = ai and λ
(k)
i ≥ 0}

U(k) = {i : x(k)i > bi, or x(k)i = bi and µ
(k)
i ≥ 0}

S(k) = {i : ai < x(k)i < bi, or x(k)i = ai and λ
(k)
i < 0,

or x(k)i = bi and µ
(k)
i < 0}

where L(k) ∪U(k) ∪ S(k) = I
2. Set:

x(k+1)
i = ai, µ

(k+1)
i = 0, ∀i ∈ L(k)

x(k+1)
i = bi, λ

(k+1)
i = 0, ∀i ∈ U(k)

λ
(k+1)
i = 0, µ

(k+1)
i = 0, ∀i ∈ S(k)

3. Solve:

Bx(k+1) + d = λ(k+1) − µ(k+1)

for the N unknowns: x(k+1)
i , ∀i ∈ S(k), µ

(k+1)
i , ∀i ∈ U(k), λ

(k+1)
i , ∀i ∈ L(k)

4. Check if the new point is a solution and decide to either stop or iterate.

If x(k+1)
i ∈ [ai, bi] ∀i ∈ S(k) and µ

(k+1)
i ≥ 0, ∀i ∈ U(k) and λ

(k+1)
i ≥ 0, ∀i ∈ L(k) Then

Stop; the solution is: x∗ = x(k+1).
Else

set k← k + 1 and iterate from Step 1.
Endif

The convergence analysis along the lines of Kunisch and Rendl [27] is applicable for
our method as well. Hungerländer and Rendl [5] have showed that when the Hessian B is
positive definite, then there exists a solution, and have developed a procedure leading to
a convergence proof. One may also apply their scheme to prove the convergence of the
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presented algorithm. However, it is lengthy and complicated, and therefore we preferred to
present extended numerical evidence instead. We numerically tested cases with thousands
of variables and a wide range for the condition number of B from 1 to 1020. When B
becomes nearly singular, then cycling occurs as expected. (Note that in such a case, the
linear system Bx = −d is ill-conditioned). At this point, ad hoc corrective measures may
be taken.

The main computational task of the algorithm above is the solution of the linear system
in Step 3. We have implemented three variants that differ in the way the linear system is
solved. In Variant 1, at every iteration, we use a Cholesky LDLT decomposition. In Variant
2, we employ a conjugate gradient iterative method [28,29] throughout. In Variant 3, at
the first iteration, where we need to solve the full system, we use a few iterations of the
conjugate gradient scheme and subsequently LDLT decomposition.

Table 1 provides a summary of the KKT conditions that are assured to be met at each
constructive iteration, classified according to the respective index sets (L, S, U). Most of
the six KKT conditions are persistently adhered to throughout the procedure. Nonetheless,
certain indices might momentarily breach conditions such as primal feasibility (4b), lower-
bound dual feasibility (4c), or upper-bound dual feasibility (4d). Crucially, the number of
discrepancies involving either Lagrange multipliers or primal variables remains below the
problem dimension N. This table outlines the dynamic modification of the primal and dual
variables and demonstrates their changing relationship with the KKT conditions as the
algorithm progresses.

Table 1. BoxCQP consecutive iterations and KKT.

Iteration k Iteration k + 1 Guaranteed Satisfied KKT k + 1 Not Satisfied KKT k + 1

i ∈ L xi ← ai, µi ← 0, λi from
Equation (4a) (4a), (4b), (4d), (4e), (4f) (4c)

i ∈ U xi ← bi, λi ← 0, µi from
Equation (4a) (4a), (4b), (4c), (4e), (4f) (4d)

i ∈ S λi ← 0, µi ← 0, xi from
Equation (4a) (4a), (4c), (4d), (4e), (4f) (4b)

Experimental Convergence Analysis: Controlled Indefiniteness

To assess the robustness of the BoxCQP algorithm beyond its scope, we designed
a controlled experiment that systematically introduces indefiniteness into the quadratic
term of the objective function. We argue that BoxCQP algorithm converges for strictly
positive definite matrices B. Although theoretical convergence is possible following the
proof found in [5], it is also imperative to investigate the behavior of the algorithm in
a practical manner. To examine its behavior under near-indefinite and indefinite scenarios,
we generated perturbed matrices that violate this assumption in a controlled way.

The experimental procedure described next was repeated for 100 random instances
for every dimension setting:

Step 1: Matrix and Vector Generation:
For a given problem dimension n ∈ {10, 100, 1000, 5000}, we generated a random
positive definite matrix B ∈ Rn×n, as well as random vectors d ∈ Rn, xl ∈ Rn, and
xu ∈ Rn, defining the box-constrained quadratic programming problem:

min
x∈Rn

1
2

x⊤Bx + d⊤x s.t. xl ≤ x ≤ xu.
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Step 2: Controlled Perturbation:
We applied a Cholesky decomposition B = LL⊤. Then, approximately 20% of the
diagonal entries of L were selectively modified by replacing them with values
drawn from the set:

0, ±0.1, ±0.01, ±0.001, ±0.0001, ±0.00001, ±10−8, ±10−12, ±10−16

This range includes small negative, zero, and small positive values, effectively
creating a smooth spectrum from definiteness to indefiniteness. The modified
lower-triangular matrix L̃ was then used to reconstruct B̃ = L̃L̃⊤, which served as
the input matrix for BoxCQP.

Step 3: Solver Execution:
Each problem instance (B̃, d, xl , xu) was solved using the BoxCQP algorithm
with a maximum limit of 100 iterations. For each configuration, we recorded the
number of iterations required to converge, or marked the instance as failed if
convergence was not reached within the iteration limit.

Step 4: Evaluation Metrics:
For each perturbation level and each dimension, we measure:

• The mean number of iterations required to reach convergence;
• The failure count, i.e., the number of cases out of 100 in which the algorithm

did not converge;
• The average condition number of the resulting matrix B̃, measured as the

ratio of its largest to smallest eigenvalue.

This procedure allowed us to systematically investigate how BoxCQP performs as
the definiteness of the matrix degrades, and to associate failure patterns and convergence
delays with condition number growth and specific types of matrix perturbations. The
results are shown in Table 2 and graphically in Figure 1.
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Figure 1. BoxCQP convergence vs. perturbation level.
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Table 2. BoxCQP performance under controlled indefiniteness: mean iterations, failure counts, and condition numbers (100 runs).

Min Diag
n = 10 n = 100 n = 1000 n = 5000

Mean It. Fail (%) Cond Mean It. Fail (%) Cond Mean It. Fail (%) Cond Mean It. Fail (%) Cond

−1× 10−1 8.88 3 3.86× 105 10.48 3 2.53× 1016 13.00 0 8.60× 1018 13.58 0 1.61× 1020

−1× 10−2 9.15 3 3.04× 108 10.38 3 7.89× 1018 13.06 0 1.84× 1019 14.66 1 7.81× 1019

−1× 10−3 11.79 6 1.26× 109 12.12 1 1.56× 1018 12.95 0 9.96× 1020 16.42 1 4.70× 1019

−1× 10−4 10.02 4 1.11× 1011 11.40 1 1.75× 1021 14.44 0 1.72× 1019 16.85 1 7.63× 1022

−1× 10−5 9.47 3 2.45× 1013 11.23 0 2.92× 1020 15.93 1 4.73× 1019 17.16 1 5.95× 1019

−1× 10−8 17.20 11 3.54× 1017 14.13 1 3.83× 1025 14.65 0 3.89× 1025 19.86 3 8.57× 1027

−1× 10−12 11.48 5 1.76× 1017 12.95 1 4.32× 1028 13.54 0 6.82× 1018 18.19 4 1.23× 1020

−1× 10−16 17.12 11 1.05× 1032 14.66 3 1.13× 1018 16.34 3 3.54× 1033 17.52 2 2.88× 1034

0 32.76 28 ∞ 31.23 23 ∞ 34.57 24 ∞ 36.98 25 ∞

1× 10−16 17.66 12 1.71× 1031 12.88 2 8.47× 1017 19.41 6 3.62× 1019 18.88 4 1.30× 1035

1× 10−12 8.81 2 1.62× 1027 13.71 1 1.49× 1028 18.21 4 1.02× 1030 18.13 3 3.27× 1030

1× 10−8 15.25 9 4.97× 1018 12.83 1 7.73× 1024 16.54 1 2.32× 1025 17.24 1 9.55× 1026

1× 10−5 11.19 5 2.62× 1014 11.75 1 7.26× 1018 14.90 1 3.87× 1022 15.92 0 1.40× 1023

1× 10−4 12.51 7 6.67× 1010 10.76 0 1.08× 1021 13.33 0 1.82× 1019 17.39 2 9.39× 1019

1× 10−3 11.03 5 1.32× 109 10.87 0 4.25× 1019 14.14 1 2.38× 1020 15.23 0 3.00× 1020

1× 10−2 8.75 3 6.14× 107 11.37 1 5.51× 1018 12.96 0 6.34× 1019 14.45 1 6.99× 1020

1× 10−1 7.95 2 3.12× 105 10.50 0 2.16× 1016 12.60 0 1.39× 1018 16.42 3 3.62× 1020
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The experimental evaluation of the BoxCQP algorithm under controlled indefiniteness
reveals a strong dependence of convergence behavior on the condition number of the
modified matrix B. As expected, the algorithm demonstrates robust performance in well-
conditioned scenarios, particularly when the smallest diagonal entry remains significantly
positive (e.g., 1× 10−2 or 1× 10−1). In these cases, the mean iteration counts remain low
and convergence failures are rare or nonexistent across all dimensions tested.

However, as the matrix becomes increasingly ill-conditioned—especially around diag-
onal perturbations close to zero or slightly negative—the condition number grows rapidly,
often exceeding 1025, and in extreme cases (e.g., with zero diagonal values), becomes in-
finite. These configurations correspond to a substantial rise in both iteration count and
failure rates. For instance, when the diagonal includes zero, the algorithm fails to converge
in up to 28% of the runs for n = 10, and similar behavior is observed for higher dimensions.
Even for small negative values (e.g., −1× 10−3 or −1× 10−4), the algorithm begins to
exhibit instability as the condition number increases.

Interestingly, there appears to be a zone of tolerance: small perturbations toward
indefiniteness (especially around −1× 10−5 to 1× 10−8) do not always lead to immediate
failure. Instead, BoxCQP still converges in many cases, albeit with increased iteration
counts. This suggests some resilience of the solver near the boundary of positive definite-
ness. Nevertheless, the results clearly highlight the algorithm’s sensitivity to definiteness
and condition number, emphasizing the importance of matrix conditioning in practical
applications. Incorporating condition number estimation or preconditioning strategies
could enhance solver stability and broaden the range of problems to which BoxCQP can be
reliably applied.

As a closing remark, we should point out that out of the total 6400 experiments (16 per-
turbation levels × 100 runs × 4 dimension settings), the BoxCQP algorithm successfully
converged in 6146, i.e., 96%, of the cases. The rest of 4% correspond to indefinite Hessians.

3. State-of-the-Art Convex Quadratic Programming Solutions
There exist several quadratic programming codes in the literature. We have chosen

to compare with three of them, specifically with QPBOX, QLD, and QUACAN. These
codes share several common features so that the comparison is both meaningful and fair.
All codes are written in the same language (FORTRAN 77) so that different language
overheads are eliminated. Also, they are written by leading experts in the field of quadratic
programming, so that their quality is guaranteed. Notice also that all codes are specific
to the problem, and not of general purpose nature and are distributed freely through the
World Wide Web at the time of writing.

3.1. QPBOX

QPBOX [30] is a Fortran77 package for box-constrained quadratic programs developed
in IMM in the Technical University of Denmark. The bound-constrained quadratic pro-
gram is solved via a dual problem, which is the minimization of an unbounded, piecewise
quadratic function. The dual problem involves a lower bound of λ1, i.e, the smallest eigen-
value of a symmetric, positive matrix, and is solved by Newton iteration with line search.

3.2. QLD

This code [31] is available due to K.Schittkowski of the University of Bayreuth, Ger-
many and is a modification of routines due to MJD Powell at the University of Cambridge. It
is essentially an active set, interior-point method and supports general linear constraints too.
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3.3. QUACAN

This algorithm combines conjugate gradients with gradient projection techniques,
as the algorithm of Moré and Toraldo [32]. A new strategy for the decision of leaving
the current face is introduced, making it possible to obtain finite convergence even for
a singular Hessian and in the presence of dual degeneracy. QUACAN [33] is specialized
for convex problems subject to simple bounds.

4. Experimental Results—Fortran Implementation
To verify the effectiveness of the proposed approach, we experimented with five

different problem types, and measured cpu times to make a comparison possible. We have
implemented BoxCQP in Fortan 77 and used a recent Intel processor with a Linux operating
system and employed the suite of the GNU gfortran compiler.

In the subsections that follow, we describe in brief the different test problems used for
the experiments, and report our results.

4.1. Random Problems

The first set of experiments treats randomly generated problems. We generate prob-
lems following the general guidelines of [32]. Specific details about creating these random
problems are provided in the Appendix A.1.

For every random problem class, we have created Hessian matrices with three different
condition numbers:

1. Using ncond = 0.1 and hence, κ2(B) = 1.259;
2. Using ncond = 1 and hence, κ2(B) = 10;
3. Using ncond = 5 and hence, κ2(B) = 105.

The results for the three variants of BoxCQP against the other quadratic codes
for the classes (a), (b), and (c) and for three different condition numbers are shown in
Tables 1, 2, and 3, respectively. In each table, alongside the execution times of the competing
solvers, we include additional columns presenting their rankings for the specific case. These
rankings serve to facilitate a more general interpretation and comparison of the results.

The results presented in Table 3 show that across all conditioning levels, computational
time increases with problem size, as expected. Variant 1 (LDLT decomposition) performs
well for small-to-moderate problem sizes but suffers from scalability issues as the problem
dimension increases, particularly in ill-conditioned cases where factorization becomes
computationally expensive. In contrast, Variant 2 (conjugate gradient) exhibits greater
robustness for ill-conditioned problems but is slower than direct decomposition for well-
conditioned cases. The hybrid Variant 3 provides the best overall performance, maintaining
lower runtimes across different problem sizes and conditioning levels.

Comparing BoxCQP to the antagonistic solvers, QUACAN performs well on small
problems but becomes inefficient for large-scale and ill-conditioned cases. QPBOX and QLD
exhibit competitive runtimes, with QLD showing the best efficiency in large, ill-conditioned
scenarios. BoxCQP Variants 2 and 3 consistently outperform QUACAN, making them
preferable for difficult optimization problems. In this case, BoxCQP Variant 3 emerges
as the most effective approach, striking a balance between computational efficiency and
robustness to ill-conditioning.

Considering the results presented in Tables 4 and 5, we can see that for the most
ill-conditioned cases, Variant 1 (LDL) becomes prohibitively expensive, and methods using
iterative methods (Variants 2 and 3) become more favorable. On the other hand, for
the well-conditioned cases, iterative BoxCQP variants outperform the LDL one. Among
the other solvers, QUACAN struggles significantly with ill-conditioned problems and
large problem sizes, often displaying dramatically increased runtime, particularly for
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κ2(B) = 105. QPBOX and QLD scale more effectively, with QLD consistently outperforming
QUACAN in all problem sizes. However, BoxCQP Variants 2 and 3 maintain superior
performance over QUACAN and, in all cases, are better than QPBOX and QLD.

Table 3. Random table results; act_prob = 0.5, up_low_prob = 0.5.

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

Rand (ncond = 0.1, n = 200) 0.02 0.00 0.00 0.00 0.06 0.08 4 1 1 1 5 6
Rand (ncond = 1, n = 200) 0.02 0.00 0.01 0.03 0.05 0.07 3 1 2 4 5 6
Rand (ncond = 5, n = 200) 0.03 0.18 0.03 1.38 0.07 0.07 1 5 1 6 3 3
Rand (ncond = 0.1, n = 400) 0.19 0.02 0.05 0.06 0.44 0.60 4 1 2 3 5 6
Rand (ncond = 1, n = 400) 0.22 0.08 0.11 0.25 0.47 0.61 3 1 2 4 5 6
Rand (ncond = 5, n = 400) 0.37 2.00 0.42 16.16 0.69 0.58 1 5 2 6 4 3
Rand (ncond = 0.1, n = 600) 0.78 0.06 0.12 0.14 1.43 2.13 4 1 2 3 5 6
Rand (ncond = 1, n = 600) 0.90 0.24 0.37 0.66 1.57 2.14 4 1 2 3 5 6
Rand (ncond = 5, n = 600) 1.16 9.72 1.27 48.69 1.97 2.14 1 5 2 6 3 4
Rand (ncond = 0.1, n = 800) 2.58 0.13 0.27 0.31 3.80 5.44 4 1 2 3 5 6
Rand (ncond = 1, n = 800) 2.59 0.42 0.53 1.26 3.76 5.37 4 1 2 3 5 6
Rand (ncond = 5, n = 800) 3.58 32.21 3.72 108.13 5.76 5.47 1 5 2 6 4 3
Rand (ncond = 0.1, n = 1000) 4.52 0.22 0.54 0.50 7.83 10.17 4 1 3 2 5 6
Rand (ncond = 1, n = 1000) 4.58 0.66 0.95 1.68 7.93 10.00 4 1 2 3 5 6
Rand (ncond = 5, n = 1000) 6.82 72.48 8.19 143.93 10.02 9.93 1 5 2 6 4 3
Rand (ncond = 0.1, n = 1200) 9.40 0.33 1.23 0.75 13.26 18.05 4 1 3 2 5 6
Rand (ncond = 1, n = 1200) 9.02 0.96 2.29 3.32 13.49 19.19 4 1 2 3 5 6
Rand (ncond = 5, n = 1200) 11.08 90.54 11.05 187.50 16.90 19.31 2 5 1 6 3 4
Rand (ncond = 0.1, n = 1400) 12.03 0.43 1.57 1.14 20.94 30.16 4 1 3 2 5 6
Rand (ncond = 1, n = 1400) 11.97 1.20 2.15 3.51 21.41 30.57 4 1 2 3 5 6
Rand (ncond = 5, n = 1400) 17.48 118.56 17.92 300.58 27.72 30.07 1 5 2 6 3 4
Rand ncond = 0.1, n = 1600) 23.34 0.61 2.68 1.76 29.76 48.56 4 1 3 2 5 6
Rand ncond = 1, n = 1600) 26.29 2.60 4.57 7.79 33.50 46.80 4 1 2 3 5 6
Rand ncond = 5, n = 1600) 36.36 302.91 49.70 895.78 37.99 46.23 1 5 4 6 2 3
Rand ncond = 0.1, n = 1800) 29.42 0.68 4.43 2.13 43.82 64.54 4 1 3 2 5 6
Rand ncond = 1, n = 1800) 28.75 1.93 4.79 7.11 43.91 64.10 4 1 2 3 5 6
Rand ncond = 5, n = 1800) 48.49 352.77 57.25 925.31 57.65 63.13 1 5 2 6 3 4
Rand ncond = 0.1, n = 2000) 47.95 0.92 6.05 2.55 58.39 89.83 4 1 3 2 5 6
Rand ncond = 1, n = 2000) 47.75 2.75 7.32 7.57 60.00 91.10 4 1 2 3 5 6
Rand ncond = 5, n = 2000) 74.03 395.21 70.79 711.86 103.15 89.13 2 5 1 6 4 3

Average ranking 3.00 2.33 2.13 3.80 4.43 5.13

Overall, the results confirm that when most variables reside on the bounds, BoxCQP
Variant 3 is the most practical choice, as it combines the advantages of both LDLT and
CG, adapting well to different problem conditions. Variant 1 remains suitable for well-
conditioned small problems, whereas Variant 2 is preferable for handling ill-conditioned,
large-scale problems.

The performance scaling plot in Figure 2 compares the runtime of three algorithmic
variants for solving well-conditioned problems, where half of the variables are fixed on
bounds. The primary computational task in the algorithm is solving a linear system at each
iteration, and the three variants differ in their approach to this task. We can an infer that
for small problem sizes, the differences between the three variants are relatively minor.
However, as the problem size grows, Variant 1 (LDLT decomposition at every iteration)
exhibits the steepest runtime increase due to the high cost of repeated factorizations.
Meanwhile, Variant 2 (CG throughout) shows much better scalability, with its runtime
growing at a slower rate, making it preferable for large-scale problems. Variant 3 (hybrid)
likely demonstrates an intermediate performance profile, outperforming Variant 1 in terms
of efficiency while maintaining better numerical robustness than Variant 2.

In summary, if computational speed is the primary concern, Variant 2 (CG) is the most
scalable option, particularly for large problem sizes. If numerical stability and accuracy are
the priority, Variant 1 (LDLT) is the most robust but at the cost of significantly higher compu-
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tation time. Variant 3 (hybrid) emerges as an optimal middle-ground approach, balancing
efficiency and stability by combining iterative and direct methods. The performance-scaling
trends confirm these expectations, with Variant 1 becoming increasingly costly, Variant 2
scaling efficiently, and Variant 3 offering a competitive compromise.

Table 4. Random table results; act_prob = 0.9, up_low_prob = 0.5.

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

Rand (ncond = 0.1, n = 200) 0.02 0.00 0.00 0.01 0.06 0.10 4 1 1 3 5 6
Rand (ncond = 1, n = 200) 0.02 0.01 0.01 0.01 0.06 0.11 4 1 1 1 5 6
Rand (ncond = 5, n = 200) 0.08 0.10 0.02 2.20 0.06 0.10 3 4 1 6 2 4
Rand (ncond = 0.1, n = 400) 0.16 0.02 0.02 0.05 0.46 0.80 4 1 1 3 5 6
Rand (ncond = 1, n = 400) 0.16 0.05 0.05 0.11 0.44 0.82 4 1 1 3 5 6
Rand (ncond = 5, n = 400) 0.19 0.64 0.19 10.93 0.49 0.81 1 4 1 6 3 5
Rand (ncond = 0.1, n = 600) 0.70 0.05 0.05 0.15 1.59 2.93 4 1 1 3 5 6
Rand (ncond = 1, n = 600) 0.64 0.13 0.13 0.35 1.48 3.16 4 1 1 3 5 6
Rand (ncond = 5, n = 600) 0.77 2.29 0.78 35.44 1.57 2.99 1 4 2 6 3 5
Rand (ncond = 0.1, n = 800) 2.39 0.11 0.11 0.26 3.77 7.53 4 1 1 3 5 6
Rand (ncond = 1, n = 800) 2.42 0.35 0.34 0.96 3.82 7.47 4 2 1 3 5 6
Rand (ncond = 5, n = 800) 2.52 9.36 2.10 63.45 4.09 7.40 2 5 1 6 3 4
Rand (ncond = 1, n = 1000) 3.57 0.43 0.43 1.45 7.27 15.08 4 1 1 3 5 6
Rand (ncond = 5, n = 1000) 3.91 9.30 3.07 180.95 8.53 15.12 2 4 1 6 3 5
Rand (ncond = 0.1, n = 1200) 9.40 0.32 1.22 0.74 13.25 18.05 4 1 3 2 5 6
Rand (ncond = 1, n = 1200) 8.40 0.73 0.73 3.01 12.95 25.86 4 1 1 3 5 6
Rand (ncond = 5, n = 1200) 7.69 19.61 5.51 209.04 13.56 27.15 2 4 1 6 3 5
Rand (ncond = 0.1, n = 1400) 12.03 0.43 1.56 1.14 20.94 30.15 4 1 3 2 5 6
Rand (ncond = 1, n = 1400) 12.53 1.29 1.29 3.32 20.75 40.12 4 1 1 3 5 6
Rand (ncond = 5, n = 1400) 13.08 55.20 11.63 363.79 21.79 39.71 2 5 1 6 3 4
Rand (ncond = 0.1, n = 1600) 23.34 0.61 2.68 1.76 29.76 48.55 4 1 3 2 5 6
Rand (ncond = 1, n = 1600) 23.88 2.06 2.07 7.24 33.57 63.22 4 1 2 3 5 6
Rand (ncond = 5, n = 1600) 22.53 64.27 22.67 663.67 33.52 69.35 1 4 2 6 3 5
Rand (ncond = 0.1, n = 1800) 28.56 0.61 0.61 1.59 51 88.60 4 1 1 3 5 6
Rand (ncond = 1, n = 1800) 28.57 1.65 1.66 5.11 43.85 88.02 4 1 2 3 5 6
Rand (ncond = 5, n = 1800) 30.31 106.52 24.51 488.60 45.26 88.21 2 5 1 6 3 4
Rand (ncond = 0.1, n = 2000) 39.84 0.59 0.61 2.14 73.93 128.85 4 1 2 3 5 6
Rand (ncond = 1, n = 2000) 40.05 2.36 2.41 8.78 62.69 128.56 4 1 2 3 5 6
Rand (ncond = 5, n = 2000) 42.04 147.56 32.04 613.54 67.91 128.35 2 5 1 6 3 4

Average Ranking 3.24 2.21 1.41 3.86 4.28 5.48

Figure 2. BoxCQP variants’ scaling results for ncond = 0.1, κ2(B) = 1.259.
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Table 5. Random table results; act_prob = 0.1, up_low_prob = 0.5.

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

Rand (ncond = 0.1, n = 200) 0.03 0.00 0.02 0.01 0.06 0.03 4 1 3 2 6 4

Rand (ncond = 0.1, n = 400) 0.03 0.01 0.02 0.03 0.06 0.03 3 1 2 3 6 3
Rand (ncond = 0.1, n = 600) 0.06 0.82 0.10 1.00 0.07 0.04 2 5 4 6 3 1
Rand (ncond = 0.1, n = 800) 0.28 0.03 0.14 0.05 0.52 0.30 4 1 3 2 6 5
Rand (ncond = 0.1, n = 1000) 0.29 0.10 0.19 0.20 0.51 0.29 4 1 2 3 6 4
Rand (ncond = 0.1, n = 1200) 0.73 13.43 1.15 11.81 0.57 0.29 3 6 4 5 2 1
Rand (ncond = 0.1, n = 1400) 1.12 0.08 0.52 0.12 1.70 1.03 5 1 3 2 6 4
Rand (ncond = 0.1, n = 1600) 1.08 0.24 0.59 0.55 1.71 1.07 5 1 3 2 6 4
Rand (ncond = 0.1, n = 1800) 2.69 36.03 3.69 37.16 1.84 1.05 3 5 4 6 2 1
Rand (ncond = 0.1, n = 2000) 3.96 0.20 1.67 0.31 4.58 2.97 5 1 3 2 6 4
Rand (ncond = 1, n = 200) 4.18 0.60 2.08 1.13 4.69 2.73 5 1 3 2 6 4
Rand (ncond = 1, n = 400) 9.41 113.31 13.11 84.98 5.02 2.87 3 6 4 5 2 1
Rand (ncond = 1, n = 600) 8.10 0.33 4.12 0.49 9.67 4.92 5 1 3 2 6 4
Rand (ncond = 1, n = 800) 7.80 0.93 4.17 1.99 9.58 5.23 5 1 3 2 6 4
Rand (ncond = 1, n = 1000) 21.76 150.66 23.29 137.16 10.21 4.78 3 6 4 5 2 1
Rand (ncond = 1, n = 1200) 15.27 0.50 7.10 0.66 15.82 9.64 5 1 3 2 6 4
Rand (ncond = 1, n = 1400) 15.40 1.42 7.73 3.18 15.69 9.55 5 1 3 2 6 4
Rand (ncond = 1, n = 1600) 38.69 332.99 51.92 208.28 16.41 9.46 3 6 4 5 2 1
Rand (ncond = 1, n = 1800) 24.19 0.69 12.07 1.28 25.21 14.47 5 1 3 2 6 4
Rand (ncond = 1, n = 2000) 24.13 1.92 12.59 3.87 25.08 14.61 5 1 3 2 6 4
Rand (ncond = 0.1, n = 1600) 51.78 570.86 93.98 254.72 26.55 14.44 3 6 4 5 2 1
Rand (ncond = 5, n = 400) 42.09 1.09 18.83 2.06 39.03 25.60 6 1 3 2 5 4
Rand (ncond = 5, n = 600) 60.71 4.21 38.91 8.60 39.03 25.60 6 1 4 2 5 3
Rand (ncond = 5, n = 800) 80.80 482.62 109.59 765.19 41.66 25.64 3 5 4 6 2 1
Rand (ncond = 5, n = 1000) 56.08 1.13 28.06 1.67 51.92 33.74 6 1 3 2 5 4
Rand (ncond = 5, n = 1200) 54.58 3.15 27.59 6.78 52.20 33.69 6 1 3 2 5 4
Rand (ncond = 5, n = 1400) 130.07 819.08 130.85 876.60 55.17 34.36 3 5 4 6 2 1
Rand (ncond = 5, n = 1600) 78.98 1.36 37.10 1.91 69.26 49.50 6 1 3 2 5 4
Rand (ncond = 5, n = 1800) 114.84 4.57 74.21 8.00 69.67 49.85 6 1 5 2 4 3
Rand (ncond = 5, n = 2000) 189.95 921.16 269.69 670.03 73.12 50.21 3 6 4 5 2 1

Average Ranking 4.33 2.53 3.37 3.20 4.47 2.93

For ill-conditioned problems (see Figure 3, the performance-scaling behavior of the
three algorithmic variants shifts significantly compared to well-conditioned problems. In
such cases, the system matrix exhibits a high condition number, which impacts both direct
and iterative solution methods differently.

From the runtime trends observed in Figure 3 in the new performance scaling plot, it
appears that Variant 1 (LDLT) performs better than in the well-conditioned scenario. This
is likely due to the fact that LDLT decomposition, being a direct method, remains robust
even when the system matrix is poorly conditioned. Unlike iterative methods, which suffer
from slow convergence or numerical instability when the condition number is large, LDLT

maintains accuracy at the cost of higher computational effort per iteration. However, in
ill-conditioned problems, iterative solvers such as the conjugate gradient (CG) method
(used in Variant 2) may require significantly more iterations to converge, making them
less efficient overall. This explains why Variant 1, despite its higher theoretical complexity,
outperforms the other two methods in this setting.

Variant 3 balances these trade-offs effectively by leveraging the fast initial approxima-
tions of CG while maintaining the stability of LDLT in subsequent iterations. While CG
may struggle with slow convergence in ill-conditioned problems, using it only in the first
iteration can still provide a useful initial guess that reduces the effort needed for LDLT

decomposition later on. This reduces the total computational burden of LDLT while still
ensuring that subsequent iterations remain numerically stable.
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Figure 3. BoxCQP variants’ scaling results for ncond = 5, κ2(B) = 105.

4.2. Circus-Tent Problem

The circus-tent problem serves as a foundational case that highlights how mathe-
matical optimization techniques can be applied to real-world engineering challenges. Its
formulation as box-constrained quadratic programming problem is described in detail
in Appendix A.2. Table 6 presents execution times for different solution approaches to
the circus-tent problem across increasing problem sizes, measured in seconds. As the
problem size grows, Variant 1 becomes increasingly expensive due to the repeated direct
factorization, reaching 1333.51 s for n = 4900. Variant 2, relying entirely on the iterative
CG method, exhibits significantly better scalability, with execution time increasing more
gradually to 150.49 s at n = 4900. Variant 3, which blends iterative and direct methods, ini-
tially performs better than Variant 1 but eventually shows similar growth in execution time,
reaching 696.21 s for the largest problem size. Among the solvers compared, QUACAN
successfully solves only the smallest in negligible time but fails for larger cases. QPBOX
is unable to solve any instance, as indicated by the NC values across all entries. QLD,
however, demonstrates competitive performance, outperforming Variant 1 and Variant 3
for larger problems, reaching 617.58 s for n = 4900.

Table 6. Results for circus-tent problem case (single-thread execution time in seconds; NC stands for
no convergence).

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

Tent (n = 100) 0.01 0.00 0.00 0.00 NC 0.00 5 1 1 1 6 1
Tent (n = 400) 0.32 0.13 0.21 NC NC 0.25 5 1 2 6 6 3
Tent (n = 900) 5.57 1.45 3.27 NC NC 2.77 5 1 3 6 6 2
Tent (n = 1600) 48.30 9.57 29.11 NC NC 20.53 5 1 3 6 6 2
Tent (n = 3600) 557.74 55.74 284.05 NC NC 246.04 5 1 3 6 6 2
Tent (n = 4900) 1333.51 150.49 696.21 NC NC 617.58 5 1 3 6 6 2

Average Ranking 5.00 1.00 2.83 6.00 6.00 2.00

From these results, Variant 2 (conjugate gradient method) proves to be the most effi-
cient and scalable, particularly for larger problem sizes, making it the preferred choice for
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large-scale computations. Variant 3 (hybrid approach) offers a reasonable compromise be-
tween iterative and direct methods, performing well for small-to-medium problems before
exhibiting similar computational demands to Variant 1. Variant 1 (LDLT decomposition),
while accurate, is computationally expensive and less suitable for large-scale applications.
Among the solvers, QLD remains the most competitive alternative, performing consistently
better than LDLT-based methods for larger problem sizes.

4.3. Biharmonic Equation Problem

The biharmonic equation arises in elasticity theory and describes the small vertical
deformations of a thin elastic membrane. In this work, we consider an elastic membrane
clamped on a rectangular boundary and subject to a vertical force while being constrained
to remain below a given obstacle. This leads to a constrained variational problem that can
be formulated as a convex quadratic programming (QP) problem with bound constraints.
For more details about the formulation, see Appendix A.3.

Table 7 presents execution times (in seconds) for different numerical methods applied
to the biharmonic equation problem across increasing problem sizes. As the problem size
increases, Variant 1 exhibits the steepest growth in execution time, reaching 816.13 s for the
largest case (n = 4900). Variant 2, which leverages iterative solvers, scales better, achieving
a significantly lower execution time of 705.52 s for the same problem size. Variant 3 strikes
a balance between direct and iterative methods, showing better performance than Variant 1
but remaining slightly less efficient than Variant 2, with 484.45 s for the case n = 4900.

In the series of solver tests, QLD demonstrates superior performance compared to
QUACAN and QPBOX, solving the largest problem in 1837.66 s. By contrast, QUACAN
and QPBOX exhibit considerably worse scalability, with times of 8282.04 s and 3067.21 s,
respectively, for n = 4900. QUACAN shows effectiveness with smaller problems but
becomes very inefficient as the problem size grows, whereas QPBOX follows a similar
pattern, though it performs somewhat better. The findings emphasize that Variant 3 is the
most scalable method, making it the optimal choice for large-scale biharmonic problems.
Additionally, all BoxCQP variants outperform the competition in this scenario.

Table 7. Results for the biharmonic equation case (single-thread execution time in seconds).

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

Biharm (n = 100) 0.00 0.00 0.00 0.00 0.01 0.01 1 1 1 1 5 5
Biharm (n = 400) 0.20 0.21 0.19 0.65 0.64 0.75 2 3 1 5 4 6
Biharm (n = 900) 4.28 3.13 2.92 18.52 10.49 9.29 3 2 1 6 5 4
Biharm (n = 1600) 23.33 17.89 15.31 119.66 82.12 60.87 3 2 1 6 5 4
Biharm (n = 2500) 106.19 77.24 60.57 775.03 333.91 222.79 3 2 1 6 5 4
Biharm (n = 3600) 308.73 271.46 186.89 2988.08 1071.34 684.57 3 2 1 6 5 4
Biharm (n = 4900) 816.13 705.52 484.45 8282.04 3067.21 1837.66 3 2 1 6 5 4

Average Ranking 2.57 2.00 1.00 5.14 4.86 4.43

4.4. Intensity-Modulated Radiation Therapy

Intensity-Modulated Radiation Therapy (IMRT) is an advanced radiotherapy tech-
nique that optimizes the spatial distribution of radiation to maximize tumor control while
minimizing damage to surrounding healthy tissues and vital organs. The goal is to deliver
a precisely calculated radiation dose that conforms to the tumor shape, reducing side effects
and improving treatment effectiveness.

This problem is typically formulated as a quadratic programming (QP) task, where
the objective is to determine the optimal fluence intensity profile for a given set of beam
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configurations. The radiation dose distribution can be represented as a linear combination
of beamlet intensities, allowing for a mathematical optimization approach. Given a set of
desired dose levels, the optimal beamlet intensities are computed by solving a quadratic
objective function that minimizes the difference between the prescribed and delivered doses.
The optimization constraints include dose limits for critical organs and physical feasibility
conditions. In Appendix A.4, we present in some details the derivation of the formulation.

In practical applications, inverse treatment planning in IMRT requires solving
a quadratic optimization problem of the form shown in Equation (9) multiple times, as
beam configurations are iteratively adjusted to meet clinical constraints. Since the process
involves large-scale quadratic systems, efficient solvers are essential to ensure fast and
accurate treatment planning.

min
f

s( f ) =
1
2

f T A f + f Tb (9)

subject to f ≥ 0

Table 8 showcases findings derived from actual data generously shared by S. Breedveld [34].
In this scenario, seven beams are integrated, leading to a quadratic problem comprising
2342 parameters. In this instance, Variants 2 and 3 exhibit superior performance, outper-
forming their counterparts by a factor of two.

Table 8. Results for the Intensity-Modulated Radiation Therapy case (single-thread execution time
in seconds).

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

IMRT (n = 2342) 54.22 33.11 40.56 85.11 67.88 73.22 3 1 2 6 4 5

Average Ranking 3.00 1.00 2.00 6.00 4.00 5.00

4.5. Support Vector Classification

To create the problem for the case of Support Vector Classification, we used the
CLOUDS dataset [35] a well-estabalished two dimensional and two-class classification task.
The specifics of the quadratic programming formulation are provided in the Appendix A.5.
We run different experiments for an increasing number of CLOUDS datapoints. From
Table 9, we can see that Variant 1 experiences significant growth in execution time, reaching
263.35 s for n = 3000, making it the least efficient among the three variants. In contrast,
Variant 2 scales much better due to its reliance on iterative methods, requiring 63.97 s for
the largest problem. Variant 3, which combines both iterative and direct methods, shows
even better performance than Variant 1 for larger problems, reducing execution time to
151.40 s at . When comparing solver performance, QUACAN, QPBOX, and QLD also
display increasing execution times as problem sizes grow. QUACAN shows relatively
poor scalability, requiring 1068.97 s for n = 3000, making it the slowest solver in the test.
QPBOX, while performing better, still struggles with larger problem sizes, reaching 264.56 s
at n = 3000. QLD, is completing the largest problem in 354.43 s, yet still significantly slower
than Variants 2 and 3. These results highlight that Variant 2 (conjugate gradient method) is
the most scalable approach, making it the preferred choice for large-scale SVM problems.
Variant 3 (hybrid approach) still offers the best balance between iterative and direct solvers.
Therefore, the findings suggest that a combination of CG-based techniques is optimal for
solving large-scale SVM optimization problems efficiently.
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Table 9. Results for SVM training (single-thread execution time in seconds).

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD Var.1 Var.2 Var.3 QN QPB QLD

SVM (n = 100) 0.00 0.00 0.00 0.01 0.01 0.00 1 1 1 5 5 1
SVM (n = 200) 0.04 0.04 0.04 0.15 0.07 0.07 3 1 1 6 4 4
SVM (n = 300) 0.14 0.09 0.10 0.39 0.23 0.25 3 1 2 6 4 5
SVM (n = 400) 0.37 0.29 0.33 2.09 0.53 0.63 3 1 2 6 4 5
SVM (n = 500) 0.70 0.61 0.71 4.69 1.05 1.27 2 1 3 6 4 5
SVM (n = 600) 1.18 0.84 0.97 6.54 1.85 2.36 3 1 2 6 4 5
SVM (n = 700) 2.26 1.51 1.85 14.33 3.03 3.81 3 1 2 6 4 5
SVM (n = 800) 3.38 1.87 2.25 21.75 4.68 6.19 3 1 2 6 4 5
SVM (n = 900) 5.67 3.40 3.84 27.16 7.33 8.20 3 1 2 6 4 5
SVM (n = 1000) 7.26 4.29 5.01 34.01 10.39 11.33 3 1 2 6 4 5
SVM (n = 2000) 68.78 22.01 36.24 256.22 77.29 104.31 3 1 2 6 4 5
SVM (n = 3000) 263.35 63.97 151.40 1068.97 264.56 354.43 3 1 2 6 4 5

Average Ranking 2.75 1.00 1.92 5.92 4.08 4.58

4.6. Summarizing Fortran Experimental Results

The performance of the six solver variants—Variant 1, Variant 2, Variant 3 versus
QUACAN, QPBOX, and QLD—was evaluated across a diverse set of convex quadratic
programming problems.

Each case revealed different characteristics of the solver behavior. In the random
problem set, Variant 3 and Variant 2 consistently achieved the lowest average rankings
(2.30 and 2.35, respectively, on all 90 cases), indicating robust and efficient performance,
especially under varying condition numbers. QUACAN followed with an average rank of
3.86, while QPBOX and QLD were generally slower (4.40 and 5.53, respectively), reflecting
their higher computational overheads.

In the context of the biharmonic scenario, characterized by structured sparse problems,
Variant 3 emerged as the leader, boasting the top average rank (1.00), with Variant 2 not
far behind (2.00). A similar pattern occurred in the circus-tent problem, where Variant 2
was clearly the standout performer, achieving the highest average rank (1.00), while QLD
followed in second place (2.00), demonstrating its effectiveness for structured geometric
problems when feasible. For SVM classification tasks, Variant 2 excelled, with an average
rank of 1.00, and was trailed by Variant 3 and Variant 1. Meanwhile, QLD and QPBOX
showed inferior performance, especially with large datasets, due to scaling challenges. In
the singular IMRT instance, Variant 2 along with Variant 3 were rated highest, emphasizing
their competitiveness even in substantial real-world applications.

In Table 10 we present aggregated ranking results for all the test problem cases. When
evaluating all problems together, the aggregate average ranking supports the prior findings.
Variant 3 and Variant 2 secured top overall rankings of 2.11 and 2.33, respectively, with
Var.1 following at 3.00. Among the other solvers, QUACAN occupied a central rank
of 3.81, while QPBOX and QLD frequently ranked lower at 4.44 and 5.11, respectively.
These outcomes highlight the robustness and versatility of the proposed BoxCQP variants,
particularly Var.2 and Var.3, which effectively balance speed and dependability across
diverse problem categories.

Table 10. Aggregated results for all cases (average ranking).

Prob. Name Var.1 Var.2 Var.3 QN QPB QLD

Total Average Ranking 3.00 2.33 2.11 3.81 4.44 5.11

5. Experimental Results—Python Implementation
Porting code from Fortran 77 (F77) and MATLAB R2023b to Python 3.8 offers signif-

icant advantages in terms of accessibility, reproducibility, and community engagement,
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making it highly beneficial for exposure in the scientific computing community. Python’s
open-source nature, extensive ecosystem, interoperability, and modern programming fea-
tures make it an ideal platform for sharing, optimizing, and scaling scientific applications.
In this section, we present some experimental results from the Python implementation
of BoxCQP.

5.1. Linear Least Squares with Bound Constraints

Linear least squares with bound constraints (LLSBC) is a convex optimization problem
that bridges classical linear algebra and modern optimization theory. By imposing simple
bound constraints to a linear least-squares objective, we obtain a quadratic program (QP)
that is guaranteed to be convex.

In practice, adding bound constraints to a least-squares problem is hugely important
because it lets us incorporate prior knowledge or physical limitations into the solution.
Ordinary linear least squares (OLS) may produce solutions that are mathematically optimal
but physically impossible or undesirable (e.g., negative values for inherently non-negative
quantities, or parameters outside a feasible range). LLSBC addresses this by enforcing
simple “box” constraints (ℓi ≤ xi ≤ ui) on the solution vector. This leads to more realistic
and interpretable models in many fields. For instance, in machine learning and statistics,
it is often unreasonable for certain coefficients to be negative or to exceed certain values
(consider probabilities, ages, or concentrations). By constraining coefficients to be non-
negative or within a plausible range, we guarantee that the model’s outputs make sense
(e.g., predicted prices or counts cannot be negative)

In engineering and the sciences, bound constraints allow us to respect physical laws or
design limits—for example, in control systems, we might require gain parameters to remain
within stable ranges, or in curve fitting, we might enforce that a response is non-decreasing
with an input. In signal processing and image processing, constraints like non-negativity
(pixel intensities, power spectra) or monotonicity can significantly improve solutions
by reducing noise artifacts and preventing unphysical oscillations. Overall, LLSBC is
interesting because it enhances the least-squares approach with robustness and domain
knowledge, making the solutions applicable in real-world scenarios where unconstrained
solutions would fail. It strikes a useful balance: retaining the computational efficiency and
well-understood nature of least squares, while adding just enough constraints to capture
practical requirements.

Many regression and estimation tasks in machine learning benefit from bound con-
straints. A notable example is non-negative least squares (NNLS), where we require xi ≥ 0
for all i. This is used when model coefficients represent quantities that cannot go below
zero. For instance, when fitting a model to predict prices, ages, or counts, allowing negative
coefficients or predictions is not meaningful Imposing non-negativity yields more sensible
models and can also have a regularizing effect (often promoting sparsity in the solution
similar to an L1 penalty). NNLS is widely used as a subroutine in matrix factorization prob-
lems like PARAFAC and non-negative matrix factorization (NMF), where one alternates
solving least-squares subproblems under non-negativity constraints. This helps extract
interpretable features (e.g., in text mining, image analysis, or clustering) because each factor
is constrained to contribute additively (no negative cancellations). Another application
is isotonic regression, which is a least-squares problem with a monotonicity constraint
(x1 ≤ x2 ≤ · · · ≤ xn). This can be formulated as LLSBC by introducing linear inequality
constraints between variables.
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5.2. Problem Definition (Bounded Least Squares)

min
x∈Rn

1
2
∥Ax− b∥2

2,

subject to ℓi ≤ xi ≤ ui, i = 1, . . . , n .
(10)

where:

• A is an m× n design matrix;
• b is an m-vector of observations;
• ℓ and u are n-vectors (or scalars) defining lower and upper bounds.

5.3. Expanding the Objective Function

1
2
∥Ax− b∥2

2 =
1
2
(Ax− b)T(Ax− b). (11)

Expanding this quadratic term:

1
2
(Ax− b)T(Ax− b) =

1
2

xT AT Ax− bT Ax +
1
2

bTb. (12)

Ignoring the constant term 1
2 bTb (since it does not affect the minimizer), we obtain the

standard **convex quadratic program (QP) form**:

min
x

1
2

xT(AT A)x− (ATb)Tx, s.t. ℓ ≤ x ≤ u. (13)

5.4. Standard Quadratic Programming Representation

Rewriting the problem in standard QP form:

min
x

1
2

xTQx + cTx, subject to ℓ ≤ x ≤ u, (14)

where:

Q = AT A (symmetric positive semidefinite matrix), (15)

c = −ATb. (16)

This formulation ensures that the problem is a convex QP since Q is positive semidefi-
nite (or positive definite if A has full column rank).

Experimental Setup

For comparison, we utilize SciPy, a robust open-source Python library for sci-
entific computing and optimization, offering efficient numerical methods for linear
algebra, optimization, signal processing, and statistical analysis. Specifically, the
scipy.optimize.lsq_linear function is employed to solve bounded linear least-squares prob-
lems of the form of Equation (10). The solution is obtained using two distinct approaches:
Trust-Region Reflective (TRF) and Bounded Variable Least Squares (BVLS) algorithms.

The TRF (Trust-Region Reflective) algorithm [36] is a subspace trust-region method
that is particularly effective for solving large-scale and well-conditioned least-squares
problems. It operates by iteratively refining the solution within a trust region, ensuring
that the step size remains appropriate to maintain stability. This method enforces bound
constraints using an active-set strategy, meaning it considers only variables that are likely
to be active at the optimal solution. Trust-region methods are robust, particularly when
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dealing with ill-conditioned problems, as they naturally handle numerical instabilities and
provide controlled step updates.

The BVLS (Bounded Variable Least Squares) algorithm [37] is a projection-based
method that explicitly enforces bound constraints at each iteration. Unlike TRF, which
works in a trust-region framework, BVLS solves a sequence of unconstrained least-squares
problems while ensuring that the solution stays within the prescribed bounds. It follows
a gradient-based active-set approach, where variables are either held at their bounds or
updated according to the gradient direction, leading to the efficient handling of constraints.
This method is particularly useful when strict bound enforcement is crucial, as it prevents
overshooting beyond limits at any step.

Our Python implementation is presented in the Appendix A and it directly solves
the problem in Equation (14). Notice that we include in timing the multiplications in
Equations (15) and (16).

In Table 11 we present execution times (in seconds) for solving random linear least
squares (LSQ) problems with bound constraints using three different methods: Variant
1, lsq_linear-TRF, and lsq_linear-BVLS. The problem sizes n vary in terms of the number
of observations m. Variant 1 consistently outperforms both lsq_linear-TRF and lsq_linear-
BVLS in terms of execution time. For smaller problem sizes, (such as m = 2000 and
n = 500), Variant 1 completes the computation in 0.02 s, whereas lsq_linear-TRF and
lsq_linear-BVLS require 0.95 s and 0.63 s, respectively. As the problem size increases, the
execution time of Variant 1 scales more efficiently compared to the other two methods. For
example, for dimension (m = 20,000, n = 2000), Variant 1 takes 1.26 s, whereas lsq_linear-
TRF and lsq_linear-BVLS require 69.12 s and 49.71 s, respectively. This significant difference
highlights the computational efficiency of Variant 1, particularly for large-scale problems.

Table 11. Linear least-squares random cases (single-thread execution time in seconds).

Prob. Name Variant 1 lsq_linear-TRF lsq_linear-BVLS

LSQ (m = 2000, n = 500) 0.02 0.95 0.63

LSQ (m = 2000, n = 1000) 0.12 4.22 2.23

LSQ (m = 2000, n = 1500) 0.21 6.85 12.30

LSQ (m = 2000, n = 2000) 0.45 12.45 25.37

LSQ (m = 20,000, n = 500) 0.00 4.75 3.42

LSQ (m = 20,000, n = 1000) 0.28 18.32 10.94

LSQ (m = 20,000, n = 1500) 0.69 35.12 25.83

LSQ (m = 20,000, n = 2000) 1.26 69.12 49.71

5.5. 225-Asset Portfolio Optimization Problem

The 225-Asset problem refers to a large-scale quadratic programming formulation used
in portfolio optimization, where the objective is to minimize the portfolio’s risk (variance)
subject to a set of linear constraints. The problem involves a universe of 225 assets and is
based on a classic mean-variance optimization model proposed by Markowitz [38].

Let x ∈ R225 be the portfolio weights vector, where each xi represents the fraction of
the total investment allocated to asset i. The problem is formulated as:

min
x∈R225

1
2

x⊤Σx

subject to r⊤x ≥ rmin

1⊤x = 1

x ≥ 0
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where

• Σ ∈ R225×225 is the positive definite covariance matrix of asset returns.
• r ∈ R225 is the expected return vector.
• rmin ∈ R is the minimum required portfolio return.
• 1 ∈ R225 is the vector of ones (to enforce full investment).

The constraints ensure:

• A minimum return threshold is met (r⊤x ≥ rmin).
• The portfolio is fully invested (1⊤x = 1).
• No short selling is allowed (xi ≥ 0 ∀i).

This problem is often used as a benchmark in quadratic programming solvers because
of its size (225 variables and several hundred constraints) and its relevance in financial
optimization. It tests a solver’s ability to handle large, sparse quadratic programs with
both inequality and equality constraints in practical applications. To express this problem
in the standard quadratic programming form with inequality constraints of the form seen
in Equation (2), we perform the following transformations:

1. Set B = Σ, and d = 0. There is no linear cost term in the mean-variance objective, only
the quadratic risk term.

2. Encode the return constraint r⊤x ≥ rmin as one row in A and b:
A1 = r⊤, b1 = rmin

3. Convert the equality constraint 1⊤x = 1 into two inequalities:
1⊤x ≥ 1 and −1⊤x ≥ −1. These become rows in A:
A2 = 1⊤, b2 = 1;
A3 = −1⊤, b3 = −1

4. Express the no short-selling constraint x ≥ 0 as A4 = I, the identity matrix, and b4 = 0

Putting all constraints together:

A =


r⊤

1⊤

−1⊤

I

, b =


rmin

1
−1
0


This formulation is now fully compatible with solvers that accept inequality-only

quadratic programs, such as those in the form of Equation (2).
To benchmark the Python implementation of BoxCQP, we compared its perfor-

mance against two well-established quadratic programming solvers available through
the qpsolvers Python interface: quadprog and osqp [39,40]. The quadprog solver is based
on the Goldfarb–Idnani active-set method, which is particularly suitable for small- to
medium-scale convex QP problems with dense Hessians. In contrast, osqp (Operator
Splitting Quadratic Program) is a modern, operator-splitting-based solver that handles
large-scale problems efficiently, even when the matrices involved are sparse or poorly
conditioned. In Table 12, we present some preliminary results comparing BoxCQP to
modern antagonistic methods.

Table 12. 225-Asset portfolio optimization (single-thread execution time in seconds).

Prob. Name Variant 1 quadprog osqp

225-Asset (m = 453, n = 225) 0.0062 0.0421 0.0091
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5.6. Bound-Constrained Non-Linear Optimization

We introduce a trust-region method for non-linear optimization with bound con-
straints, where the trust region is defined as a hyperbox, differing from the conventional
hypersphere or hyperellipsoid approaches. The rectangular trust region is particularly well
suited for problems with bound constraints, as it maintains its geometric structure even
when intersecting the feasible region.

Trust-region methods fall in the category of sequential quadratic programming [41,42].
These algorithms are iterative and the objective function f (x) (assumed to be twice contin-
uously differentiable) is approximated in a proper neighborhood of the current iterate (the
trust region), using a quadratic model. Namely, at the kth iteration, the model is given by:

f (xk + s) ≈ m(k)(s) = f (x(k)) + sT g(k) +
1
2

sT B(k)s (17)

where g(k) = ∇ f (x(k)) and B(k), in the case of Newton’s method, is a positive definite
modification of the Hessian, while in the case of quasi-Newton methods, it is a positive
definite matrix produced by the relevant update.

The trust region may be defined by:

T(k) = {x ∈ ℜn | ||x− x(k)|| ≤ ∆(k)} (18)

It is obvious that different choices for the norm lead to different trust-region shapes.
The Euclidean norm || · ||2 corresponds to a hypersphere, while the || · ||∞ norm defines
a hyperbox.

Given the model and the trust region, we seek a step ||s(k)|| ≤ ∆(k) that minimizes
m(k)(s). We compare the actual reduction δ f (k) = f (x(k)) − f (x(k) + s(k)) to the model
reduction δm(k) = m(k)(0)−m(k)(s(k)). If they agree to a certain extend, the step is accepted
and the trust region is either expanded or remains the same. Otherwise, the step is
rejected and the trust region is contracted. The basic trust-region algorithm is sketched in
Algorithm 2.

Algorithm 2 Basic trust region

1. Pick the initial point and trust-region parameter x(0) and ∆(0), and set k = 0.
2. Construct a quadratic model:

f (xk + s) ≈ m(k)(s) = f (x(k)) + sT g(k) +
1
2

sT B(k)s

3. Minimize m(k)(s) and hence determine ||s(k)|| ≤ ∆(k)

4. Compute the ratio of actual to expected reduction: r(k) = δ f (k)

δm(k) , and update the trust
region, following the strategy of Dennis and Schnabel [43] (Appendix A, page 338).

5. Increment k← k + 1 and repeat from 1.

Consider the bound-constrained problem:

min
x

f (x), subject to: li ≤ xi ≤ ui

The unconstrained case is obtained by letting ui = −li → ∞.
Let x(k) be the k-th iterate of the trust-region algorithm.
Hence, step 3 of Algorithm 2 becomes:
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min
s

m(k)(s) = sT g(k) +
1
2

sT B(k)s (19)

subject to: max(li − x(k)i ,−∆(k)) ≤ si ≤ min(ui − x(k)i , ∆(k))

We have developed a hybrid trust-region algorithm that utilizes the Hessian matrix to
determine the appropriate optimization approach. When the Hessian is positive definite,
the algorithm transitions to solving the quadratic subproblem (see Equation (20)). However,
if the Hessian is indefinite, we employ the classical method described in [41] to ensure
stability and convergence. It is important to note that in the vicinity of a local minimum, the
Hessian matrix is typically positive definite, reinforcing the effectiveness of this approach.
The complete implementation of the algorithm is provided in Appendix A Listing A3:
Python TrustBox Implementation. Preliminary results with random settings (bounded and
unbounded) of the well known Rosenbrock function

f (x) =
n−1

∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]
, with minimum at x∗ = [1, 1, . . . , 1]T .

showed us that (a) half of the iterations are positive definite and (b) we achieve a 5%
reduction in the total number of iterations.

6. Conclusions
We have presented an active-set algorithm for solving bound-constrained convex

quadratic problems, leveraging an approach that dynamically updates both the primal and
dual variables at each iteration. The algorithm efficiently determines the active set, allowing
for systematic modifications that guide the solution toward feasibility and optimality while
maintaining computational efficiency. This approach ensures robust convergence properties
and significantly improves the solver’s performance, particularly in handling large-scale
problems where traditional quadratic programming methods may struggle.

Extensive experimental testing has demonstrated the superior performance of our
approach compared to several well-established quadratic programming solvers. Across
a variety of problem sizes and structures, the proposed algorithm exhibited faster execution
times, improved numerical stability, and enhanced scalability, making it a compelling alter-
native for applications requiring bound-constrained optimization. The method performed
particularly well in large-scale settings, where efficiently handling constraints is crucial for
reducing computational overhead.

Additionally, a trust-region method for non-linear objective functions has emerged as
a natural extension of our active-set framework. By integrating the proposed algorithm
into the subproblem solver, the trust-region approach is capable of efficiently handling
both unconstrained and bound-constrained optimization problems. The flexibility of
this integration allows for enhanced adaptability in solving non-linear problems where
traditional approaches may fail due to instability or attain a slow convergence.
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Appendix A. Problems Descriptions
Appendix A.1. Random Problems

The Hessian matrices B have the form:

B = MT M, with M = D
1
2 Z (A1)

where
D = diag(d1, . . . , dn), with di = 10

i−1
n−1 ncond (A2)

where ncond is a positive real number controlling the condition number of B

κ2(B) = 10ncond

and Z is a Householder matrix:

Z = I − 2
vvT

vTv
(A3)

The vectors d, a, and b are created by the following procedure, which is controlled by
two real numbers in 0, 1, namely act_prob and up_low_prob. The algorithmic steps for the
random problem creation are shown in Algorithm A1.

Algorithm A1 Random problem creation

1: for i = 0 to n do
2: ai ← rand(−1, 0)
3: bi ← rand(0, 1)
4: end for
5: for i = 0 to n do
6: Obtain Rand ξi ∈ [0, 1]
7: if ξi ≤ act_prob then
8: Obtain Rand ξ̃i ∈ [0, 1] ▷ Add i to the active set
9: if ξ̃i ≤ up_low_prob then

10: xi ← bi ▷ On upper bound
11: µi ← rand(0, 1)
12: λi ← 0
13: else
14: xi ← ai ▷ On lower bound
15: µi ← 0
16: λi ← rand(0, 1)
17: end if
18: else
19: xi ← (ai + bi)/2 ▷ i in the interior
20: µi ← 0
21: λi ← 0
22: end if
23: end for
24: Calculate d← −Bx + λ− µ ▷ From Equation (6)

We have created three classes of random problems:

1. Problems for which the solution has approximately 50% of the variables on the bounds,
with equal probability to be either on the lower or on the upper bound (act_prob = 0.5,
up_low_prob = 0.5).

2. Problems for which the solution has approximately 90% of the variables on the bounds,
with equal probability to be on either the lower or on the upper bound (act_prob = 0.9,
up_low_prob = 0.5).
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3. Problems for which the solution has approximately 10% of the variables on the bounds,
with equal probability to be either on the lower or on the upper bound (act_prob = 0.1,
up_low_prob = 0.5).

Appendix A.2. Circus Tent Problem

The circus-tent problem is a well-known example in optimization, taken from Matlab’s
optimization package, demonstrating large-scale quadratic programming (QP) with simple
bounds. In this problem, the objective is to determine the equilibrium shape of an elastic
tent supported by five poles over a square lot, while minimizing the system’s potential
energy under constraints imposed by the poles and the ground. The problem is formulated
as a convex quadratic optimization task, where the quadratic objective function represents
the elastic properties of the tent material, and the constraints enforce lower bounds set by
the support poles and the ground surface [44].

Beyond this specific example, similar structural optimization problems can be posed as
convex quadratic programming formulations in various topics of engineering and applied
mathematics. For instance, in elastic membrane modeling, finding the equilibrium shape
of a membrane under constraints involves minimizing the Dirichlet energy, which repre-
sents the elastic potential energy and leads to a quadratic objective function with bound
constraints [45–47]. This formulation is particularly relevant in material science and compu-
tational physics, where deformable surfaces need to be optimized under fixed constraints.

Another key application is structural design optimization, where engineers optimize
material distribution in load-bearing structures to achieve maximum efficiency while
adhering to displacement and stress constraints. This optimization framework is used in
architectural engineering, aerospace, and mechanical design, where lightweight yet stable
structures are crucial [48]. Additionally, mechanical equilibrium analysis often involves
minimizing elastic potential energy in mechanical systems with deformable components,
leading to convex QP formulations [24].

These examples illustrate the broad applicability of convex quadratic programming
with box constraints in structural optimization, where the goal is to determine equilibrium
configurations that minimize energy functions while satisfying physical constraints.

Figure A1. Circus-tent problem.

As we can see on the left side of Figure A1, the problem has only lower bounds
imposed by the five poles and the ground. The surface formed by the elastic tent is
determined by solving the bound constrained optimization problem:

min
x

f (x) =
1
2

xT Hx + xTc (A4)

subject to: l ≤ x
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where f (x) corresponds to the energy function and H is a 5-point finite difference Laplacian
over a square grid.

Appendix A.3. Biharmonic Equation Problem

The mathematical formulation follows standard texts in elasticity theory and varia-
tional methods [49–53].

Let Ω ⊂ R2 be a rectangular domain, and let u : Ω → R represent the vertical
displacement of the membrane. The governing equation for the biharmonic problem is
given by:

∆2u = f in Ω, (A5)

where ∆2 is the biharmonic operator, defined as ∆2 = ∆(∆u), and f is the external ver-
tical force applied to the membrane [53,54]. The boundary conditions for a clamped
membrane are:

u = 0,
∂u
∂n

= 0 on ∂Ω. (A6)

This ensures that the membrane is fixed along the boundary and cannot rotate. Addi-
tionally, the membrane is constrained to remain below a given obstacle function g(x, y),
which introduces a bound constraint:

u ≤ g in Ω. (A7)

Multiplying the biharmonic equation by a test function v and integrating over Ω gives
the weak form: ∫

Ω
(∆u)(∆v) dx dy =

∫
Ω

f v dx dy, ∀v ∈ H2
0(Ω), (A8)

where H2
0(Ω) is the Sobolev space of functions with square-integrable second derivatives,

satisfying the clamped boundary conditions [51]. The variational inequality formulation,
incorporating the bound constraint u ≤ g, is given by:∫

Ω
(∆u)(∆(v− u)) dx dy ≥

∫
Ω

f (v− u) dx dy, ∀v ∈ H2
0(Ω), v ≤ g. (A9)

This ensures that the solution u remains feasible under the obstacle constraint [55].
Using finite-element discretization, we approximate u in a finite-dimensional subspace
Vh ⊂ H2

0(Ω), where Vh is spanned by basis functions {ϕi}. We then write:

uh =
N

∑
i=1

uiϕi. (A10)

The discretized bilinear form associated with the biharmonic operator leads to
a symmetric positive semidefinite stiffness matrix K, giving the system:

Ku = F, (A11)

where u = (u1, . . . , uN)
T is the vector of nodal values and F is the discrete load vec-

tor. Enforcing the bound constraint u ≤ g at each node, we obtain the quadratic
programming problem:

min
u∈RN

1
2

uTKu− FTu, subject to ui ≤ gi, i = 1, ..., N. (A12)

This is a convex quadratic program with bound constraints. We see an example in
Figure A2 of a membrane under the influence of a vertical force. The function describing
the force is given by:
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f (x, y) = −60(1− x2)y e−7(x−0.9)2−4(y−0.1)2
+ 100x(1− y) e−3(x−0.2)2−6(y−0.8)2

and
g(x, y) = 4 · 105

Figure A2. The force is presented on the left, and the deformation on the right.

Appendix A.4. Intensity-Modulated Radiation Therapy

The dose distribution is expressed as a linear combination of fluence elements, al-
lowing the dose calculation to be formulated in terms of a matrix–vector representation
form [56] as

d = Hf, (A13)

where d represents the vector of dose distributions, indicating the dose for every voxel in
the patient, H refers to the dose deposition matrix, combining the distribution vectors of all
beamlets, and f denotes the fluence vector containing the beamlet weights. In this study,
the computation algorithm for H follows the method described in [57], employing a scatter
radius of 3 cm. The quadratic objective function applied consists of two terms:

s(f) = ∑
v

ξv(Hf− dp
v)

T η̃v(Hf− dp
v) + κ(Mf)T(Mf). (A14)

The first term represents a commonly used quadratic dose objective that has been
adapted to include voxel-specific importance factors. Here, Hf represents the dose distribu-
tion resulting from the fluence vector f, while dp

v stands for the dose objective associated
with voxels within the volume v. Each volume v is assigned an overall importance factor ξv

along with a set of voxel-specific importance factors denoted by η̃v. The tilde denotes the
diagonal matrix form of the coefficient vector ηv. This method considers a coefficient vector
whose dimension equals the total number of patient voxels, but only some coefficients are
non-zero, which is determined by the implementation of voxel-specific importance factors,
with a maximum number of non-zero coefficients in ηv being equal to the number of voxels
in volume v.

The second term in Equation (A14) is the smoothing term, regulated by a smoothing
factor κ. This term encourages the fluence f to be smooth. Inspired by [58], the second
derivative of the fluence was used as an indicator for smoothness. If the second derivative
equals zero, the fluence is linear (linearly increasing or decreasing, like a wedge or constant).
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For a two-dimensional fluence, the Laplacian of the fluence f can be discretized using
standard difference formulae for a fluence element fi,j. With resolutions h and k of the
fluence in the x- and y-direction, respectively, we have

∆ f |(ih,jk) =
k2( fi−1,j + fi+1,j)− 2(h2 + k2) fi,j + h2( fi,j−1 + fi,j+1)

h2k2 (A15)

The ideal case for a smooth fluence is when ∆ f = 0. We choose to keep the denomina-
tor h2k2 so the smoothing factor κ is independent of the fluence grid size. The discretization
can be written in a matrix M, such that ∆f = Mf.

Equation (A14) can be written in canonical form

s(f) =
1
2

fT Af + fTb + c, (A16)

where

A = HTQH + κS, b = HTq, c = ∑
v

ξv(d
p
v)

T η̃vdp
v , (A17)

Q = 2 ∑
v

ξvη̃v, S = 2MT M, q = −2 ∑
v

ξvη̃vdp
v . (A18)

The scalar c in Equation (A16) can be neglected for minimization of s(f). Matrix A is
symmetric and positive definite.

Appendix A.5. Support Vector Classification

In this problem case, we are going to deal with the two-dimensional classification
problem, to separate two classes using a hyperplane f (x) = wTx + b, which is determined
from available examples:

D = {(x1, y1), (x2, y2), . . . (xl , yl)}, x ∈ Rn, y ∈ {−1, 1}

Furthermore, it is desirable to produce a classifier that will work well on unseen examples,
i.e., it will generalize well. Consider the example in Figure A3. There are many possible
linear classifiers that can separate the data, but there is only one that maximizes the distance
to the nearest data point of each class. This classifier is termed the optimal separating
hyperplane and intuitively, one would expect that generalizes optimally.

Figure A3. Maximum distance classifier.
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The formulation of the maximum distance linear classifier (if we omit the constant term
b of the hyperplane equation (Also known as explicit bias)) is a convex quadratic problem
with simple bounds on the variables [14,59–61]. The resulting problem has the form:

min
a

1
2

aTQa− aTe (A19)

subject to: 0 ≤ ai ≤ C

where e ∈ Rl and with ei = 1, Qij = yiyjK(xi, xj) and K(x, y) is the kernel function per-
forming the non-linear mapping into the feature space. The parameters a ∈ Rl are Lagrange
multipliers of an original quadratic problem, that define the separating hyperplane using
the relation:

w∗Tx =
l

∑
i=1

a∗i yiK(xi, x) (A20)

Hence, the separating surface is given by:

f (x) = sgn(w∗Tx) (A21)

In our study, we used the two dimensional CLOUDS dataset [35], involving
two distinct classes. We formulated the problem outlined in Equation (A20) by employ-

ing an RBF Kernel function defined as K(x, y) = exp
(
−||x−y||2

2C2

)
, with C set to 100. The

methodology for our experiments included the following steps:

1. We first extracted l examples from the dataset to create the training set, leaving the
remaining (5000-l) examples for the test set.

2. Next, we constructed the matrix Q corresponding to the problem in Equation (A20).
3. Each solver was then applied to generate the separating surfaces and determine

test-set errors

Notably, due to a high condition number in matrix Q, the problem became ill-
conditioned, which we mitigated by adding a small positive value to the main diagonal of
Q. The classification surfaces achieved for l = 200, 500, 1000, and 2000 training examples
from the CLOUDS dataset are depicted in Figure A4.

The classification surfaces of the 2D Support Vector Machine (SVM) shown in the
images evolve as the number of training data points increases. In (a) 200 data points, the
decision boundary is highly irregular and appears to overfit the sparse dataset, struggling
to generalize well across the feature space. There are regions with disconnected decision
surfaces, indicating a lack of sufficient training samples to capture the underlying data
distribution effectively.

As the number of points increases in (b) 500 data points, the decision boundary be-
comes more refined, though it still exhibits some irregularities, particularly in regions
with complex data distributions. The increased density of support vectors (marked points
along the boundary) suggests that the classifier is still adjusting to local variations. By (c)
1000 data points, the classification surface becomes smoother, demonstrating improved
generalization. The previously disconnected boundary regions start forming a more coher-
ent separation, reducing excessive curvature in low-density areas. Finally, in (d) 2000 data
points, the decision surface stabilizes, capturing the overall structure of the dataset more
effectively. The regions corresponding to different classes are now more clearly separated,
and the classifier exhibits better robustness against noise and outliers.
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(a) 200 data points (b) 500 data points

(c) 1000 data points (d) 2000 data points

Figure A4. Four instances of classification problems used in this study.

Appendix B. The Code
We present the Matlab version of the proposed quadratic programming code BoxCQP.

Listing A1. Matlab implementation.

1 function [x, iter] = boxcqp(G, d, xl, xu)
2 %
3 % Description:
4 % Solves the convex quadratic minimization problem
5 %
6 % min 1/2 x’ G x + x’ d
7 % s.t. xl <= x <= xu
8 %
9 % Input:

10 % G : (nxn) Hessian matrix (positive definite)
11 % d : (nx1) linear term
12 % xl: (nx1) lower bound
13 % xu: (nx1) upper bound
14 %
15 % Output:
16 % x : (nx1) Solution
17 % iter: Number of iterations
18 %
19 n = length(d);
20 i = 1:n;
21 %
22 % Inititalize iteration counter
23 iter = 1;
24 %
25 % Calculate initial point (Newton point)
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26 l(i) = 0;
27 m(i) = 0;
28 l= l’;
29 m = m’;
30 x = -G \ d;
31 %
32 % Check for feasibility of the Newton point
33 if ( isfeas(x, xu , xl)==0)
34 disp(’Newton point solution: ’)
35 disp(x);
36 return;
37 end
38 %
39 % Loop until convergence to KKT point
40 while 1>0,
41 %
42 % 1. Step: Define L, U, S sets
43 Lset = find((x<xl | (x==xl & l>=0)) >0);
44 Uset = find((x>xu | (x==xu & m>=0)) >0);
45 Sset = find (((x>xl & x<xu)|(x==xl & l<0)|(x==xu & m<0) ) >0);
46

47 %
48 % 2. Step: Projections
49 x(Lset) = xl(Lset);
50 m(Lset) = 0;
51

52 x(Uset) = xu(Uset);
53 l(Uset) = 0;
54

55 m(Sset) = 0;
56 l(Sset) = 0;
57

58 %
59 % 3. Step: Form reduced Ax = b!!!
60 if (~ isempty(Sset))
61 b(Sset) = 0;
62 b = b’;
63 if (~ isempty(Lset))
64 b(Sset) = b(Sset) - G(Sset ,Lset)*xl(Lset);
65 end
66 if (~ isempty(Uset))
67 b(Sset) = b(Sset) - G(Sset ,Uset)*xu(Uset);
68 end
69

70 b(Sset) = b(Sset) - d(Sset);
71

72 A = G(Sset , Sset);
73 %
74 % 3.1 Calculate x in S
75 x(Sset) = A\b(Sset);
76 clear(’A’, ’b’);
77

78 end
79 %
80 % 3.2 Calculate lamda in L
81 if (~ isempty(Lset))
82 l(Lset) = G(Lset , i) * x(i) + d(Lset) ;
83 end
84 %
85 % 3.2 Calculate mu in U
86 if (~ isempty(Uset))
87 m(Uset) = -G(Uset , i) * x(i) - d(Uset);
88 end
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89

90 % 4. Step: Check if KKT conditions are satisfied
91 iter = iter + 1;
92 f = quadratic(G, d, proj(x, xu, xl));
93 fprintf(1, ’Iter: %i, F = %f \n’, iter , f);
94 if (isempty(Sset) | (x(Sset)>xl(Sset) & x(Sset)<xu(Sset)))
95 if ((~ isempty(Uset) & m(Uset) >=0 | isempty(Uset)))
96 if ((~ isempty(Lset) & l(Lset) >=0 | isempty(Lset)))
97 disp(’Point reached: ’)
98 return;
99 end

100 end
101 end
102 %
103 % Extra check: Do not iterate more than 20 times
104 % the problem dimension
105 if iter > n*20
106 return;
107 end
108 end
109 end
110

111 %
112 % Check if x is feasible (i.e inside the box defined by xl, xu)
113 function res = isfeas(x, xu , xl)
114 n = length(x);
115 for i=1:n
116 if (x(i)>xu(i) | x(i)<xl(i))
117 res = 1;
118 return;
119 end
120 end
121 res = 0;
122 end
123

124 %
125 % Projects x on the box defined by xl, xu
126 function y = proj(x, xu , xl)
127 n = length(x);
128 y = x;
129 for i=1:n
130 if (x(i) >=xu(i))
131 y(i) = xu(i);
132 elseif (x(i)<=xl(i))
133 y(i) = xl(i);
134 end
135 end
136 end
137

138 function f = quadratic(B, d, x)
139 f = 1/2 * (x’ * B * x) + x’* d;
140 end

We present the Python version of the proposed quadratic programming code BoxCQP.

Listing A2. Python implementation.

1 import numpy as np
2

3 def boxcqp(G, d, xl, xu , max_iter =30, tol=1e-6):
4 """
5 Solves the convex quadratic minimization problem:
6 min 1/2 x^T G x + d^T x
7 subject to xl <= x <= xu
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8

9 :param G: (n, n) Hessian matrix (positive definite)
10 :param d: (n, ) linear term
11 :param xl: (n, ) lower bound
12 :param xu: (n, ) upper bound
13 :param max_iter: Maximum iterations
14 :param tol: Tolerance for convergence
15 :return: x (optimal solution), iter (number of iterations)
16 """
17 n = len(d)
18 x = -np.linalg.solve(G, d) # Newton step
19

20 # Check feasibility
21 if isfeas(x, xl, xu):
22 #print(" Newton point solution :")
23 return x, 1
24

25 iter_count = 1
26 while iter_count < max_iter:
27 # Define L, U, S sets
28 Lset = np.where ((x < xl) | ((x == xl) & (G @ x + d >= 0)))[0]
29 Uset = np.where ((x > xu) | ((x == xu) & (G @ x + d <= 0)))[0]
30 Sset = np.setdiff1d(np.arange(n), np.concatenate ((Lset , Uset)))
31

32 # Projections
33 x[Lset] = xl[Lset]
34 x[Uset] = xu[Uset]
35

36 # Solve for Sset
37 if Sset.size > 0:
38 b = -d[Sset]
39 if Lset.size > 0:
40 b -= G[np.ix_(Sset , Lset)] @ xl[Lset]
41 if Uset.size > 0:
42 b -= G[np.ix_(Sset , Uset)] @ xu[Uset]
43

44 Alocal = G[np.ix_(Sset , Sset)]
45 x[Sset] = np.linalg.solve(Alocal , b)
46

47 # Compute Lagrange multipliers
48 l = np.zeros(n)
49 m = np.zeros(n)
50 if Lset.size > 0:
51 l[Lset] = G[np.ix_(Lset , np.arange(n))] @ x + d[Lset]
52 if Uset.size > 0:
53 m[Uset] = -G[np.ix_(Uset , np.arange(n))] @ x - d[Uset]
54

55 # Check KKT conditions
56 f_val = quadratic(G, d, proj(x, xl , xu))
57 print(f"Iter: {iter_count}, F = {f_val}")
58

59 if (np.all(m[Uset] >= 0) and np.all(l[Lset] >= 0) and
60 np.all(x[Sset] > xl[Sset]) and np.all(x[Sset] < xu[Sset])):
61 #print("Point reached ")
62 return x, iter_count
63

64 iter_count += 1
65

66 return x, iter_count
67

68 def isfeas(x, xl , xu):
69 """ Check if x is within the box constraints."""
70 return np.all(x >= xl) and np.all(x <= xu)
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71

72 def proj(x, xl, xu):
73 """ Projects x onto the box constraints xl <= x <= xu."""
74 return np.clip(x, xl, xu)
75 def quadratic(G, d, x):
76 """ Computes the quadratic objective function value."""
77 return 0.5 * x.T @ G @ x + d.T @ x

Listing A3. Python TrustBox Implementation.

1

2 def isPD(B):
3 """ Returns true when input is positive -definite , via Cholesky """
4 try:
5 _ = scipy.linalg.cholesky(B)
6 return True
7 except scipy.linalg.LinAlgError:
8 return False
9

10 def minimize(f, gradf , hessf , x0 , xl , xu, delta0 =1.0, deltamin =1e-6, gtol=1e
-6, maxiter =100, verbose=False , use_boxcqp=False):

11 """
12 Solve the nonconvex optimization problem
13 min_{x} f(x) subject to xl <= x <= xu
14 using Newton ’s method , made globally convergent with trustregion.
15

16 Simple implementation of trust -region methods , based on Algorithm 4.1
from

17 Nocedal & Wright , Numerical Optimization , 2nd edn (2006)
18

19 :param f: objective function , f : np.ndarray -> float
20 :param gradf: gradient of objective , gradf : np.ndarray -> np.ndarray
21 :param hessf: Hessian of objective , hessf : np.ndarray -> np.ndarray
22 :param x0: starting point of solver , np.ndarray
23 :param xl: lower bounds on x0 , np.ndarray
24 :param xu: upper bounds on x0 , np.ndarray
25 :param delta0: initial trust -region radius , float
26 :param deltamin: final trust -region radius , float
27 :param gtol: terminate when ||gradf(x)|| <= gtol , float
28 :param maxiter: terminate after maxiter iterations
29 :param verbose: whether to print information at each iteration , bool
30 :return: solution x, number of iterations
31 """
32 xk = np.maximum(np.minimum(xu , x0), xl) # current iterate , project x0

into box
33 deltak = delta0
34 if verbose:
35 print("{0:^10}{1:^10}{2:^15}{3:^15}".format("k", "f(xk)", "||gradf(xk

)||", "xk"))
36 np.set_printoptions(precision=4, suppress=False)
37 k = -1
38

39 d = len(xk)
40 B = np.eye(len(xk))
41 nabla = gradf(xk) # initial gradient
42

43 while k < maxiter:
44 k += 1
45 # Evaluate objective
46 fk = f(xk)
47 gk = gradf(xk)
48 Hk = hessf(xk)
49 # With box constraints , we have a new criticality measure
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50 # See Theorem 12.1.6 of Conn , Gould & Toint , Trust -Region Methods
(2000)

51 # Note: if unbounded , this reduces to np.linalg.norm(gk)
52 crit_measure = abs(np.dot(gk, trustregion.solve(gk , None , 1.0, sl=xl

- xk, su=xu - xk)))
53 if verbose:
54 print("{0:^10}{1:^10.4e}{2:^15.4e}{3:^15}".format(k, fk,

crit_measure , str(xk)))
55 # Check termination
56 if crit_measure <= gtol or deltak <= deltamin:
57 break # quit loop
58 # Step calculation
59

60 if use_boxcqp and isPD(Hk):
61 if verbose:
62 print (’isPD’)
63 ss = boxcqp(Hk, gk,
64 np.maximum(xl-xk, -deltak*np.ones(len(xk))),
65 np.minimum(xu-xk, deltak*np.ones(len(xk))))
66 sk = ss[0]
67 else:
68 if verbose:
69 print (’not’)
70 sk = trustregion.solve(gk , Hk , deltak , sl=xl -xk, su=xu-xk)
71

72

73 model_value = fk + np.dot(gk, sk) + 0.5 * np.dot(sk, Hk.dot(sk)) #
mk(sk)

74 rhok = (fk - f(xk + sk)) / (fk - model_value)
75 # Update trust -region radius
76 if rhok < 0.25:
77 deltak = 0.25 * deltak
78 elif rhok > 0.75 and abs(np.linalg.norm(sk) - deltak) < 1e-10:
79 deltak = min(2 * deltak , 1e10)
80 else:
81 deltak = deltak
82 # Update iterate
83 if rhok > 0.01:
84 xk = xk + sk
85 else:
86 xk = xk
87 return xk, k
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