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Abstract
The approximation of solutions to ordinary and partial differential equations is an important task. Complementing the clas-
sical numerical analysis methods of solution, neural forms offer a valuable alternative approach. Neural forms, which are
closed-form expressions involving neural networks, are specifically designed to exactly satisfy prescribed initial or boundary
conditions. Starting from the important class of ordinary differential equations, the present work aims to refine and extend the
methodology of neural forms, paving the way for its application to the highly challenging field of partial differential equations.
First, a formalism is developed for the systematic construction of proper neural forms with parametric condition-matches,
amenable to optimization. Second, a novel technique is described for converting Neumann or Robin conditions into equivalent
parametric Dirichlet conditions. Third, a methodology is introduced for determining an upper bound on the absolute deviation
from the exact solution. The proposed approach was applied on a set of diverse test problems, including first and second order
ordinary differential equations, as well as first order systems. Stiff differential equations have been considered as well. The
obtained solutions were evaluated against known exact solutions, solutions derived by the physics-informed neural networks
method, and solutions obtained via a contemporary finite difference technique. The reported results demonstrate that the
augmented neural forms provide closed-form solutions featuring high-quality interpolation and controllable overall accuracy.
These attributes are essential for expanding the approach to treat challenging partial differential equation problems.

Keywords Ordinary differential equations · Neural networks · Neural forms · Condition matching

1 Introduction

Neural networks have been successfully employed for the
solution of diverse problems in science and engineering.
Their universal approximation capability, when using acti-
vation functions of specific type [1–3], renders them partic-
ularly suitable for modeling tasks. Within this framework,
neural networks have been used to model solutions for ordi-
nary differential equations (ODEs) and partial differential
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equations (PDEs) as well. Although the first relevant neu-
ral methods appeared in the mid-90s [4–9], their application
remained relatively limited for a period of 20 years. This
stagnation can be attributed to several factors, including
the lack of widely accessible specialized software, and the
limited computing power available at the time. The recent
advancements in deep learning, the emergence of sophisti-
cated software platforms (such as TensorFlow, Keras, and
PyTorch) and the advent of high-performance computing
technologies (including GPUs and parallel multicore mul-
tiprocessor clusters) have led to a resurgence of interest in
solving PDEs through neural networks. Today, a number of
alternative techniques based on a plethora of neural network
types have been developed and are currently available [10–
20].

The primary goal of neuralmethods is the construction of a
parametricmodel that can be tuned to produce a solutionwith
a prescribed degree of accuracy. This is carried out by mini-
mizing a properly designed error function (also known as loss
or cost function) within the space of the model parameters. In
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addition, differential equations are accompanied by bound-
ary and/or initial conditions that must be satisfied. From here
on we will use the term conditions to refer either to boundary
or initial conditions, unless otherwise specified. It is impor-
tant to realize that a trial solution which fails to meet the
prescribed conditions cannot be considered as an adequate
approximation to the true solution of the problem under con-
sideration.

A common approach treats the conditions as equality con-
straints when minimizing the error function. In this case,
constrained optimization methods (interior point, active set,
augmented Lagrangian, etc.) [21, 22] that exactly satisfy
the constraints should be used. However, their application
appears to be complicated and time-consuming as well.
Alternatively, equality constraints may be approximately
treated via penalty methods using unconstrained optimiza-
tion. Penalty terms are added to the original error function
in an attempt to inhibit constraint violations. In fact, this is
by far the most commonly followed approach, codenamed
physics-informed neural networks (PINNs) by Raissi et al.
[16], perhaps due to reasons of implementation convenience
and simplicity of interpretation. If the parametric trial solu-
tion is crafted in such a way so as to satisfy exactly the
specified conditions regardless of the parameter values, the
constraints are eliminated, and therefore the error function is
simplified. The trial solution is then cast as a neural form [17],
instead of a single neural network. In the case of differential
equations defined inside rectangular domains, this approach
is preferable because the exact satisfaction of the conditions
allows the method to attain higher accuracy as pointed out
in Müller and Zeinhofer [23]. In contrast, for PDEs within
domains of complex geometry, the design of proper trial solu-
tions that satisfy prescribed conditions is challenging, and
thus the alternative approximate penalty approach has been
frequently preferred.

In cases where the conditions are treated as constraints,
the trial solution typically consists of a single neural net-
work. On the other hand, the constraint elimination approach
requires more elaborate functional constructs. To this end,
neural forms were indirectly introduced in Lagaris et al. [8]
and further developed in Lagari et al. [17]. In both cases,
a rigid polynomial expression was used to account for the
conditions. An alternative neural form type was introduced
in McFall andMahan [10], involving a function representing
the distance of a domain point from the boundary, an idea
that was further extended in Berg and Nyström [14] for the
case of Dirichlet conditions. Further developments on this
subject have recently appeared in [24, 25].

Neural forms that exactly satisfy the ODE conditions are
obviously not unique. Therefore, the question concerning
the existence of a possibly optimal choice naturally arises.
This is one of the issues addressed here by introducing the
augmented neural forms that are presented in the following

paragraphs. The contributions of the present work can be
summarized as follows:

1. Aflexible, parametric neural form replaces the rigid poly-
nomial boundary or initial match used in [8, 17].

2. A technique is introduced for transforming Neumann or
Robin to equivalent parametric Dirichlet conditions.

3. Amethodology is introduced for evaluating the quality of
the approximate solution by determining a reliable upper
bound of its absolute deviation from the exact solution.

The performance of the proposed approach was assessed
on first and second order ODEs, as well as on first order
systems, subject to Dirichlet, Neumann, mixed Dirichlet-
Neumann, Robin, and Cauchy conditions. The obtained
solutions were compared to existing exact solutions, to solu-
tions obtained by the PINNs, and to solutions obtained by
the ode113 numerical solver of Matlab® [26], which
is based on a state-of-the-art variable-step variable-order
Adams-Bashforth-Moulton method. The conducted analy-
sis verified that the proposed augmented neural forms can
provide robust, closed-form solutions with exact satisfaction
of the prescribed conditions, along with excellent general-
ization performance.

The rest of the article is organized as follows: Section 2
briefly reviews neural ODE solvers, and analyzes the neural
forms concept. Section 3 elaborates on the augmented neural
forms framework for first and second order ODEs. Section 4
presents the transformation of Neumann or Robin conditions
to equivalent parametric Dirichlet conditions. Section 5 pro-
vides a comprehensive analysis leading to a reliable upper
bound for the absolute deviation between the approximate
and the exact solution. Section 6 describes in detail the
experimental setup. Section 7 presents the obtained solu-
tions and a comparison thereof, as mentioned above. Finally,
Section 8 provides an overview of the contributions of this
work, along with comments, conclusions, and suggestions
for further research.

2 Neural forms for solving ordinary
differential equations

Consider the general form of a second order ODE:

Lxψ(x) = f (x), x ∈ [a, b], (1)

with boundary conditions (BCs):

Baψ(x)|a = ξa, Bbψ(x)|b = ξb, (2)

or with initial conditions (ICs):

ψ(x)|a = ξ0, ψ ′(x)|a = ξ1, (3)
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where Lx is a second order differential operator, Ba and Bb

are the corresponding boundary condition operators, and ξ ’s
are prescribed constants. An appropriate neural model for a
trial solution �T that approximates the exact solution ψ(x)
can be designed in many ways. The simplest and most com-
mon approach sets the trial solution equal to a neural network
N (x,w) with weights w, i.e.:

ψ(x) ≈ �T (x,w) � N (x,w), (4)

and requires that both the ODE and the accompanying con-
ditions are satisfied. This is accomplished by finding suitable
values for the weights w so that:

∫ b

a
dx [Lx�T (x,w) − f (x)]2 = 0, (5)

subject to either:

Ba�T (x,w)|a = ξa, Bb�T (x,w)|b = ξb, (case with BCs)

(6)

or:

�T (x,w)|a = ξ0, � ′
T (x,w)|a = ξ1. (case with ICs)

(7)

This problem is typically addressed by minimizing the left-
hand side of Eq. (5) under the conditions in Eqs. (6) or (7),
using constrained optimizationmethods. The baseline neural
method [20], also known as PINNs [16], treats the constraints
by adding penalties to the error function, which then assumes
the following form:

E(w) �
∫ b

a
dx [Lx�T (x,w) − f (x)]2 + ζ Pen(w), (8)

where ζ > 0 is a positive penalty-regulating coefficient and:

Pen(w)=
⎧⎨
⎩

[(Ba�T (x, w)|a − ξa)
2 + (Bb�T (x, w)|b − ξb)

2], for BCs,

[(�T (x, w)|a − ξ0)
2 + (� ′

T (x, w)|a − ξ1)
2], for ICs,

(9)

and employs unconstrained optimization.
Alternatively, neural forms cast the trial solution as a sum

of two terms:

ψ(x) ≈ �T (x,w) � A(x) + G(x,w), (10)

where A(x) is a smooth function matching the boundary or
initial conditions, henceforth referred to as a boundary or ini-
tial match, respectively. Moreover, G(x,w) is a parametric

function typically depending on a neural network with null
contribution to the problem’s conditions, i.e.:

∀w, BaG(x,w)|a = 0 and BbG(x,w)|b = 0 for BCs,

or

∀w, G(x,w)|a = 0 and G ′(x,w)|a = 0 for ICs.

Note that, with the above formulation, the trial solution
satisfies the prescribed ODE conditions by construction.

The functions A(x) and G(x,w) are closely related, and
their design is based on a common matching operator. Let
Px be a boundary matching operator defined as:

Pxψ(x) � A(x).

Wecan easily verify that this operator is not unique. In fact,
there is an infinite number of alternative forms. For instance,
for the case of Dirichlet boundary conditions, Px may be
given by a linear relation as follows:

Pxψ(x) � ψ(a)
x − b

a − b
+ ψ(b)

x − a

b − a
, (11)

or as any of the nonlinear alternatives:

Pxψ(x) � ψ(a)

(
x − b

a − b

)n

+ ψ(b)

(
x − a

b − a

)n

, n = 2, 3, . . . (12)

Starting from the identity:

ψ(x) = Pxψ(x) + (1 − Px ) ψ(x),

a plausible trial solution based on a neural network N (x,w)

may be cast as:

�T (x,w) = Pxψ(x) + (1 − Px )N (x,w)

and, hence, the G(x,w) function in Eq. (10) can be con-
structed as:

G(x,w) = (1 − Px ) N (x,w).

Then, an approximate solution of the ODE is obtained by
minimizing the error function:

E(w) �
∫ b

a
dx [Lx�T (x,w) − f (x)]2 , (13)

with respect to the neural network’s weight vector w.
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3 Augmented neural forms for different
types of boundary and initial conditions

As illustrated in Eqs. (11) and (12), the function A(x) is not
unique. Therefore, we can take a further step by representing
it as a parametric function A(x, θ) that satisfies the problem’s
conditions for any value of the parameter vector θ . The error
function of Eq. (13) can then be written as:

E(w, θ) �
∫

dx [Lx�T (x,w, θ) − f (x)]2 , (14)

and minimized with respect to both w and θ , leading to an
optimized choice for the match A(x, θ) and, consequently,
for the trial neural form solution. In the following paragraphs,
we elaborate on this concept for the cases of first order ODEs
and systems, as well as for second order ODEs.

3.1 Augmented neural forms for first order ordinary
differential equations and systems

Let the first order ODE:

Lxψ(x) = f (x), x ∈ [a, b], (15)

with the initial condition ψ(a) = ξa . The functions A(x, θ),
G(x,w, θ), �T (x,w, θ), are then given by:

A(x, θ) = Px (θ)ψ(x) � ψ(a) (F(x, θ) − F(a, θ) + 1) ,

G(x, w, θ) = (1 − Px (θ))N (x, w),

�T (x, w, θ) = A(x, θ) + G(x, w, θ),

where F(x, θ) is a smooth, bounded function for x ∈ [a, b].
Note that F(x, θ) may be a neural network, i.e., F(x, θ) =
N1(x, θ). The associated error function is then given by:

E(w, θ) �
∫

dx [Lx�T (x,w, θ) − f (x)]2 .

Generalizing the concepts above, let a system of first order
ODEs:

L�(x) = f (x),

with �(x), f (x) ∈ R
n , where:

L�(x) � d

dx
�(x) + F(x, �),

and F ∈ R
n . Then, the initial matches are defined as:

Ai (x, θ i ) = Pi (θ i )ψi (x) = ψi (a)
(
Ñi (x, θ i ) − Ñi (a, θ i ) + 1

)
,

i = 1, 2, . . . , n,

and, respectively, we have:

Gi (x, θ i ,wi ) = (1 − Pi (θ i )) Ni (x,wi ),

where Ñi (x, θ i ) denotes the corresponding neural network
for the i-th initial match, and Ni (x,wi ) denotes the network
for the Gi function associated with the i-th trial solution.
Hence:

�
[i]
T (x,w, θ)= Ai (x, θ i )+Gi (x,wi , θ i ), ∀i=1, 2, . . . , n,

are the trial solutions for the above system of simultaneous
equations.

3.2 Augmented neural forms for second order
ordinary differential equations

Second order ODEs may be accompanied by Dirichlet,
Neumann, mixed Dirichlet-Neumann, Robin, or Cauchy
conditions. Each condition type corresponds to a different
boundary matching operator, hence, we examine each case
separately.

3.2.1 Case of Dirichlet conditions

Consider the following ODE:

Lxψ(x) = f (x), x ∈ [a, b], (16)

with Dirichlet boundary conditions:

ψ(a) = ξa, ψ(b) = ξb,

where Lx is a second order differential operator. Also, con-
sider a function Aψ(x) defined for all x ∈ [a, b], satisfying
Aψ(a) = ψ(a) and Aψ(b) = ψ(b). Then, there are diverse
ways to construct Aψ(x). For example, it may be crafted as:

Aψ(x) = ψ(a)

(
x − b

a − b
+ F(x) − F(a)

x − b

a − b
− F(b)

x − a

b − a

)

+ψ(b)

(
x − a

b − a
+ H(x) − H(a)

x − b

a − b
− H(b)

x − a

b − a

)
,(17)

with F(x) and H(x) being smooth, bounded functions in x .
Let us employ the form of Eq. (17) with:

F(x) = N1(x, θ1), H(x) = N2(x, θ2), (18)

where N1(x, θ1) and N2(x, θ2) are neural networks with
weight vectors θ1 and θ2, respectively. Then, the associated
Dirichlet boundary matching operator Px is given as:

Px (θ1, θ2)ψ(x) � ψ(a)
( x − b

a − b
+ N1(x, θ1) − N1(a, θ1)

x − b

a − b
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−N1(b, θ1)
x − a

b − a

)

+ψ(b)
( x − a

b − a
+ N2(x, θ2) − N2(a, θ2)

x − b

a − b

−N2(b, θ2)
x − a

b − a

)
.

Thus, we have:

G(x, θ1, θ2,w) = [1 − Px (θ1, θ2)] N (x,w), (19)

yielding the trial solution:

�T (x, θ1, θ2,w) = Px (θ1, θ2) ψ(x) + G(x, θ1, θ2,w),

(20)

which is a proper neural form for the case of Dirichlet con-
ditions.

3.2.2 Case of mixed Dirichlet-Neumann conditions

Let us now consider the ODE of Eq. (16) with mixed condi-
tions:

ψ(a) = ξa (Dirichlet), ψ ′(b) = ξb (Neumann).

A plausible boundary match is given as:

Px (θ1, θ2)ψ(x) � ψ(a)
[
1 + N1(x, θ1) − N1(a, θ1)

−(x − a)N ′
1(b, θ1)

]

+ψ ′(b)
[
(x − a) + N2(x, θ2)

−N2(a, θ2) − (x − a)N ′
2(b, θ2)

]
.

The function G(x, θ1, θ2,w) and the trial solution�T (x,
θ1, θ2,w) for this case are given as in Eqs. (19) and (20),
respectively.

3.2.3 Case of Neumann conditions

Consider the ODE of Eq. (16) with Neumann conditions:

ψ ′(a) = ξa, ψ ′(b) = ξb.

The boundary matching operator assumes the following
form:

Px (θ1, θ2)ψ(x) � ψ ′(a)�1(x, θ1) + ψ ′(b)�2(x, θ2),

where:

�1(x, θ1) = (x − b)2

2(a − b)
+ N1(x, θ1) − N ′

1(a, θ1)
(x − b)2

2(a − b)

−N ′
1(b, θ1)

(x − a)2

2(b − a)
,

and:

�2(x, θ2) = (x − a)2

2(b − a)
+ N2(x, θ2) − N ′

2(a, θ2)
(x − b)2

2(a − b)

−N ′
2(b, θ2)

(x − a)2

2(b − a)
.

Again, the functions G(x, θ1, θ2,w), �T (x, θ1, θ2,w),
are given by Eqs. (19) and (20), respectively.

3.2.4 Case of Cauchy conditions

Cauchy conditions are initial conditions of the form:

ψ(a) = ξ0, ψ ′(a) = ξ1.

The following initial matching operator is admissible:

Px (θ1, θ2)ψ(x) � ψ(a)
[
1 + N1(x, θ1) − N1(a, θ1)

−(x − a)N ′
1(a, θ1)

]

+ψ ′(a)
[
(x − a) + N2(x, θ2)

−N2(a, θ2) − (x − a)N ′
2(a, θ2)

]
.

Equations (19) and (20) hold in this case too.

3.2.5 Case of Robin conditions

Robin conditions are defined as linear combinations of the
form:

λ ψ(a) + μψ ′(a) = ξa, γ ψ(b) + δ ψ ′(b) = ξb. (21)

The boundary matching operator in this case is defined as:

Px (θ1, θ2)ψ(x) �
[
λ ψ(a) + μψ ′(a)

]
F(x, θ1)

+ [
γ ψ(b) + δ ψ ′(b)

]
H(x, θ2),

where:

F(x, θ1) = N1(x, θ1) + F1(θ1)(2x − a − b) + F2(θ1)(x − a)(x − b),
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with:

F1(θ1) = δ
[
1 − λN1(a, θ1) − μN ′

1(a, θ1)
] − μ

[
γ N1(b, θ1) + δN ′

1(b, θ1)
]

δ [2μ − λ(b − a)] + μ
[
2δ + γ (b − a)

] ,

F2(θ1) = −γ N1(b, θ1) − δN ′
1(b, θ1) − [

2δ + γ (b − a)
]
F1(θ1)

δ(b − a)
,

and:

H(x, θ2) = N2(x, θ2) + H1(θ2)(2x − a − b) + H2(θ2)(x − a)(x − b),

with:

H1(θ2) = δ
[−λN2(a, θ2)−μN ′

2(a, θ2)
]+μ

[
1−γ N2(b, θ2)−δN ′

2(b, θ2)
]

δ [2μ−λ(b − a)]+μ
[
2δ+γ (b−a)

] ,

H2(θ2) = 1 − γ N2(b, θ2) − δN ′
2(b, θ2) − [

2δ + γ (b − a)
]
H1(θ2)

δ(b − a)
,

while Eqs. (19) and (20) provide the trial solution.

4 Reductive transformation of Neumann
conditions to equivalent Dirichlet
boundary conditions

Instead of maintaining different boundary matching oper-
ators for all condition types, neural forms for Dirichlet
conditions of the form ψ(a) = ξa , ψ(b) = ξb, can be solely
considered. In this case, a mixed problem with conditions
ψ ′(a) = ξa and ψ(b) = ξb can be tackled by replacing
ψ(a) with a suitable expression, such that the Dirichlet-type
neural form satisfies the mixed conditions. Let us demon-
strate this idea with a simple example, using the following
non-parametric (rigid) boundary matching operator:

Pxψ(x) = ψ(a)

(
x − b

b − a

)2

+ ψ(b)

(
x − a

b − a

)2

. (22)

The trial solution is given as:

�T (x, θ) = N (x, θ) + [ψ(a) − N (a, θ)]

(
x − b

b − a

)2

+ [ψ(b) − N (b, θ)]

(
x − a

b − a

)2

, (23)

and its first derivative with respect to x is:

� ′
T (x, θ) = N ′(x, θ) + 2 [ψ(a) − N (a, θ)]

x − b

(b − a)2

+2 [ψ(b) − N (b, θ)]
x − a

(b − a)2
.

Demanding that � ′
T (a, θ) = ψ ′(a) and solving for ψ(a)

yields:

ψ(a) = N (a, θ) + b − a

2

[
N ′(a, θ) − ψ ′(a)

]
.

Substituting ψ(a) in Eq. (23) results in the neural form
that satisfies the mixed boundary conditions. We provide the
following result:

ψ(a) = (b − a)
[
ξa − μ N ′(a, θ)

] − 2μ N (a, θ)

(b − a) λ − 2μ
,

ψ(b) = (b − a)
[
ξb − δ N ′(b, θ)

] + 2 γ N (b, θ)

(b − a) γ + 2 δ
.

for the case where the Robin conditions of Eq. (21) are pre-
scribed.

5 Goodness of the approximate solution

Assessing the quality of an approximate solution is of
fundamental importance. Relevant research outcomes have
recently been reported inLiu et al. [27]. In the following para-
graphs, we present a perturbation approach that can yield,
under certain weak assumptions, a reliable upper bound for
the absolute deviation |�T (x) − ψ(x)| of the obtained solu-
tion from the exact one.

More specifically, let:

�T (x) = Px (θ
∗)ψ(x) + (1 − Px (θ

∗)) N (x,w∗),

be the trial solution obtained by an augmented neural form,
where θ∗ andw∗ are the final values of θ andw after training.
The corresponding error is positive and may be written as
E(�T ) = s2, where s is a scalar. We now construct a new
trial solution by adding a perturbation η(x, γ ) to the obtained
trial solution�T (x), where γ is the perturbation’s parameter
vector. In order to preserve the satisfaction of the prescribed
conditions, the perturbation should be of the form:

η(x, γ ) = (1 − Px (θ
∗)) Ns(x, γ ),

with Ns(x, γ ) being a neural network. The perturbed trial
solution, �T (x) + η(x, γ ), produces the error function
E(�T +η) that is minimized with respect to the perturbation
parameters γ , starting from an initial vector γ (0) that satisfies
η

(
x, γ (0)

) = 0. The minimized error value, corresponding
to a final vector γ ∗, is E(�T + η) � δ2 < s2.

Consider a second order ODE of the form ψ ′′(x) −
f (x, ψ,ψ ′) = 0. The perturbed error value is then given
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as:

E(�T + η) =
∫ [

� ′′
T (x) + η′′(x, γ ) − f (x, �T

+η,� ′
T + η′)

]2
dx . (24)

Assuming that η(x, γ ) is a small perturbation, we may
consider the first order approximation:

f (x, �T +η,� ′
T +η′) ≈ f (x, �T , � ′

T )+η
∂ f

∂�T
+η′ ∂ f

∂� ′
T

.

(25)

Substituting in Eq. (24), we derive that:

δ2 = s2 + 2
∫

(� ′′
T − f )

(
η′′ − η

∂ f

∂�T
− η′ ∂ f

∂� ′
T

)
dx .

(26)

If there exists an ηex such that E(�T + ηex ) = 0, then:

s2 + 2
∫

(� ′′
T − f )

[
η′′
ex − ηex

∂ f

∂�T
− η′

ex
∂ f

∂� ′
T

]
dx = 0.

(27)

Combining Eqs. (26) and (27) yields:

|ηex (x)| = |η(x, γ ∗)|
1 − δ2

s2

, (28)

which provides a reliable estimate for an upper bound of
the deviation |�T (x) − ψ(x)| as long as the assumed linear
approximation in Eq. (25) is valid. In turn, this implies that
η(x, γ ) must be a small perturbative correction.

6 Experimental setting

The following section provides a comprehensive presen-
tation of the experimental assessment procedure of the
proposed augmented neural forms. More specifically, it
includes detailed information on the selected test problems,
dataset generation schemes, neural architecture, and perfor-
mance measures.

6.1 Test problems

The test problems included a number of first order and second
orderODEs, aswell as first orderODEsystems, accompanied
by boundary and initial conditions of various types that are
frequently encountered in real world problems.

1. Test Problem 1 (first order ODE)
This is a stiff ODE [28] defined as:

ψ ′(x) = − 50 (ψ(x) − cos(x)) , x ∈ [0, 1.5],
ψ(0) = 0.15,

with exact solution:

ψ(x) =
(
0.15 − 2500

2501

)
exp(−50 x) + 50

2501
sin(x)

+2500

2501
cos(x).

2. Test Problem 2 (second order nonlinear ODE)
This problem is defined as:

ψ ′′(x) − ψ(x) ψ ′(x) − ψ3(x) = 0, x ∈ [0, 9.5],

with exact solution:

ψ(x) = (10 − x)−1.

In our experiments, it has been considered as a bound-
ary value problem with Dirichlet, Neumann, mixed, and
Robin conditions, and also as an initial value problem
with Cauchy conditions.

3. Test Problem 3 (second order ODE)
This is Bessel’s equation subject to Cauchy initial condi-
tions:

x2 ψ ′′(x)+ x ψ ′(x)+ (x2 − ν2) ψ(x) = 0, x ∈ [0, 10],
(29)

ψ(0) = 1, ψ ′(0) = 0,

The exact solution isBessel’s function of first kind, Jν(x),
which is non-singular at the origin. Here, the case ν = 0
was considered.

4. Test Problem 4 (first order system)
This is a nonlinear system of two equations defined
as Lagaris et al. [8]:

ψ ′
1(x)= cos(x)+ψ2

1 (x)+ψ2(x)−
[
1 + x2 + sin2(x)

]
,

ψ ′
2(x)=2x−

(
1+x2

)
sin(x)+ψ1(x)ψ2(x), x ∈ [0,3],

ψ1(0) = 0, ψ2(0) = 1, (30)

with exact solution:

ψ1(x) = sin(x), ψ2(x) = 1 + x2.
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The trial solution is adapted for the fist order system as:

�T1 (x,w1, θ1) = N1(x,w1) +
[
1 + Ñ1(x, θ1) − Ñ1(0, θ1)

]

[ψ1(0) − N1(0,w1)] ,

�T2 (x,w2, θ2) = N2(x,w2) +
[
1 + Ñ2(x, θ2) − Ñ2(0, θ2)

]

[ψ2(0) − N2(0,w2)] ,

where N1, Ñ1, and N2, Ñ2, are the neural networks
involved in the trial solutions �T1 and �T2 , respectively.

5. Test Problem 5 (first order system)
This is a stiff system defined as Hairer and Wanner [28]:

ψ ′
1(x) = − 10ψ1(x) + 6ψ2(x),

ψ ′
2(x) = 13.5ψ1(x) − 10ψ2(x),

x ∈ [0, 5], (31)

ψ1(0) = 4

3
exp(1.0), ψ2(0) = 0,

with exact solution:

ψ1(x) = 2

3
exp(1.0) (exp(−x) + exp(−19x)) ,

ψ2(x) = exp(1.0) (exp(−x) − exp(−19x)) .

6. Test Problem 6 (reduction of second order ODE to first
order system)
This is a nonlinear system derived by reducing the second
order ODE of Test Problem 2 as follows:

ψ ′
1(x) = ψ2(x),

ψ ′
2(x) = ψ1(x) ψ2(x) + ψ3

1 (x),
x ∈ [0, 9.5], (32)

This problem was considered under various types of
boundary conditions, namelyDirichlet, Neumann,mixed
Dirichlet-Neumann, as well as with Cauchy initial con-
ditions.

The exact solutions for all test problems are depicted in
Fig. 1.

6.2 Dataset generation

For each test problem, two sets of data points were generated,
namely a training dataset of size Mtr that was used to train
the neural forms, and a test dataset of size Mts that was used
to assess the generalization quality. For the training dataset
generation, two grid types were considered with data points
xi ∈ [a, b]:

(1) Equidistant points:

xi = a + (i − 1)
b − a

Mtr − 1
, i = 1, 2, . . . , Mtr.

(2) Chebyshev points:

xi = a + b

2
+b − a

2
cos

(
(2 i−1) π

2Mtr

)
, i=1, 2, . . . , Mtr .

The twogrid types offer different point distributions inside
the interval of interest. Chebyshev grids get denser towards
the end points and are known to suppress the Runge phe-
nomenon.Gauss-Legendre gridswere tested aswell, offering
almost identical results to those of the Chebyshev grid.
Hence, they were omitted from our study.

The size of the training set is always problem depen-
dent and, thus, regularly determined through preliminary
trial-and-error experimentation. As expected, more complex
problems require higher number of training points. Table 1
reports the corresponding numbers in our experiments. For
each test problem, three levels (low, medium, and high) were
considered for Mtr . On the other hand, the test set consisted
of Mts = 1000 equidistant points in all cases.

6.3 Neural network architecture

In all test problems, a feedforward neural network with one
hidden layer and sigmoid nodes was employed. Such a net-
work admits a scalar x ∈ R as input, and produces a scalar
output as follows:

N (x, θ) =
K∑
i=1

ai σ(wi x + bi ), (33)

where K is the number of neurons, σ(z) = [1+ exp(−z)]−1

is the sigmoid activation function, and θ is the network’s
parameter vector of size |θ |. For a network of K neurons, we
have |θ | = 3K parameters:

θ =
(
a1, w1, b1︸ ︷︷ ︸
neuron 1

, a2, w2, b2︸ ︷︷ ︸
neuron 2

, . . . , aK , wK , bK︸ ︷︷ ︸
neuron K

)

Our implementation was coded in the Fortran pro-
gramming language, while the training was performed by
the Merlin optimization platform [29, 30], which offers
a variety of robust and efficient minimization routines.
The minimization algorithms that were used in our exper-
iments were (i) a pattern search method based on alternating
variables, (ii) the irregular simplex method of Nelder and
Mead [31], (iii) Powell’s version of BFGS (TOLMIN) [32]
with Goldfarb-Idnani factors and weak Wolfe conditions for
the line search, and (iv) a trust-region version of BFGS based
on Powell’s dogleg technique [33]. All experiments were
performed on the PRECIOUS high performance computing
infrastructure [34], which consists of 12 computing nodes,
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Fig. 1 Plots of the exact solutions for all test problems

each ofwhich utilizes two Intel(R)Xeon(R)Gold 5220Rpro-
cessors with 48 computing cores. The number of neural form
parameters used in our experiments are reported in Table 1.

6.4 Quality criteria for approximate solutions

An ideal criterion for the quality of an approximate solution
is its difference from the exact solution. Given that, in pre-
viously unmet problems, the exact solution is not available,
an alternative quality criterion can be the size of the ODE
residuals. However, this measure may not exhibit the same
behavior as the solutions’ difference. In our experiments, all
the selected test problems had known exact solutions, hence
allowing accurate comparisons and evaluation of our approx-
imate solutions.

Table 1 Number of training points (Mtr ), test points (Mts ), and neural
form parameters (|θ |) per test problem
Problem low medium high (Mts ) low medium high

1 40 80 160 1000 36 72 144

2 90 180 270 1000 90 180 270

3 90 180 270 1000 90 180 270

4 70 130 250 1000 60 120 240

5 70 130 250 1000 60 120 240

6 180 270 360 1000 180 270 360

Let M denote the number of data points over which the
performance is evaluated (i.e., M = Mtr for training, and
M = Mts for testing), ψ(xi ) be the exact solution at xi ,
and �T (xi , θ) be the trial solution at xi , where θ refers col-
lectively to the neural form parameters. Then, the employed
performance measures were as follows:

(1) Measures based on the residuals

MSE = 1

M

M∑
i=1

[Lx�T (xi , θ) − f (xi )]
2 (Mean squared error)

(34)

MXE = max
i

{
[Lx�T (xi , θ) − f (xi )]

2} (Maximum squared error)

(35)

(2) Measures based on estimated deviation

MSED = 1

M

M∑
i=1

[ηex (xi )]
2 (Mean squared estimated deviation)

(36)

MXED = max
i

{
[ηex (xi )]

2
}

(Maximum squared estimated deviation)

(37)

(3) Measures based on exact deviation

MSD = 1

M

M∑
i=1

[�T (xi , θ) − ψ(xi )]
2 (Mean squared deviation)

(38)

MXD = max
i

{
[�T (xi , θ) − ψ(xi )]

2
}

(Maximum squared deviation)

(39)
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Note that measures based on ODE residuals indicate pre-
cision over the ODE’s satisfaction, while measures based on
the estimated and exact deviation indicate the distance from
the exact solution ψ(x).

7 Experimental results

Our experimental setting was designed to assess the perfor-
mance of the proposed methodology across a diverse range
of problems and computational scenarios that are commonly
encountered in practice. More specifically, both equidistant
grids and Chebyshev grids were used to generate training
points. Three levels (low, medium, and high) were consid-
ered for the grid-point density as well as for the network
size (total number of parameters) as reported in Table 1. In
order to prevent overtraining and its subsequent degradation
in generalization quality, scenarios where the number of net-
work parameters exceeded the number of grid points were
excluded. Thus, a total number of 12 distinct scenarios were
ultimately considered.

For each training scenario and test problem, 100 indepen-
dent experiments were conducted and the obtained solutions
were assessed according to the quality measures presented
in Section 6.4. A computational budget of 220000 function
evaluations proved to be sufficient for training in all test prob-
lems. Note that Test Problem 2 was solved also using the
reductive transformation of Section 4, without any signif-
icant difference. The results of the proposed neural forms
were compared with those of the following methods:

1. The PINNs method where the trial solution is a stan-
dalone neural network and penalty terms are added to
the error function, in order to account for the prescribed
conditions according to Eqs. (8) and (9) with ζ = 1.

2. The ode113 numerical solver of Matlab® [26],
which is a variable-step variable-order Adams-Bashforth-
Moulton PECE solver of orders 1 to 13. In this case,
the boundary value problems were handled via shooting,
while the performance over the test datasets was com-
puted using spline interpolation.

Due to the large volume of results, Tables 2 and 3 present
a condensed selection that includes the mean and maxi-
mum squared deviations from the exact solutions for the best
neural form architecture, the ode113 solver, and the top-
performing PINN. The detailed results for each individual
test problem are reported in the Supplementary material of
the present article (see Sections 1 and 2 of the Supplementary
material file).

The reported results clearly demonstrate that the proposed
augmented neural forms offered high-quality solutions for
all test problems. As expected, the ode113 solver achieved

superior precision at the points of its adaptive grid. The
grids used by ode113 are different from the training grids
of the neural forms. Also, the testing grid, which is quite
denser, contains points that are not contained in the train-
ing grids. Obtaining the solution at the testing grid points
for the ode113 case requires the use of an interpolation
scheme. While, for the neural forms one has only to evaluate
the obtained closed-form solution at these points.

For the ode113 case, we considered three alternative
interpolation schemes, namely cubic, quintic and septic
splines, which use polynomials of 3-rd, 5-th, and 7-th degree,
respectively. In our experiments the cubic and septic schemes
yielded inferior approximation compared to neural forms,
while the quintic yielded marginally superior results as can
be verified by inspecting Tables 2 and 3. However, it should
be underlined that one does not a priori know which inter-
polation scheme would be optimal on a given problem. On
the other hand, neural forms offer a reliable choice without
uncertainty, as they are interpolants themselves and hence
they can be differentiated, integrated, or otherwise processed
in a straightforward manner. This is an important feature that
all traditional numerical solvers lack.

A comparison of the augmented neural forms against
PINNs does not yield a conclusive indication of superi-
ority for either, as can be readily deduced by inspecting
Tables 2 and 3. More specifically, the reported MSD values
over the test data suggest that each method achieves bet-
ter performance for approximately half of the test problems.
Further evidence is reported in Table 4, which reports the
basic descriptive statistics, namely the minimum, maximum,
mean, median, and standard deviation of the MSD values
over 100 independent experiments for each test problem, for
both the neural forms and the PINNs method. The last col-
umn reports p-values ofWilcoxon rank-sum tests performed
between the MSD samples of the compared approaches for
each test problem. The small p-values obtained in all but
one case indicate statistically significant differences between
the compared methods for significance levels 0.05 and 0.01.
This suggests that, although a dominantmethodmay exist for
each distinct test problem, the count over all test problems is
almost equally distributed between the two methods.

Further expanding our analysis, we conducted paired
(signed-rank) Wilcoxon tests for each one of reported MSD
descriptive statistics in Table 4.More specifically, eachMSD
column of Table 4 provides the paired samples of the two
neural methods regarding the corresponding statistic. For
example, the “min” column offers a sample of 15 values
for the neural form, and 15 paired values for the PINN.
For these samples, the basic statistical measures were cal-
culated and they are reported in Table 5. For example, the
maximum among the minimumMSD values achieved by the
neural form for all test problems was 0.25e-18, while for
the basic neural method it was 0.60e-08. The corresponding
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Table 2 Mean (MSD) and maximum (MXD) squared deviation for
the best neural form (NF), the best ode113 results, and the best
physics-informed neural network (PINN) for Test Problems 1-4. The

corresponding grid type, number of neural form parameters |θ |, and
number of training points Mtr are also reported

Training dataset Test dataset
Problem Conditions Method |θ | Mtr Sd Grid MSD MXD MSD MXD

1 D NF 144 160 Ch 0.22e-17 0.36e-16 0.25e-18 0.36e-16

ode113 300 3 Ad 0.58e-28 0.18e-26 0.12e-16 0.76e-14

5 0.12e-23 0.99e-21

7 0.15e-13 0.15e-10

PINN 36 80 Ch 0.16e-17 0.35e-16 0.25e-18 0.36e-16

2 D-D NF 90 270 Ch 0.83e-23 0.98e-22 0.12e-22 0.98e-22

PINN 90 180 Ch 0.90e-23 0.68e-22 0.13e-22 0.69e-22

D-N NF 90 90 Ch 0.17e-21 0.14e-20 0.24e-21 0.14e-20

PINN 90 180 Ch 0.37e-22 0.33e-21 0.49e-22 0.33e-21

N-N NF 90 270 Ch 0.61e-23 0.25e-22 0.65e-23 0.26e-22

PINN 180 180 Ch 0.19e-22 0.15e-21 0.27e-22 0.15e-21

C NF 90 180 Ch 0.43e-22 0.58e-21 0.13e-22 0.58e-21

PINN 90 270 Ch 0.75e-20 0.10e-18 0.19e-20 0.10e-18

R NF 180 270 Ch 0.40e-23 0.37-22 0.59e-23 0.37e-22

PINN 180 270 Ch 0.20e-22 0.17e-21 0.29e-22 0.17e-21

3 C NF 180 180 Eq 0.45e-18 0.21e-17 0.45e-18 0.21e-17

ode113 215 3 Ad 0.31e-29 0.28e-28 0.14e-15 0.18e-14

5 0.12e-16 0.73e-14

7 0.70e+18 0.33e+21

PINN 180 270 Eq 0.38e-18 0.18e-17 0.38e-18 0.18e-17

4 D NF 240 250 Ch ψ1 0.15e-18 0.12e-17 0.61e-19 0.12e-17

ψ2 0.12e-17 0.95e-17 0.43e-18 0.95e-17

ode113 109 3 Ad ψ1 0.20e-24 0.51e-23 0.56e-16 0.27e-15

ψ2 0.14e-23 0.41e-22 0.19e-23 0.41e-22

5 ψ1 0.91e-24 0.63e-22

ψ2 0.20e-23 0.75e-22

7 ψ1 0.10e-08 0.54e-06

ψ2 0.80e-06 0.42e-03

PINN 240 250 Ch ψ1 0.91e-07 0.69e-06 0.36e-07 0.70e-06

ψ2 0.68e-06 0.57e-05 0.26e-06 0.57e-05

Abbreviations: D=Dirichlet, N=Neumann, D-N=Mixed Dirichlet-Neumann, R=Robin
C=Cauchy, Ch=Chebyshev, Eq=Equidistant, Ad=Adaptive, Sd=Splines polynomial degree

paired samples of the two neural methods for each statistic
were compared using theWilcoxon paired (signed-rank) test,
and the obtained p-values are reported in the last column of
Table 5. For example, consider the paired samples of themin-
imumMSD, where each pair consists of the minimumMSD
obtained from neural forms and the corresponding minimum
MSD of the PINN. Since the calculated p-value is 0.96e-1,
there is no statistically significant difference in significance
level 0.05 or 0.01 between the two methods.

The p-values reported in Table 5 for all metrics suggest
the lack of significant differences. Therefore, although it

appears that for each specific problem it is highly proba-
ble to have a winner method, there is no statistically verified
dominance of one method over the other across all the test
problems. Thus, the proposed neural forms provide solu-
tions of comparable quality to the PINNs method, while also
maintaining the critical advantage of exact matching the ini-
tial/boundary conditions, not only approximately as PINNs.
Note that Chebyshev training grids were shown to success-
fully treat the Runge phenomenon in many cases, thereby
enhancing the performance of neural forms with respect to
the solution deviation metrics.
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Table 3 Mean (MSD) and maximum (MXD) squared deviation for
the best neural form (NF), the best ode113 results, and the best
physics-informed neural network (PINN) for Test Problems 5 and 6.

The corresponding grid type, number of neural form parameters |θ |,
and number of training points Mtr are also reported

Training dataset Test dataset
Problem Conditions Method |θ | Mtr Sd Grid MSD MXD MSD MXD

5 D NF 240 250 Ch ψ1 0.30e-21 0.17e-20 0.42e-21 0.17e-20

ψ2 0.29e-21 0.18e-20 0.36e-21 0.18e-20

ode113 321 3 Ad ψ1 0.52e-29 0.86e-28 0.97e-17 0.14e-14

ψ2 0.16e-28 0.31e-27 0.22e-16 0.31e-14

5 ψ1 0.72e-24 0.37e-21

ψ2 0.16e-23 0.84e-21

7 ψ1 0.75e-09 0.59e-06

ψ2 0.16e-11 0.13e-08

PINN 240 250 Ch ψ1 0.13e-21 0.95e-21 0.17e-21 0.95e-21

ψ2 0.48e-21 0.30e-20 0.67e-21 0.30e-20

6 D-D NF 270 360 Ch 0.20e-22 0.10e-21 0.27e-22 0.10e-21

ode113 203 3 Ad 0.13e-26 0.56e-26 0.11e-16 0.34e-14

5 0.63e-22 0.52e-19

7 0.35e-16 0.27e-13

PINN 180 180 Ch 0.30e-22 0.21e-21 0.41e-22 0.21e-21

D-N NF 360 360 Ch 0.13e-20 0.95e-20 0.18e-20 0.96e-20

ode113 203 3 Ad 0.11e-26 0.46e-26 0.11e-16 0.34e-14

5 0.63e-22 0.52e-19

7 0.35e-16 0.26e-13

Neural network 360 360 Ch 0.20e-21 0.13e-20 0.29e-21 0.13e-20

N-N NF 360 360 Ch 0.63e-23 0.56e-22 0.82e-23 0.57e-22

ode113 203 3 Ad 0.42e-27 0.14e-26 0.11e-16 0.34e-14

5 0.63e-22 0.52e-19

7 0.52e-16 0.40e-13

PINN 270 270 Ch 0.13e-21 0.94e-21 0.17e-21 0.94e-21

C NF 270 360 Ch 0.24e-19 0.34e-18 0.62e-20 0.34e-18

ode113 203 3 Ad 0.27e-24 0.42e-23 0.11e-16 0.34e-14

5 0.64e-22 0.53e-19

7 0.41e-16 0.31e-13

PINN 360 360 Ch 0.72e-19 0.99e-18 0.18e-19 0.99e-18

Abbreviations: D=Dirichlet, N=Neumann, D-N=Mixed Dirichlet-Neumann, R=Robin
C=Cauchy, Ch=Chebyshev, Eq=Equidistant, Ad=Adaptive, Sd=Splines polynomial degree

Finally, it is worth noting that widely used solvers such
as the stochastic gradient descent, Adam [35], and varia-
tions [36], which have recently gained increasing popularity
for neural network training in big data applications, may not
achieve good performance. This can be verified in Section 3
(see Table 27) of the Supplementary material of the present
article, which reports the mean andmaximum squared devia-
tion from the exact solutions for the best neural form trained
using Merlin as described in Section 6.3, and the same
neural form trainedwithAdam.Comparing the reporteddevi-
ations, it becomes evident that for all test problems Adam

either converged to solutions of remarkably lower quality or
completely failed to obtain a valid solution.

7.1 Deviation bounding

To demonstrate the proposed deviation bounding technique
presented in Section 5, we applied it on Test Problems 1
and 2 for various condition types. Table 6 reports the obtained
deviation statistics. In Test Problem 1, the neural form had
36 network parameters, augmented by 18 additional param-
eters for η(x, γ ), while the training dataset consisted of 80
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Table 4 Descriptive statistics of the mean squared deviations over the
test datasets for the best neural form (NF) and the best PINN over 100
experiments per test problem and condition type. The corresponding

grid type, number of neural form parameters |θ |, and number of training
points Mtr are also reported. The provided p-values refer to Wilcoxon
rank-sum tests between the two approaches

Test Condition Training Parameters Mean Squared Deviation (MSD) Wilcoxon
Problem Type Method |θ | Mtr Grid min max mean median std p-value

1 D NF 144 160 Ch 0.25e-18 0.30e-15 0.53e-17 0.49e-18 0.31e-16 0.30e-05

PINN 36 80 Ch 0.25e-18 0.38e-10 0.47e-12 0.23e-17 0.39e-11

2 D-D NF 90 270 Ch 0.12e-22 0.30e-13 0.46e-15 0.13e-17 0.31e-14 0.23e-05

PINN 90 180 Ch 0.13e-22 0.12e-15 0.37e-17 0.38e-19 0.16e-16

D-N NF 90 90 Ch 0.24e-21 0.16e-11 0.28e-13 0.18e-17 0.17e-12 0.19e-13

PINN 90 180 Ch 0.49e-22 0.37e-16 0.10e-17 0.60e-19 0.50e-17

N-N NF 90 270 Ch 0.65e-23 0.10e-11 0.18e-13 0.45e-19 0.13e-12 0.20e-03

PINN 180 180 Ch 0.27e-22 0.72e-17 0.16e-18 0.10e-19 0.75e-18

C NF 90 180 Ch 0.13e-22 0.70e-09 0.79e-11 0.58e-16 0.70e-10 0.76e-09

PINN 90 270 Ch 0.29e-22 0.22e-12 0.46e-14 0.12e-17 0.30e-13

R NF 180 270 Ch 0.45e-23 0.41e-19 0.13e-20 0.24e-21 0.47e-20 0.31e-17

PINN 180 270 Ch 0.29e-22 0.53e-17 0.11e-18 0.28e-20 0.70e-18

3 C NF 180 180 Eq 0.21e-19 0.17e-06 0.45e-08 0.28e-15 0.24e-07 0.12e-09

PINN 180 270 Eq 0.24e-19 0.24e-09 0.27e-11 0.19e-16 0.24e-10

4 D NF 240 250 Ch ψ1 0.16e-20 0.30e-13 0.65e-14 0.69e-17 0.40e-13 0.25e-33

PINN 240 250 Ch ψ1 0.85e-09 0.34e-06 0.86e-07 0.64e-07 0.68e-07

NF 240 250 Ch ψ2 0.11e-19 0.21e-11 0.46e-13 0.48e-16 0.28e-12 0.25e-33

PINN 240 250 Ch ψ2 0.60e-08 0.24e-05 0.60e-06 0.45e-06 0.47e-06

5 D NF 240 250 Ch ψ1 0.42e-21 0.39e-17 0.13e-18 0.13e-19 0.46e-18 0.39e-12

PINN 240 250 Ch ψ1 0.17e-21 0.26e-17 0.58e-19 0.19e-20 0.35e-18

NF 240 250 Ch ψ2 0.36e-21 0.57e-17 0.24e-19 0.28e-19 0.76e-18 0.91e-15

PINN 240 250 Ch ψ2 0.67e-21 0.29e-12 0.19e-14 0.24e-20 0.29e-13

6 D-D NF 270 360 Ch 0.27e-22 0.19e-13 0.31e-15 0.38e-19 0.21e-14 0.34e+00

PINN 180 180 Ch 0.41e-22 0.27e-05 0.27e-07 0.25e-19 0.27e-06

D-N NF 360 360 Ch 0.18e-20 0.34e-15 0.71e-17 0.66e-18 0.35e-16 0.44e-23

PINN 360 360 Ch 0.21e-21 0.62e-17 0.13e-18 0.67e-20 0.74e-18

N-N NF 360 360 Ch 0.82e-23 0.58e-06 0.58e-08 0.16e-18 0.58e-07 0.92e-04

PINN 270 270 Ch 0.17e-21 0.73e-17 0.23e-18 0.31e-19 0.93e-18

C NF 270 360 Ch 0.62e-20 0.88e-10 0.21e-11 0.34e-14 0.11e-10 0.26e-25

PINN 360 360 Ch 0.71e-20 0.95e-16 0.64e-17 0.14e-17 0.14e-16

Abbreviations: D=Dirichlet, N=Neumann, D-N=Mixed Dirichlet-Neumann, R=Robin, C=Cauchy, Ch=Chebyshev, Eq=Equidistant

equidistant points in [0, 1.5]. In Test Problem 2, the neu-
ral form had 180 network parameters, augmented by 60
additional parameters for η(x, γ ), while the training dataset
consisted of 270 equidistant points in [0, 9.5]. In both cases,
the reported deviation metrics were calculated over 1000
equidistant points taken in [0, 1.5] for Test Problem 1, and in
[0, 9.5] for Test Problem 2. For the latter case, Fig. 2 illus-
trates the absolute deviation and the corresponding estimated
upper bound across the ODE’s domain.

In terms of CPU time, both the augmented neural forms
and thePINNsmethodweredemanding.However, thePINNs
method required slightly more processing time due to the
extra effort needed for adjusting the penalty coefficient. The
ode113 solver proved to be more efficient, as expected for
methods based on finite differences. However, since finite
difference methods do not scale well with increasing dimen-
sions, augmented neural forms offer promising alternatives
for solving PDEs.
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Table 5 Statistical measures
calculated over the MSD
columns of Table 4 for neural
forms (NF) and PINNs. The
reported p-values refer to
Wilcoxon paired (signed-rank)
tests for the two approaches

MSD metric Method min max mean median std p-value

Min NF 0.45e-23 0.25e-18 0.20e-19 0.36e-21 0.62e-19 0.96e-01

PINN 0.13e-22 0.60e-08 0.46e-09 0.17e-21 0.15e-08

Max NF 0.39e-17 0.58e-06 0.50e-07 0.10e-11 0.15e-06 0.68e+00

PINN 0.26e-17 0.27e-05 0.36e-06 0.12e-15 0.86e-06

Mean NF 0.13e-21 0.58e-08 0.69e-09 0.65e-14 0.18e-08 0.89e+00

PINN 0.58e-19 0.46e-06 0.38e-07 0.64e-17 0.11e-06

Median NF 0.24-21 0.34e-14 0.25e-15 0.66e-18 0.84e-15 0.28e+00

PINN 0.19e-20 0.45e-06 0.34e-07 0.38e-19 0.11e-06

St.D. NF 0.47e-20 0.58e-07 0.55e-08 0.40e-13 0.15e-07 0.89e+00

PINN 0.35e-18 0.47e-06 0.54e-07 0.16e-16 0.13e-06

8 Conclusions

Augmented neural forms offer a reliable approach for solv-
ing ODEs under a variety of boundary and initial conditions.
The present work contributes to the existing literature by
introducing a systematic procedure for designing appropri-
ate trial solutions with neural forms that exactly satisfy the
prescribed problem conditions. Furthermore, a novel tech-
nique is presented to transform a problem with Neumann or
Robin boundary conditions into one with parametric Dirich-
let conditions. This transformation provides an alternative
methodology for formulating proper trial solutions using
neural forms. Moreover, an upper bound for the absolute
deviation of the obtained solution from the exact one was
introduced, providing a new evaluation metric for the quality
of approximation. For initial value problems, higher accu-
racy may be achieved by employing domain decomposition
techniques.

The proposed augmented neural forms were evaluated on
test problems consisting of first and second order ODEs,
as well as first order ODE systems, under a variety of
boundary and initial conditions. The obtained solutions
were compared to the exact ones, as well as to solutions
obtained by PINNs, and to solutions provided by state-of-
the-art numerical solvers such as ode113 of Matlab®.

The comparison clearly demonstrated that the augmented
neural forms can provide accurate solutions with superior
generalization performance. Taking also into consideration
the provided closed form solutions and the exact satisfac-
tion of the boundary/initial conditions, we can infer that the
proposed augmented neural forms constitute a robust and
reliable alternative for solving ODE’s, while also laying the
ground for the treatment of PDEs.

Moreover, our analysis indicates that careful selection of
the trainingoptimizermayoffer significant advantages.Com-
monly utilized methods crafted for big data applications,
such as stochastic gradient descent, Adam, and variants, may
not perform well. Instead, pattern search and quasi-Newton
methodswere found to be very effective. In addition, we have
noticed that Chebyshev grids performed better than equidis-
tant grids for the majority of the considered test problems.
This advantage stems from their capability to mitigate the
Runge phenomenon which is related to overtraining of the
neural networks.

Overall, the proposed approach is easy to implement
and offers a differentiable closed-form solution that can
be directly employed in subsequent calculations. Deep or
shallow neural networks with any activation function meet-
ing the universal approximation requirements may be used.
The proposed ideas have the potential to provide a solid

Table 6 Mean (MSD) and
maximum (MXD) squared
deviation from the exact
solution, as well as mean
(MSED) and maximum
(MXED) estimated deviation for
Test Problems 1 and 2 with
diverse condition types

Deviation metrics
Test Problem Condition type MSD MXD MSED MXED

1 Dirichlet 0.19e-16 0.30e-16 0.34e-13 0.63e-13

2 Dirichlet 0.11e-20 0.24e-19 0.62e-15 0.26e-14

Dirichlet-Neumann 0.68e-20 0.29e-18 0.20e-14 0.36e-14

Neumann 0.86e-19 0.36e-17 0.14e-11 0.81e-11

Cauchy 0.32e-19 0.18e-17 0.16e-16 0.43e-16

Robin 0.55e-23 0.28e-22 0.49e-18 0.15e-17

123



Machine Learning for Computational Science and Engineering              (2025) 1:6 Page 15 of 16     6 

Fig. 2 Absolute deviation |�T (x) − ψ(x)| (solid line), and the esti-
mated absolute upper bound |ηex (x)| (dashed line) for Test Problem 2
with Dirichlet conditions

foundation for future initiatives. It might be of interest to
consider the recently introduced functionally weighted neu-
ral network [13, 18], which is a special type of feedforward
neural network with remarkable extrapolation capabilities.
Furthermore, the proposed ideas could be extended in a
straightforwardmanner to treat PDEs in rectangular domains.
The challenging problem of PDEs defined inside non-
rectangular domains certainly merits attention and requires
further investigation.
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