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Abstract 
A new quasi-Newton scheme for updating a low rank positive semi-definite 

Hessian approximation is described, primarily for use in sequential quadratic pro- 
gramming methods for nonlinear programming. Where possible the symmetric 
rank one update formula is used, but when this is not possible a new rank two 
update is used, which is not in the Broyden family, although invariance under 
linear transformations of the variables is preserved. The representation provides 
a limited memory capability, and there is an ordering scheme which enables 'old' 
information to be deleted when the memory is full. Hereditary and conjugacy 
properties are preserved to the maximum extent when minimizing a quadratic 
function subject to linear constraints. Practical experience is described on small 
(and some larger) CUTE test problems, and is reasonably encouraging, although 
there is some evidence of slow convergence on large problems with large null 
spaces. 

keywords: nonlinear programming, filter, SQP, quasi-Newton, symmetric rank 
one, limited memory. 

1. Introduction 
This work arises as part of a project to provide effective codes for finding 

a local solution x* of a nonlinear programming (NLP) problem, which for 
convenience we express in the form 

minimize f (x) 
xERn 

subject to c,(x) 2 0 i = 1, 2 , .  . , , m, 

although in practice a more detailed formulation would be appropriate, admit- 
ting also equations, linear constraints and simple bounds. In particular we aim 
to develop a new trust-region filter SQP (sequential quadratic programming) 
code which only uses first derivatives of the problem functions f (x) and ci(x). 
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Filter methods for NLP were first introduced by Fletcher and Leyffer [6], and 
a production code f i l t e r S Q P  has been shown to be reliable and reasonably 
efficient. This code requires second derivatives of the problem functions to be 
made available by the user. The code has been hooked up to the AMPL mod- 
elling language, which includes a facility for automatically providing second 
derivatives, and is available for use under NEOS. More recently, convergence 
proofs for different types of filter method have been developed, and a code 
f i l t e r 2  has been written to implement the method considered in the paper 
of Fletcher, Leyffer and Toint [7]. This code also requires second derivatives 
to be made available. The practical performance o f f  i l t e r 2  is similar to that 
of f i l t e r S Q P .  An early version of the new quasi-Newton filter SQP code, re- 
ferred to as f i l t e r Q N ,  has already been tried on a range of problems with some 
success. 

In view of the ready availability of second derivatives through the AMPL 
modelling language, one might question whether there is a need for NLP algo- 
rithms that use only first derivatives. To answer this, one should first point to 
the success of the NLP solver SNOPT (Gill, Murray and Saunders, [8]), based 
on an augmented Lagrangian formulation, which only requires first derivatives 
to be available. This is one of the most effective existing codes for NLP. Other 
reasons include the fact that Hessian matrices are often indefinite, which in an 
SQP context might render some QP solvers inapplicable. Even if the QP solver 
can handle indefinite matrices, there is usually no guarantee that a global (or 
even local) solution is found to the QP subproblems. (Although it has to be said 
that there is little evidence that this is a serious difficulty in practice.) Another 
argument is that NLP problems often have small or even empty null spaces, in 
which case only a small part of the Hessian is in a sense useful. 

There are certain types of problem however in which Hessian calculations 
can be seriously time consuming and hence impracticable. Such an example is 
the optimal design of a Yagi-Uda antenna, shown to me by Martijn van Beurden 
(see [I] for details). The antenna is constructed from a number of wires along an 
axis, and there are two design variables (length and position along the axis) for 
each wire. Also there are 31 complex variables on each wire to model the current 
(62 real variables if complex arithmetic is not available). These variables satisfy 
a complex dense nonsingular system of linear equations. When modelled in 
AMPL, both the design and current variables appear explicity in the model, 
and the second derivative calculation is seriously time consuming. The largest 
problem that could be handled by AMPL via NEOS, with various solvers, had 
5 wires, and hence 10 design variables and 310 real current variables. For this 
problem, filterSQP took about 2 hours to solve the problem whereas SNOPT, 
which only requires first derivatives, took about 15 minutes. For filterSQP, the 
memory usage was 610MB. 
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An much more effective procedure is not to use AMPL at all, and to use the 
complex linear equations to eliminate the complex variables, leaving a much 
smaller problem in just the design variables. Factors derived from the complex 
equations can be used efficiently to compute the gradient of the reduced problem, 
whereas computing the Hessian of the reduced problem remains very expensive. 
When posed in this way, various QN-SQP solvers, such as DONLP2, NPSOL 
and an early version of the filterQN code, were able to solve the 5-wire problem 
in around one minute. In fact even the 20-wire problem, with 40 design variables 
and 2480 real current variables could be solved in reasonable time. 

This paper describes a new quasi-Newton scheme for updating a low rank 
positive semi-definite Hessian approximation, primarily for use in SQP methods 
for NLP. The paper is organised as follows. Section 2 reviews existing quasi- 
Newton methodology, and gives two results relating to hereditary conditions 
and quadratic termination for the symmetric rank one update, one of which 
may not be well known. Section 3 considers the implications for NLP, and 
describes the form T J U ~  of the representation. In Section 4, the interpretation 
as a limited memory approximation is discussed, and an it is shown how to 
update the representation so that the most recent information is contained in the 
leftmost columns of U. Section 5 focusses on how the projection part of the 
BFGS update might be implemented in this context, and Section 6 describes a 
new scheme which combines this update with the symmetric rank one update, 
for use when the latter alone is inapplicable. The outcome is a new rank two 
update which is not in the Broyden family, although invariance under linear 
transformations of the variables is preserved. The underlying motivation is 
seen to be the preservation of hereditary properties to the maximum extent. 
Conjugacy properties of the update in the quadratic case are brought out in 
Section 7 and a result somewhat akin to a hereditary property is shown to hold. 
Preliminary practical experience is described in Section 8 on small (and some 
larger) CUTE test problems, and is reasonably encouraging, although there is 
some evidence of slow convergence on large problems with large null spaces. 
Some conclusions are drawn in Section 9. 

2. Quasi-Newton methodology 
In this section we review existing quasi-Newton (QN) methodology in the 

context of uncontrained optimization (m = 0 in (1.1)). A QN method is based 
on updating symmetric matrices B ( ~ )  that approximate the Hessian matrix v2 f 
of the objective function. These matrices are then used on iteration k of a 
Newton-like line search or trust region method. The initial matrix B(') is 
arbitrary and is usually chosen to be positive definite, for example the unit 



matrix. At the completion of iteration k of the QN method, difference vectors 

in the variables, and 

in the gradients are available, and an updated matrix B ( ~ + ' )  is computed, usually 
so as to satisfy the secant condition 

which would be satisfied to first order by the true Hessian v2 f (x(lc)). 
There are many ways to satisfy (2.3), but there are two well known QN 

updating formulae which have featured in many applications. These are the 
Symmetric Rank 1 (SRI)  formula 

suggested independently by various authors in 1968-69, and the BFGS formula 

suggested independently by various authors in 1970. Superscript (k)  has been 
suppressed on all vectors and matrices on the right hand sides of these for- 
mulae, and also elsewhere in the subsequent presentation, so as to avoid over- 
complicating the notation. More details and references may be found in Fletcher 
[5] for example. 

An important property of the BFGS formula is that if B ( ~ )  is positive definite 
and aTy  > 0,  then B ( ~ + ~ )  is positive definite. Since v2 f (x*)  is positive 
semi-definite and usually positive definite, it is desirable that the approximating 
matrices B(IC) also satisfy this property. It then follows that the Newton direction 
- ( B ( I " ) ) - ' v  f ( ~ ( ~ 1 )  is a descent direction, and a line search along this direction 
enables f ( x )  to be reduced. It is also possible to implement the line search in 
such a way that 6Ty > 0 always holds. Because of these properties, the BFGS 
formula has been the method of choice in most cases. On the other hand the 
denominator ( y  - B G ) ~ S  in the SR1 formula may be negative, so that ~ ( " ' 1  
is not positive semi-definite, or even zero, in which case the formula breaks 
down. However the SR1 formula has been used, particularly in the context of 
trust region methods, with some safeguards. Indeed there is some evidence 
(Conn, Gould and Toint [4]) that the matrices B ( ~ )  converge more rapidly to 
v2 f (x*)  when the SR1 update is used. 
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Both formulae usually generate dense matrices B ( ~ ) ) ,  even when the true 
Hessian v2 f is sparse, and so are only suitable for solving small to medium 
size problems. Special purpose methods have been developed for solving large 
systems, for example the limited memory BFGS (L-BFGS) method (Nocedal, 
[9 ] ) ,  the sparse Hessian update scheme of Powell and Toint [ll],  and the use of 
the SR1 update for partially separable functions (Conn, Gould and Toint, 131). 

Another pointer to the effectiveness of a QN update, albeit somewhat indi- 
rect, is whether the property of quadratic termination can be proved. That is to 
say, can the associated QN method find the minimizer of a quadratic function in 
a finite number of steps. This property usually holds for the BFGS method only 
if exact line searches along the Newton direction are carried out. A stronger 
termination property holds for the SR1 method in which the differences d ( k )  
can be defined in an almost arbitrary manner. This may be a pointer to the ef- 
fectiveness of the SR1 update in a trust region context. This result is established 
in the following well known theorem. 

THEOREM 1 Consider n SR1 updates using dlfSerence vectors and y(lC) 
for k = 1, 2, . . . ,n, where y (k )  = W S ( ~ )  and W is symmetric. Zf B(') is 
symmetric, and i f for  k = 1, 2, . . . , n the denominators in (2.4) are non-zero, 
and the vectors d ( k )  are linearly independent, then B ( ~ + ' )  = W .  

Proof Clearly the SR1 update preserves the symmetry of the matrices B('). It 
is shown by induction that 

where 1 5 k 5 n + 1. For k = 1 the condition is vacuous and hence true. Now 
let it be true for some k such that 1 < k < n. The definition of B ( ~ +  l )  gives 

where u(l") = Y ( k )  - ~ ( ~ ) d ( ~ ) .  For j = k the right hand side is ~ ( ~ ) d ( ~ )  + u ( ~ )  
which is equal to y(lC) by definition of ~ ( ~ 1 ) .  For j < k it follows from (2.6) that 
~ ( ~ ) ) 6 ( j )  = y ( j ) ,  and also using the definition of u ( ~ )  and symmetry of B ( ~ )  
that 

Because y ( j )  = ~ d ( j )  for all j = 1, 2, . . . , n it follows for j < k that 
= 0. Thus for both j = k and j < k it has been shown that 

B("l)d(j) = y( j )  and hence (2.6) has been established with k + 1 replacing 
k. Hence by induction, (2.6) is true for all k = 1; 2, . . . , n + 1. 



For k = n + 1, and using y(j)  = w S ( ~ ) ,  (2.6) can be written as 

where A is an n x n matrix with columns S ( j ) ,  j = 1 ,  2,  . . . ,n. But A is 
nonsingular by the linear independence assumption, so it follows that B ( ~ + ' )  = 
w. QED 

A consequence of the therorem is that if the SR1 method is applied to min- 
imize a quadratic function with positive definite Hessian W, then a New- 
ton iteration on iteration n + 1 will locate the minimizer exactly. A key 
feature of the proof is the establishment of so-called hereditary conditions 
(2.6), in which secant conditions (2.3) from previous iterations remain sat- 
isfied by subsequent B(IC) matrices. In other words, when the correct behaviour 
B("l)dk) = y ( k )  = is introduced, it persists in subsequent B ( ~ )  
matrices. 

A less well known result in the quadratic case is that if W is positive definite, 
and B(')  = 0 is chosen, then the denominators in the SR1 update are all positive, 
and the matrices B ( ~ )  are positive semi-definite. 

THEOREM 2 Consider n SRI updates using diference vectors S(IC) and y(lC) 
fork  = 1 ,  2 ,  . . . , n, where y(IC) = w S ( ~ )  and W is symmetric positive definite. 
I ~ B ( ' )  = 0, and the vectors d( lc)  k = 1 ,  2 ,  . . . , n are linearly independent, then 
the SR1 updates are well defined, the matrices B ( ~ )  are positive semi-definite 
of rank k - 1, and B ( ~ + ' )  = W .  

Proof Without loss of generality we can take W = I since the SR1 update is 
independent under linear transformations ( [ 5 ] ,  Theorem 3.3.1). It is shown by 
induction that 

and 

B ( ~ ) v = O  Y v ~ { v ~ v ~ d ( j ) = O ,  j = 1 , 2 ,  . . . ,  k - I } ,  (2.11) 

so that B ( ~ )  is an orthogonal projector of rank k - 1. This is true for k = 1 
because B(')  = 0.  Because y ( k )  = S ( k ) ,  (2.4) may be written 
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Because the are linearly independent, it follows that the denominator in 
(2.12) is positive. As in Theorem 1 B ( ~ + ' ) s ( ~ )  = dlc), and for j < k it follows 
using (2.10) that (I - B ( ~ ) ) s ( ~ )  = 0 and hence ~(" ')6(j)  = d"). Also the 
rank one correction in (2.12) is in span{dl), d2)  i . " l  so (2.1 1) follows 
for B("'). Thus the inductive step has been established. The rest of the 
theorem follows as for Theorem 1. QED 

In a non-quadratic context, this theorem suggests that if B(') = 0 is chosen, 
then there is less likelihood that the SR1 update will break down, or give rise 
to an indefinite matrix. 

3. Quasi-Newton updates in NLP 
This section looks at the new issues that arise when QN updates are used in 

the context of an NLP calculation, particularly when n is large. In this case it 
is impracticable to update a full dense Hessian. However, it is only the reduced 
Hessian that needs to be positive serni-definite at a solution, and local and 
superlinear convergence can be achieved without updating a full Hessian. A low 
rank Hessian approximation is presented which allows rapid local convergence 
of SQP, whilst requiring much less storage to implement. 

When the NLP problem has nonlinear constraints, it is the Hessian W  = 
v 2 L ( x ,  A*) of a Lagrangian function C(x, A*) = f ( x )  - c ( x ) ~ x *  that de- 
termines the local convergence properties of an SQP method, where A* is the 
vector of KT multipliers at the solution (see, for example [5]) .  In this case 7 ( k )  

should be computed from differences in the Lagrangian gradients, and Nocedal 
and Overton [lo] recommend 

as an effective choice (amongst others), where is the most recently 
available estimate of the KT multipliers. 

In general, the Lagrangian Hessian matrix W* = v2L(x* ,  A*) at the solu- 
tion may not be positive semi-definite, in contrast to the unconstrained case. 
Only the d x d reduced Hessian matrix Z ~ W * Z  is positive serni-definite (and 
usually positive definite), where columns of the matrix Z are a basis for the null 
space N* = { z  / A * ~ Z  = O } ,  where A* denotes the matrix of active constraint 
gradients at the solution (see [5] for example). Quite often the dimension of 
N* much smaller than n. A related consequence of this is that the denominator 
aTy  that arises in the BFGS method cannot be assumed to be positive, again 
in contrast to the unconstrained case. 

Sufficient conditions for the Q-superlinear convergence of SQP methods 
under mild assumptions are that 



(see Boggs, Tolle and Wang [2]). That is to say, B ( ~ )  should map the null space 
correctly in the limit, but B ( ~ )  - W* is not necessary. In this paper we aim to 
achieve something akin to (3.2) based on the quadratic termination properties 
of the SR1 update. 

Quadratic termination for an NLP solver relates to how the solver performs 
when applied to solve the equality constrained QP problem 

minimize q(x) = 4 x T w x  + cTx 
x E R n  

subject to A ~ X  = b, 

where A E IRnXm,  m < n, and rank(A) = m. We let Z E IRnXd be a matrix 
whose columns are a basis for the null space N ( A T )  = { z  / ATz = 0 )  of 
dimension d = n - m. The QP problem (3.3) has a unique solution if and only 
if the reduced Hessian Z T W 2  is positive definite. In this case, if 

if x(" is a feasible point, and if iteration k is an SQP iteration 

then x ( ~ + ' )  solves (3.3). If the SR1 update is used, and if d consecutive and 
linearly independent steps 6("'), 6(k-2),  . . . , s ( ~ - ~ )  in H(AT)  can be com- 
pleted, then these vectors can form the columns of Z, and (3.4) follows by the 
hereditary properties of the SRI update. Thus quadratic termination is obtained 
under these conditions. 

These results do not require W to be positive definite. However, if necessary 
a related QP problem with the same solution can be defined by adding a squared 
penalty $ a ( ~ ~ x  - b ) T ( A T ~  - b )  into q(x). If ZTWZ is positive definite and 
a is sufficiently large, then the Hessian W + aAAT of the modified objective 
function is positive definite. 

Quadratic termination for an inequality constraint QP problem is less obvi- 
ous, because it is uncertain what will happen to B ( ~ )  before the correct active 
set is located. However tests with f ilterQN on some inequality QP problems 
from the CUTE test set did exhibit termination. 

In this paper we represent B(IC) by the low rank positive semi-definite ap- 
proximation 

~ ( ' " 1  = ~ ( k ) ) U ( k ) ~ ,  (3.7) 

where u ( ~ )  is a dense n x r matrix. Usually u ( ~ )  has rank r but the current 
implementation does not guarantee that this is so. Clearly B ( ~ )  is positive semi- 
definite and has the same rank as ~ ( ~ 1 .  Of course only U'(IC) is stored, and B(IC) 
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is recovered implicitly from (3.7). We shall use the SR1 formula to update u(IC) 
whenever possible. When this is not possible, we shall arrange matters so as 
to retain as many of the most recent hereditary properties as possible in B(IC)). 
By this means we hope that, once the correct active set is located by the NLP 
solver, we shall then build up hereditary properties in the correct null space, 
and hence obtain rapid convergence. 

In using (3.7), it follows from the remarks in Section 2 that there may be some 
advantage to be gained by initializing B(') = 0. We do this simply by setting 
r = 0. In general, a trust region constraint 116// 5 p will ensure that the SQP 
subproblem is bounded, so that no difficulty arises from the rank deficiency of 
B@).  

In passing, we note that even less storage is needed if an approximating 
matrix M ( ~ )  - Z ~ W Z  is used, and B(IC) = Z ( ~ ) M ( ~ ) ) Z ( ~ ) ~ ,  where Z(lc) 
is a current approximation to Z*,  obtained from the current QP subproblem. 
However, the active set in the QP subproblem can change considerably from 
iteration to iteration, and it is not easy to suggest a robust strategy for updating 
~ ( ~ 1 .  

4. Updating the representation ~ ( ' " 1  = u('")u('")~ 
In this section we consider some issues relating the use of an update formula 

in conjunction with (3.7). The SR1 update is seen to be most suitable, if it is 
applicable. It is shown how to implement the update so as order the columns 
of U in such a way that the most recent information is contained in the leftmost 
columns. This provides a useful limited memory capability. 

The SR1 update (2.4) can only be used to update u(IC) if (7 - ~ 6 ) ~ 6  > 0.  
In this case, one way to update u(IC) would be simply to append the column 
vector 

to u(IC)). Unless u is in the range space of u(", we would obtain a matrix u(~+')  
with rank r(ICfl)  = ,(IC) + 1. Thus the SR1 update provides a way of building 
up information in U and is used whenever possible. For the BFGS update, the 
first two terms on the right hand side of (2.5) perform a projection operation 
which usually reduces the rank of B by one. The final rank one term restores 
the rank, so that usually r(IC+') = r(IC). Thus the BFGS update is unable to 
build up information in U .  

The low rank representation (3.7) gives the method the flavour of a limited 
memory method, and indeed we shall introduce a memory limit 



Ideally r,,, should be greater or equal to the dimension d of the null space at 
the solution. In this case we would hope for local superlinear convergence of 
our SQP method. When r,,, < d only linear convergence can be expected, 
and it is not clear how slow this might be. However some hope might be derived 
from the fact that methods such as conjugate gradients and some new gradient 
methods are able to solve instances of very large problems in relatively few 
iterations. 

When the memory is full, the SR1 update would usually cause T ( ~ + ' )  to be 
greater than r,,,, so that we are faced with the need to delete a column of 
u(~+' )  from the memory. We would like to ensure that when this occurs, it is 
the oldest information that is deleted, in a certain sense. We can exploit the fact 
that the representation (3.7) is not unique, to the extent that 

where Q is any orthogonal matrix. We shall choose Q in such a way that the 
most recent information is contained in the leftmost columns of U, when the 
SR1 update is being used. Then we delete the rightmost column of U  when the 
memory is overfull. We shall refer to this as the priority ordering of U .  

We therefore express 

(suppressing superscript (k)) ,  in which 

y - B S  - y - U V  
U = - 

( ( y  - B 6 ) T 6 ) 1 / 2  , 
CY 

(4.4) 

where v = u T S  and CY = ( d T y  - v T v ) l I 2 .  Using (4.4) we may write 

Next we implicitly transform the spike matrix to an upper triangular matrix, 
R say, by postmultiplying by a product of plane rotation matrices in columns 
( 1 ,  j )  for j = r + 1 ,  r ,  . . . , 2 ,  each rotation being chosen so as to eliminate 
the entry in row j  of column 1. These rotations are explicitly applied to the 
columns of the left hand side matrix in (4.5). 

Denoting the product of plane rotations by Q, the resulting matrix may be 
expressed as 
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It follows by a simple induction argument that 

column 1 of u("') depends only on y(k )  

w column 2 of u(~+')  depends only on y ( k ) ) ,  y("') 

rn column 3 of u(~+')  depends only on y ( k ) ,  y("-'), y("2) 

etc., over the range of previous iterations on which SR1 updates have been used, 
by virtue of R being upper triangular. 

We refer to this calculation as 

u("') = sr l(U,  6,  y ) .  (4.7) 

Its cost is O(nr) arithmetic operations, which is the same order of magnitude 
as the cost of a matrix product with U or UT, and hence is readily affordable. 

It is possible that (4.7) may give rise to a matrix u(~+' )  whose columns are 
rank deficient. An example is given by 

It is clear that y  is in the range of U ,  and a = 1, so that the SR1 update does 
not break down. The matrix u ( ~ + ~ )  has 3 non-trivial columns but has rank 
2. At present, there is no evidence to suggest that this possibility is causing 
any practical disadvantages, although if it were so, it would not be difficult to 
suggest modifications to ensure that u(') always has full rank. Indeed, it does 
seem more appropriate in these circumstances to use an update that keeps the 
same the same number of columns in U, such as is described in Section 6 below. 

5. The BFGS projection update 

Although we have argued that the SR1 update will often be well defined, this 
will not always be so. Thus we have to decide how to update u ( ~ )  when the 
SR1 denominator is non-positive. 

An extreme case is when a T y  < 0. In the quadratic case (3.3), this suggests 
that 6  is not in the null space spanned by columns of 2, so that y  provides no 
useful information for updating B. Now the curvature estimate of the current 
B matrix along 6  is S ~ B G .  Thus, if aTB6 > 0, the curvature estimate is seen 
to be incorrect, and we use the part of the BFGS update 

which projects out the existing information along 6, and has the correct invari- 
ance properties. This update reduces the rank of B by one. If r  = 0 or BS = 0 



we just set B ( ~ + ' )  = B. We implement (5.1) in such a way as to reduce the 
number of columns in U by one, which ensures that u('"+') has full rank if u ( ~ )  
has. We may express 

where v = UT6 and vT' is an orthogonal transformation with a product of 
plane rotation matrices in columns ( j ,  r ) ,  j = 1, 2, . . . , r  - 1, so as eliminate 
successive elements vj of v T .  That is to say, vT' = + / / ~ j / ~ e T  where e? = 
(0 , .  . . , 0 ,  1) .  Then 

Thus to update U we apply the same rotations to the columns of U ,  and then 
delete the last column of the resulting matrix. We may write this as 

It follows that G ~ U ( ~ + ' )  = vTQ = oT,  reflecting the fact that B(~+ ' )G  = 0. 
We refer to the entire projection update as 

As for (4.7), the cost is O ( n r )  arithmetic operations. We observe that (5.5) 
destroys any priority ordering properties, and in the quadratic case, hereditiary 
properties. 

6. A new QN update 
We have seen that the SR1 update can be used when dTy  > v T v ,  and the 

projection update when f i T y  5 0. When 0 < G T y  5 v T v ,  there would appear 
to be useful information in 6 and y ,  but the SRl update can no longer be used. 
In this section we present a new update which maximizes the extent to which 
hereditary properties, built up using the SRI update on previous iterations, are 
preserved. 

To do this we partition 

where U1 has rl 2 0 columns and Uz has r2 > 0 columns. The new QN update 
applies the SR1 update to Ul and the projection update to U2, and u("') is 
obtained by concatenating the resulting matrices, that is 
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By choosing rl sufficiently small, it is always possible to ensure that the SR1 
T denominator a = ( 6  y - v T v ~ ) ~ / ~  in (6.2) exists and is positive. We observe 

that (6.2) usually leaves the rank of U unchanged. 
In our current implementation we have chosen rl to be the largest integer for 

which 6 T y  - vTvl > 0. This choice maximizes the extent to which priority 
ordering and, in the quadratic case, hereditary conditions in Ul are preserved in 
u("'). In fact it may well be better to require aTy  - vTvl 2 r where r > 0 
is some tolerance, for example r = edTy with E = say. 

The new update may also be expressed in the form 

If rl = 0 we get the BFGS update (2.5), and if rl  = r then the SRl update 
(2.4). Intermediate values give a new rank two correction formula, but not one 
that is in the Broyden class. We observe the following properties 

Satisfies the secant condition (2.3). 

8 Preserves positive semi-definite B ( I " )  matrices. 

Is invariant under a linear transformation of variables (see [ 5 ] ,  Sec- 
tion 3.3). 

w Any priority ordering or hereditary conditions in Ul are preserved. 

To summarize, if d T y  5 0, then the BFGS projection update is used and the 
rank of U decreases by one (usually). If 0 < aTy  5 v T v ,  then the new update 
is used, choosing 1-1 as described, and the rank of U is unchanged. The choice 
rl = 0 gives rise to a BFGS update. If a T y  > vTv then an SRI update is used 
(the rank of U usually increasing by one), except in the case that r = r,,, and 
the memory is full. In this case we apply the SR1 update and then delete column 
r,,, + 1 of the resulting matrix. We note that this procedure still preserves the 
secant condition (2.3). This follows from (4.6) and (4.4) by virtue of 

where q2 = a T y ,  by virtue of the way in which Q is chosen. Since the last 
element on the right hand side is zero, the secant condition 6 T ~ ( k f  ' ) u ( ~ + ' ) ~  = 
yT is unaffected by deleting the last column of ~ ( " ' 1 .  We also observe that 
any priority ordering in U is preserved, and any hereditary conditions up to a 
maximum of r - 1. 

7. Conjugacy conditions 
The use of the BFGS projection operation can destroy hereditary properties 

that have been built up in the U2 matrix, in the quadratic case. In this section we 



show that this is not as unfavourable as it might seem, and that something akin 
to a hereditary property holds, even when the BFGS projection operation is used 
to update U2. Also some conjugacy properties of the new update are shown. 
The results of this section apply when B(') = 0 and we are investigating the 
quadratic case in which the relationship y ( k )  = holds for all k, where W 
is a fixed matrix. We shall also assume that W is nonsingular, which is a minor 
requirement that can always be achieved if necessary with an arbitrarily small 
perturbation using a quadratic penalty (see the paragraph following (3.6)). 

When ~ ( l )  = 0, it follows easily for both (5.5) and (6.2) by induction that 
the columns of u ( ~ )  are in ~ p a n ( ~ ( l ) ,  y(2) ,  . . . , ~ ( ~ - l ) ) .  It follows that U has 
an image 

A = w-'u (7.1) 

whose columns are correspondingly in span(6(l),  1 " ' )  In Theo- 
rem 3 below it is proved that normalised conjugacy coditions 

are satisfied by U (that is, u(") for all k ,  a consequence of which is that 
u T A  = I. Likewise, conjugacy conditions 

are satisfied by A .  A consequence is that 

Hence B maps the subspace range(A) in the 'correct' way, that is B A  = 
wa = u .  

The implication of this in the quadratic case is that although the use of some 
projection operations may destroy hereditary conditions, it does not introduce 
any 'wron ' information. That is to to say, the image A of U has columns 
in span(aff) ,  d2), . . . , and the current matrix B = U U ~  maps A 
correctly into U (which is WA) .  Thus, although hereditary conditions may not 
be satisfied, the exists a set of directions (columns of A)  which satisfy a similar 
condition B A  = U to hereditary conditions. 

We now prove the theorem on which (7.2) depends. 

THEOREM 3 Let B(') = 0, and let there exist a nonsingularsyrnrnetric matrix 
W such that the dgerence vectors are related by y(k )  = wdk) for all k. Then 
conjugacy conditions (7.2) are preserved by the updating scheme described in 
Section 6. 
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Proof We prove the result by induction. The result is trivially true when k = 1. 
Now we assume that (7.2) is true for some value of k 2 1 and consider the 
calculation of ~ ( " ' 1 .  1f S T y  > 0, then u("') is defined by (6.2), which may 
be expressed as 

using the notation of (4.6) and (5.4) with subscripts 1 and 2 to indicate matrices 
derived from the SR1 and projection updates respectively. We note that Q1 has 
rl + 1 rows and columns, and Q2 has 1-2 rows and 7-2 - 1 columns. It follows 
that 

where uTw-'u = I has been substituted from the inductive hypothesis. It 
now follows from (4.4) and W-'y  = 6 that 

using U T W - ~ U ~  = I and U T W - ~ U ~  = 0 from the inductive hypothesis. 
Also from (4.4) 

from S = W - l y  and the definition of a. But 

from uTw-'u~ = I. Hence uTw-lu = 1. Finally we substitute this 
and (7.7) into (7.6). Then using QTQ' = I, & T Q 2  = I and & T u T ~  = 0 
(from (5.4)), it follows that u ( ~ +  ' )TW-l~(k+' )  = I and establishes that the 
inductive hypothesis holds for k + 1 in this case. 

In the case that S T y  5 0, only the 2,2 partition of the above argument is 
used and the result follows similarly. In the case that the memory is filled, and 
a column of u("') is deleted, it is clear that u("+')~w-'u('"+') = I will 
continue to hold, but for a unit matrix with one fewer row and column. Thus 
the result is established in all cases used in the update scheme. QED 



8. Practical experience 

In this section, some preliminary practical experience with the new update 
scheme is described. An experimental code f i l t e rQN is currently under de- 
velopment, and indeed has been so for some time. It is a trust region filter SQP 
code, based on the method considered in [7], but using the quasi-Newton update 
scheme described in this paper, rather than the exact second derivatives as used 
in the f i l t e r 2  code, referred to in Section I .  The delay in finalizing the code 
is mainly due to uncertainty as to how best to implement feasibility restoration 
when second derivatives are not available. 

The results in this section are sampled from CUTE test problems in which the 
dimension d of the null space at the solution is a significant proportion of n. For 
such problems, feasibility restoration often plays a minor role in determining 
the outcome of the calculation. Thus, although the results cannot yet be taken 
as definitive, they do give some indication as to what level of performance can 
be expected from a QN code. The problems are solved to an accuracy of better 
than in the KT conditions. The memory limit is r,,, = min(n, 100). 

Table 1. Performance o f f  i l t e r Q N  on small CUTE problems 

HS92 6 1 5 33 6' 
HS99 7 2 5  11 6 
HSl OO 7 4 5 14 14 
HSIOOLNP 7 2 5 15 18 
HSIOOMOD 7 4 6 18 13 
HSlO1 7 5 5 230 21 
HS102 7 5 4 209 18 
HS 103 7 5 3 28 25 
H S l l l  10 3 6 45 25 
HSlllLNP 10 3 6 45 25 
HS113 10 8 4 13 6 
HS117 10 5 4 19 21 
CANTILVR 5 1 4 25 17 
DIPIGRI 7 4 5 14 14 
ERRINBAR 18 9 3 70 25 
MISTAKE 9 13 5 17 14 
POLAK3 12 10 9 58 37 
ROBOT 14 2 5 19 11 
TENBARSI 18 9 5 59 28 
TENBARS2 18 8 4 36 28 
TENBARS3 18 8 4 76 28 
TENBARS4 18 9 5 82 29 

* f i l t e r 2  finds a locally infeasible point 
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Table 1 gives results on Hock-Schittkowsh test problems in the left hand 
column, and other small CUTE test problems in the right hand column. Head- 
ings give the number of variables n, the number of constraints m (excluding 
simple bounds), the dimension d of the null space at the solution, the number 
of gradient calls #g required by f i l t e r Q N ,  and the number of gradient calls 
f 2 required by f i l t e r 2 .  One gradient call includes the evaluation of both the 
gradient of the objective function and the Jacobian of the vector of constraint 
functions. In the case o f f  i l t e r 2 ,  it also includes the evaluation of all second 
derivatives. Both codes require about one QP subproblem to be solved for each 
gradient evaluation, most often in warm start mode. 

Generally the problems are solved reliably and accurately by f i l t e r Q N ,  
and we see rapid local convergence. HS90 and HS92 are successfully solved 
by f i l t e r Q N ,  whereas f i l t e r 2  can only find a locally infeasible point. For 
HS101 and HS102, f i l t e r Q N  spends about 200 and 180 iterations respectively 
in feasibility restoration, which accounts for the poor performance. Future work 
on the feasibility restoration algorithm should resolve this difficulty. Apart from 
that, we observe that f i l t e r Q N  mostly takes more iterations than f i l t e r 2 .  To 
some extent this is expected due to the need for f i l t e r Q N  to spend something 
like d extra iterations in building up a matrix B = U U ~  with the property that 
BZ - WZ. 

Next we show some results in Table 2, obtained on some larger CUTE test 
problems, again chosen to have significant null space dimensions. In fact the 
exact dimension of the null space is not so easy to determine, because the 
accuracy required from the QP subproblem can often be obtained without having 
to build up the full reduced Hessian. In the table an approximate value of d 
is given based on the size of the QP reduced Hessian on termination of the 
f i l t e r 2  run. 

Some of the problems are solved quite efficiently by f i l t e rQN.  The largest 
problem DTOClL is the only linearly constrained problem in the set, so fea- 
sibility restoration is not an issue in this case. Thus it is very satisfactory that 
this problem is solved accurately and quickly by f i l t e r Q N ,  even though the 
dimension d of the null space is very large. Less satisfactory is the performance 
on the ORTHREG problems, and also DIXCHLNV, ORTHRGDS and ZAMB2, 
which mostly have large null spaces with d >> r,,,. In these problems, slow 
convergence is observed in the asymptotic phase, and the build up of informa- 
tion in the U matrix is very slow. The restriction on r may also be having an 
effect. On other problems, the behaviour o f f  i l t e r Q N  is reasonably satisfac- 
tory, bearing in mind the need for for extra iterations to build up an effective 
Hessian approximation. 
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Table 2. Performance of f i l terQN on some larger CUTE problems 

n m - ~ d  #g f 2  
AIRPORT 84 42 42 74 12 
LAKES 
READING6 
ZAMB2-8 
ZAMB2-9 
ZAMB2- 10 
ZAMB2-11 
DIXCHLNV 
DTOC 1 L 
DTOC5 
EIGENB2 
OPTCDEG2 
OPTCTRL6 
ORTHRDM2 
ORTHRDS2 
ORTHREGC 
ORTHREGD 
ORTHREGE 
ORTHREGF 
ORTHRGDS 
SVANBERG 
TRAINH 
ZAMB2 

9. Conclusions 
We itemize the main features of this paper as follows. A new QN update 

scheme for low rank Hessian approximation in SQP has been presented. Where 
possible it uses the SR1 update formula, but when this is not possible a new 
rank two update is used, which is not in the Broyden family, although invariance 
under linear transformations of the variables is preserved. The Hessian approx- 
imation is a positive semi-definite matrix, which ensures that global solutions 
of QP subproblems are calculated. It also enables interior point methods to be 
used to solve the QP subproblems, if required. The representation provides a 
limited memory capability, and there is a priority ordering scheme which en- 
ables 'old' information to be deleted when the memory is full. Hereditary and 
conjugacy properties are preserved to the maximum extent when minimizing a 
quadratic function subject to linear constraints. Practical experience is reason- 
ably encouraging on small (and some larger) problems. There is some evidence 
of slow convergence on some larger problems with large null spaces. It may 
be that this is to some extent caused by the use of an I ,  trust region. Future 
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work will continue to develop the f ilterQN code, especially the feasibility 
restoration part, and will also investigate the use of an l 2  trust region. 

References 

[ I ]  M.C. van Beurden. Integro-differential equations for electromagnetic scattering: analysis 
and computation for objects with electric contrast. Ph.D. Thesis, Eindhoven University of 
Technology, Eindhoven, The Netherlands, 2003. 

[2] P.T. Boggs, J.W. Tolle and P. Wang. On the local convergence of quasi-Newton methods 
for constrained optimization. SIAM J. Control and Optimization. 20: 161-171, 1982. 

[3] A.R. Conn, N.I.M. Gould and Ph.L. Toint. An introduction to the structure of large scale 
nonlinear optimization problems and the LANCELOT project. In Computing Methods in 
Applied Sciences and Engineering. R. Glowinski and A. Lichnewsky, eds, SIAM Publi- 
cations, Philadelphia, 1990. 

[4] A.R. Conn, N.I.M. Gould and Ph.L. Toint. Convergence of quasi-Newton matrices gener- 
ated by the symmetric rank one update. Mathematical Programming. 50: 177- 196, 199 1. 

[5] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, 1987. 

[6] R. Fletcher and S. Leyffer. Nonlinear Programming Without a Penalty Function. Mathe- 
matical Programming. 91:239-269, 2002. 

[7] R. Fletcher, S. Leyffer and Ph.L. Toint. On the Global Convergence of a Filter-SQP 
Algorithm. SIAM J. Optimization., 13:44-59, 2002. 

[8] P.E. Gill, W. Murray, M.A. Saunders. SNOPT: An SQP Algorithm for Large-Scale Con- 
strained Optimization. SIAM J. Optimization. 12:979-1006, 2002. 

[9] J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Com- 
putation. 35:773-782, 1980. 

[lo] J. Nocedal and M.L. Overton. Projected Hessian updating algorithms for nonlinearly 
constrained optimization. SIAM J. Nzmerical Analysis. 22:821-850, 1985. 

[I 11 M.J.D. Powell and Ph.L. Toint. On the estimation of sparse Hessian matrices. SlAM J. 
Numerical Analysis. 16: 1060-1074, 1979. 




