
1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

1

Top-k Durable Graph Pattern Queries on
Temporal Graphs

Konstantinos Semertzidis and Evaggelia Pitoura

Abstract—Graphs offer a natural model for the relationships and interactions among entities, such as those occurring among users in
social and cooperation networks, and proteins in biological networks. Since most such networks are dynamic, to capture their evolution
over time, we assume a sequence of graph snapshots where each graph snapshot represents the state of the network at a different
time instance. Given this sequence, we seek to find the top-k most durable matches of an input graph pattern query, that is, the
matches that exist for the longest period of time. The straightforward way to address this problem is to apply a state-of-the-art graph
pattern matching algorithm at each snapshot and then aggregate the results. However, for large networks and long sequences, this
approach is computationally expensive, since all matches have to be generated at each snapshot, including those appearing only
once. We propose a new approach that uses a compact representation of the sequence of graph snapshots, appropriate time indexes
to prune the search space and strategies to determine the duration of the seeking matches. Finally, we present experiments with real
datasets that illustrate the efficiency and effectiveness of our approach.

F

1 INTRODUCTION

Recently, increasing amounts of graph structured data are
being generated from a variety of sources, such as social,
citation, computer and biological networks. Almost all such
real-world networks evolve over time. The analysis of their
evolution is important for our understanding of the net-
works and may reveal interesting information. It also finds a
wide spectrum of applications ranging from social network
marketing to virus propagation and digital forensics.

In this paper, we look into finding the most persistent
matches of an input pattern in the evolution of such net-
works. In particular, we assume that we are given the his-
tory of a node-labeled graph in the form of graph snapshots
corresponding to the state of the graph at different time
instances. Given a query graph pattern P , we address the
problem of efficiently finding those matches of P in the
graph history that persist over time, that is, those matches
that exist for the longest time, either contiguously (i.e., in con-
secutive graph snapshots) or collectively (i.e., in the largest
number of graph snapshots). We call the queries that return
these matches durable graph pattern queries.
Motivation. Locating durable matches in the evolution of
large graphs finds many applications. Take for example
collaboration and social networks, such as DBLP, Facebook
or LinkedIn, where nodes correspond to people and edges
indicate relationships such as cooperations, or friendships.
Node labels may denote demographics, or other charac-
teristics of the users, such as related venues (for example,
schools that the users has attended, or scientific conferences
where the user has published). Finding durable matches that
follow an input pattern helps us locate the most persistent
research collaborations or durable social communities and
social positions. It can also assist us in the identification of

• K. Semertzidis and E. Pitoura are with the Department of Computer
Science and Engineering, University of Ioannina, Greece.
E-mail: {ksemer, pitoura}@cs.uoi.gr

the essential elements (in the form of node labels) that lead
to durable and stable cooperations among teams.

Other types of graphs where durable matches may find
applications are complex biological systems such as protein-
protein, metabolic interaction and hormone signaling net-
works where nodes are molecular components and edges
relationships between them [1]. Understanding such sys-
tems requires a molecular level analysis looking at spe-
cific topological subgraphs. For instance, locating durable
protein complexes may give insight into repeated motifs
that remain stable through the evolution of various protein
mechanisms. Durable patterns may also be relevant in viral
analysis, where scientist could, for example, be interested
in finding durable chains of nucleotides of virus RNA for
predicting which genes are prone to mutations.

Durable graph patterns are also useful in the case of
graphs modeling network and transportation networks. For
example, take a network traffic dataset where nodes repre-
sent IP addresses and edges are typed by classes of network
traffic [2]. Querying such graphs and locating durable pat-
terns in specific time frames may indicate periodic infiltra-
tions (path queries), denial of service (parallel paths) and
malicious spreads (tree queries).

Finally, a problem with graph pattern matching algo-
rithms is that they often return an excessive number of
matches [3]. Persistence through time offers a means of
discarding transient matches and identifying the ones that
are meaningful. It offers a way of ranking the results and
presenting to users only the k most durable among them.
Contribution. Although, there has been considerable in-
terest in processing graph pattern queries in static graphs
(e.g., [4], [5], [6], [1], [7], [8], [9], [10]), we are not aware of
any study on searching for durable graph matches in the
history of a graph. There has also been some recent work on
historical graph processing but the focus has been on how
to efficiently store and reconstruct the snapshots relevant to
a query by exploiting among others clustering, operational
deltas, and efficient data versioning [11], [12], [13], [14].

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

2

u1

u4

u2 u3

u5

u1

u4

u2

u6

u3

u5

u1

u4

u2

u6

u3

u5

u1

u4

u2

u6

u3

u5

u1

u4

u2

u6

u3

u5

G1 G2 G3 G4 G5

l3l1

l1

l2

l3

l1

l1

l1

l2

l2

l3

l1 l1
l2

l1
l2l1

l1

l3l1

l1 l3l2 l1 l3l2

l3
l2l1

Fig. 1: Example of a temporal labeled graph

Finally, indexes have been proposed for reachability [15] and
shortest path [16] queries on non-labeled historical graphs.
Instead, in this paper, we propose efficient algorithms and
indexes targeting graph pattern queries.

The straightforward approach to processing durable
graph pattern queries is to find the matches at each snap-
shot by applying a state-of-the-art graph pattern algorithm
and then aggregate the results. However, even an efficient
implementation of this approach incurs large computational
costs, since all matching patterns in each snapshot must be
identified, even patterns that appear only once. To avoid the
computational cost of applying the algorithm per snapshot,
we propose an efficient DURABLEPATTERN algorithm.

Our DURABLEPATTERN algorithm identifies the durable
matches by traversing a compact representation of the graph
snapshots, termed labeled version graph. In a labeled version
graph (LVG), each node, edge and label is annotated with
its lifespan, that is, with the set of the time intervals during
which the corresponding node, edge and label existed in the
graph. An efficient in-memory layout of the LVG allows fast
retrieval of neighboring nodes at each snapshot. To prune
the number of candidate matches, we introduce neighbor-
hood and path time indexes based on Bloom filters [17],
[18]. Finally, our DurablePattern algorithm is driven by a ϑ-
threshold on the duration of the matches. We exploit various
strategies that uses the time-based indexes to efficiently
determine an appropriate value for the duration threshold.

We have experimentally evaluated our approach on dif-
ferent datasets and graph pattern queries. Our performance
results show the effectiveness of the various aspects of
the DURABLEPATTERN algorithm and indicate that it can
efficiently process durable queries.

In summary, in this paper, we make the following con-
tributions:

• We formulate the problems of most and top-k
durable graph pattern queries.

• We propose a new DURABLEPATTERN algorithm that
exploits an LVG-based representation, ϑ-threshold
graph exploration search and appropriate Bloom-
filter based time indexes to process durable graph
pattern queries efficiently.

• We perform extensive experiments on various
datasets that show both the efficiency of our
DURABLEPATTERN algorithm and the effectiveness
of durable graph pattern queries in locating interest-
ing matches.

Roadmap. The rest of this paper is structured as follows.
In Section 2, we formally define the durable graph pattern
matching problem. In Section 3, we provide the general
outline of our DURABLEPATTERN algorithm and in Sections

4-7, we present in detail its various components. In Section
8, we present an experimental evaluation of our approach.
Finally, Section 9 provides a comparison with related work,
while Section 10 concludes the paper.

2 PROBLEM DEFINITION

Let Σ be a set of labels. We consider directed (node) labeled
graphs G = (V,E, L) where V is the set of nodes, E the set
of edges and L : V → Σ∗ a labeling function that maps a
node to a set of labels. A graph G

′
whose nodes and edges

are subsets of the nodes and edges of G is called a subgraph
of G. Given a graph G and a user-specified graph pattern
P , a graph pattern query asks for all occurrences of P in G.
Definition 1 (Graph Pattern Matching). Given a graph G =

(V,E, L) and a graph pattern P = (VP , EP , LP), a graph
pattern query returns all subgraphs m = (Vm, Em) of G
for which there exists a bijective function f : Vp → Vm
such that for each v ∈ VP , LP(v) ⊆ L(f(v)) and for each
edge (u, v) ∈ Ep, (f(u), f(v)) ∈ Em. Graph m is called
a match of P in G.

Note, that we use subgraph isomorphism semantics for
matching. Further, additional edges may exist between the
nodes of the subgraph that matches the pattern, besides
the edges appearing in the pattern. Also, since, we allow
multiple labels per node, we ask that the labels of the match-
ing node are a superset of the labels of the corresponding
pattern node (i.e., LP(v) ⊆ L(f(v)), for each v ∈ VP).

Most previous research in graph pattern queries looks
for matches in a single static graph (e.g., [8], [9]). However,
most real world graphs change over time. New nodes and
edges are added, and existing nodes and edges are deleted.
In addition, new labels may be associated with nodes, and
existing labels may be deleted.

In this paper, for simplicity, we assume that time is
discrete and use successive integers to denote successive
time instants. Let Gt = (Vt, Et, Lt) denote the graph snapshot
at time instant t, that is, the sets of nodes, edges and the
labeling function that exist at time instant t. A temporal graph
captures the evolution of the graph over time.
Definition 2 (Temporal Graph). An temporal graph G[ti,tj] in

time interval [ti, tj] is a sequence {Gti , Gti+1, . . . , Gtj}
of graph snapshots.

An example is shown in Fig. 1 which depicts a temporal
graph G[1,5] consisting of five graph snapshots {G1, G2, G3,
G4, G5}.

We say that a subgraph m is a match of a pattern P in a
temporal graph G[ti,tj], if m is a match of P in at least one
graph snapshot Gtk in G[ti,tj]. Since, a match may appear in
more than one graph snapshot of the temporal graph, we

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

3

would like to find the most durable among the matches. Let
us first introduce some terminology.

We use the term lifespan for the validity time of a graph
element (i.e., node, edge or label), that is, for the set of
time intervals during which the corresponding element
exists. For example, the lifespan of edge (u1, u3) in Fig.
1 is {[1, 1], [3, 4]}. Lifespans are set of time intervals (also
known as temporal elements [19]) to allow the deletion and
re-insertion of a graph element. Given two sets of time
intervals I1 and I2 , their time join I1 ⊗ I2 is the set of time
intervals that include the time instants that belong to both
I1 and I2. For example, the join of {[1, 3], [5, 10], [12, 13]}
and {[2, 7], [11, 15]} is {[2, 3], [5, 7], [12, 13]}. Finally, we
distinguish between two different notions of duration.
Definition 3 (Duration). Let I be a set of time intervals. We

define the collective duration of I , ldur, as the number of
time instants in I and the contiguous duration of I , ndur,
as the number of instants in the largest time interval in
I . We use dur to refer to both.

For example the collective duration of I = {[1, 3],
[5, 10], [12, 13]} is 11, while its contiguous duration is 6. Let
us now formally define the lifespan of a match.
Definition 4 (Pattern Match Lifespan). Given a tempo-

ral graph G[ti,tj] and a pattern query P , the lifespan,
lspan(G[ti,tj], P , m), of a match m of P in G[ti,tj] is the
set I of time intervals that include all time instants, tk,
ti ≤ tk ≤ tj , such that, m is a match of P in graph
snapshot Gtk .

We are now ready to define durable graph pattern
queries for temporal graphs. In this case, besides the graph
pattern P , the query also includes a set of time intervals,
IP , that specifies the time periods for which we look for
matches. Having IP as part of the query allows us to
look for durable matches at specific periods of time within
the temporal graph. For example, we may want to locate
matches that appear only in snapshots corresponding to
weekends, or, to specific seasons of interest.
Definition 5 (Durable Graph Pattern Match). Given a tem-

poral graph G[ti,tj], a graph pattern P and a set of time
intervals IP :

• a most durable graph pattern query returns the
matches m and their lifespans such that m =

argmax
m′match of P

(dur(lspan(G[ti,tj], P , m′) ⊗ IP).

• a top-k durable graph pattern query, given an integer
k > 0, returns a set S of k matches and corre-
sponding lifespans such that for all matches m in S,
dur(lspan(G[ti,tj], P , m) ⊗ IP) ≥ dur(lspan(G[ti,tj],
P , m′) ⊗ IP) for all matches m′ not in S.

Based on the definition of duration, we may have con-
tiguous most durable (or, top-k) graph matches and collec-
tive most durable (resp. top-k) graph matches.

An example of a graph pattern query is shown in Fig.
2(a) which asks for matches that depict a connection be-
tween a node with label l1 and two other nodes with labels
l1 and l2. Some matches of this query for IP = {[1, 5]} in
the temporal graph of Fig. 1 are shown in Fig. 2(b). If this
query is interpreted as a collective most durable query, it
will return only match 1 (and its lifespan), whereas in the

Pattern Nodes Match 1 Match 2 Match 3

p1 u1 u1 u3

p2 u4 u5 u5

p3 u2 u2 u6

Lifespan [1,1][3,3][5,5] [2,2][4,4] [2,3]

Duration ldur:3 ndur:1 ldur:2 ndur:1 ldur:2 ndur:2

l2

p1

p3p2

l1

l1

(a) (b)

Fig. 2: Example of (a) a graph pattern query, (b) the corre-
sponding matches in the temporal graph of Fig. 1.

Algorithm 1 Baseline Algorithm(GI , P , IP)

Input: Temporal graph GI , pattern P , set of intervals IP
Output: Most (top-k) contiguous durable matches m

1: Hash tables H , H ′

2: M0 ← ∅, i← 1, tp ← 0
3: for all t ∈ IP ⊗ {I} do
4: Mi ← get matches of P in Gt

5: for each m ∈Mi do
6: if m ∈Mi−1 and t = tp + 1 then
7: H[m]++
8: else if H[m] not exists then
9: H[m]← 1

10: H ′[m]← 1
11: else if H[m] > H ′[m] then
12: H ′[m]← H[m]
13: H[m]← 1

14: tp ← t, i++
15: return (all || top-k) matches m with the largest H ′[m] and

their lifespan

contiguous case it will return match 3. A top-2 durable
query will return match 1 and either of match 2 or 3, if
interpreted as collective, and match 3 followed by either
match 1 and 2, if interpreted as contiguous.

3 THE DURABLE GRAPH PATTERN ALGORITHM

In this section, we start by describing a baseline approach to
processing durable graph pattern queries and then present
our DurablePattern algorithm.

3.1 Baseline Approach
A straightforward way to process a durable graph pattern
query is to first execute the graph pattern query P at each
graph snapshotGtm , tm ∈ IP , of the temporal graph using a
state-of-the-art graph pattern matching algorithm and then
aggregate the results by counting for each match the number
of times it appears in the result.

The steps of the baseline approach for finding contiguous
durable matches are shown in Algorithm 1. We represent
each match m as a string u1u2...u|VP |, where ui, 1 ≤ i ≤
|VP |, are the nodes of the matched subgraph m ordered
following the order of the nodes in P that each one of
them matches. Thus, we reduce graph matching to string
matching. Furthermore, to match the resulting strings we
use hashing. We maintain two hash tables H and H ′. H[m]
indicates for each match m the duration of the current
largest time interval for which m was found to be a match,
while H ′ the duration of the previous largest interval. We
compute the subgraphs that match the input graph pattern
P for each graph snapshot Gt of the temporal graph, for t ∈

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

4

u1

u4

u2

u6

u3

u5

l1: [2,4], l3: [1,1][5,5]

[1,1][3,4]

[1,5]

[1,1][3,3][5,5]

[4,5]

[2,5]

[4,5]

[2,5]

[1,5]

[1,5]

[1,5]

[1,5][1,5]

l2: [1,5]

l1: [1,5] l2: [2,5]

l1: [1,5]
l1: [2,3], l3:[1,1] [4,5]

Fig. 3: The LVG of the temporal graph of Fig. 1.

IP (line 4). For each match m, the algorithm checks whether
it was found in the exact previous time instant and if this is
the case it increases H[m] (lines 6–7). Otherwise, if match m
is found for the first time, the algorithm initializes both hash
tables (lines 9–10), or if match m was previously found, it
updates H[m] and H ′[m] appropriately (lines 12–13).

To process a collective durable graph pattern query, we
use just one hash table H and for each time instant that a
match m is found, we increase H[m].

Even with these optimizations, the baseline approach is
expensive, since we have to retrieve all matches at each
and every graph snapshot, even those matches that appear
only in just one snapshot. For frequent patterns and long
intervals, the number of retrieved matches grows very fast.

3.2 Durable Graph Pattern Matching

We consider a more efficient approach that uses a concise
representation of the temporal graph, that we call a labeled
version graph. The labeled version graph is the union of
the graph snapshots where each node, edge and label is
annotated by its lifespan.

Definition 6 (Labeled Version Graph). Given a temporal
graph GI = {Gti , Gti+1, . . . , Gtj}, its labeled version
graph (LVG) is a lifespan annotated directed graph V GI
= (VI , EI , LI , Lu, Le, Ll) where: VI =

⋃
tm ∈ I Vtm , EI

=
⋃
tm ∈ I Etm , LI =

⋃
tm ∈ I Ltm , Lu : VI → I assigns to

each node u ∈ VI its lifespan Lu(u), Le : EI →I assigns
to each edge e ∈ EI its lifespan Le(e) and Ll : LI → I
assigns to each node label l ∈ LI(u) its lifespan Ll(l).

Fig. 3 depicts the labeled version graph of the temporal
graph of Fig. 1.

In addition to the LVG, we also maintain a time-label
index, VILA, which allows constant time retrieval of all
nodes having a specific label at a given time instant. We will
refer to LVG augmented with this time index as VILAG.
VILAG is our basic data structure.

The main steps of our durable graph pattern algorithm
are outlined in Algorithm 2. The algorithm runs on the
labeled version graph and is driven by a duration threshold
ϑ. It consists of two phases. The first phase (lines 2–5)
computes the candidate matching nodes in VI for each node
p ∈ VP in the given set of time intervals IP and stores them
in a set C(p). We call the procedure of generating the candi-
date nodes FILTERCANDIDATES. The resulting candidate set
C(p1) × ... × C(p|VP |) determines the overall search space
of the algorithm. To avoid a sequential scan of all nodes of
a large graph that would result in a total search space of

Algorithm 2 DurablePattern Algorithm(V GI , P , IP , Ptype)

Input: Version graph V GI , pattern P , set of intervals IP , query
type Ptype (i.e., most/top-k, collective/contiguous)

Output: Durable matches m of type Ptype

1: ϑ← INITIALIZEDURATION(Ptype),M ← ∅
2: for each p ∈ VP do
3: C(p)← FILTERCANDIDATES(V GI , P , p, IP)
4: if C(p) = ∅ then
5: return ∅
6: while not (M.found() or ϑ = 0) do
7: C ← REFINECANDIDATES(V GI , P , C, ϑ, IP , Ptype)
8: DURABLEGRAPHSEARCH(V GI ,P , C, 1, ϑ, IP , M,Ptype)
9: ϑ← RECOMPUTEDURATION(Ptype, ϑ)

10: return M

∏|VP |
n=1 |C(|VI |)|, we use VILA. VILA returns for each pattern

node p the graph nodes that have the same label as p in at
least one time instant in IP .

In the second phase (lines 6–9), we search for a match.
The algorithm exploits the fact that a feasible match of a
pattern node must have the appropriate descendants and
ascendants nodes. Candidates nodes that do not meet these
criteria are pruned and not examined by the algorithm.
The check of the appropriate descendants and ascendants
is conducted by the REFINECANDIDATES procedure. Then,
Algorithm 2 traverses the remaining candidate nodes by
calling the recursive DURABLEGRAPHSEARCH procedure.
The search procedure uses the candidate sets and searches
in a depth-first manner for matches with duration at least ϑ.
If no solution is found, the algorithm reduces ϑ by calling
RECOMPUTEDURATION and searches for matches with a
smaller duration until a solution is found.

In-memory storage of the temporal graph. Our basic data
structure for the in-memory storage of the temporal graph
is LVG. For storing lifespans, we use bit arrays. Assume
without loss of generality, that the maximum number of
graph snapshots is T . Then, a lifespan, i.e., set of intervals, I
is represented by a bit array B of size T , such that B[i] = 1 if
time instant i belongs to I and 0, otherwise. For example, for
T = 16, the bit representation of I = {[2, 4], [9, 10], [13, 15]} is
0111000011001110. This representation supports an efficient
implementation of join. In particular, let I1 and I2 be two
set of intervals and B1 and B2 be their bit arrays. Then, I1
⊗ I2 can be computed as B1 logical-AND B2.

For the in-memory storage of the LVG, we maintain an
array of nodes, where each node is associated with a key-
value structure that maps each node u to its neighboring
nodes along with a bit array of size T . The bit array keeps
the lifespan of each edge during T . The required storage for
these adjacency lists is |EI |T , since we have to store for all
edges EI in V GI their lifespan of size T . We also maintain
for each node u its labels during T . A bit array of size T is
associated with each label l of u to represent the lifespan of
this label during T . The required storage for label lifespans
is |ΣI |T , where ΣI is the set of all labels of VI . Fig. 4(a)
depicts the in-memory layout of LVG.

VILA, our basic time index, consists of two levels. The
first level is an array of size T where each position i refers
to a time instant ti and links to a set of labels L. Each label
l in this set links to the set of nodes that are labeled with l

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

5

ui

uj

Node array

.

.

.

uj 01001

Edge map entry

Edge lifespan

……………

eij

Target node

li

lj

.

.

.

0 1 1 0 1

0 1 1 0 1

Label set
Label lifespan

………

………

Label lifespan

li

lj

Label setti

tj

.

.

.

.

.

.

.

.

.

Interval array

VILA

VILAG

LVG

(a)

li

lj

Label set
ui

uj

Node array

TINLA(r)

1 0 1 0 1 ………

1 0 1 0 1 ………

.

.

.

.

.

.

.

.

1

r

.

.

Radius

Counters

lifespans

Counters

CTINLA(r)

(b)

ti tj

Interval array

.

...
Label paths

Node array

Each time instant of interval array is
associated with a label path

li li+1 lj li ,li+1 li,....,lj

...

Each label path is
associated with a node array

TIPLA(λ)

(c)

Fig. 4: In-memory layouts of (a) VILAG, (b) time-neighborhood-label indexes, and (c) time-path-label index

at ti. Thus, the index has at most |VI ||ΣI |T nodes. Fig. 4(a)
depicts the in-memory layout of VILA.

The total time for constructing VILAG from scratch is
O(|VI | + |EI | + |ΣI |T), that is the time needed to create
both LVG and VILA. We incrementally update VILAG for
each newly inserted edge in a time instant t, by updating the
edge map entry and label set of the interval array. The bit
array structure for lifespans and the map structure for the
adjacency lists allow us to perform each update operation
in constant time.

Refining the Algorithm
In the following sections, we refine the basic steps of Algo-
rithm 2 to address the following issues:

1) reduce the size of the candidate set C(p) for each
node p and efficiently retrieve this set using appro-
priate time indexes,

2) determine appropriate values for the duration
threshold,

3) efficiently search in the labeled version graph, and
4) refine the overall search space.

4 TIME INDEXES

Besides our basic index, VILA, we introduce additional time
indexes to speed up matching. We explore two types of
indexes, namely neighborhood and path indexes. We also
present compressed representations of both.

4.1 Neighborhood and Path Time indexes

The time-neighborhood-label, TINLA(r), index maintains for
each node u ∈ VI information about the labels of its
neighbors at distance at most r at each time instant, that
is, the neighbors that are at most r hops away from u. For
example, TINLA(1) maintains information for neighbors at
distance 1, that is, for the immediate neighbors of each node.
Specifically, TINLA(r) maintains for each u ∈ VI a set of
labels. Each label l is associated with r bit arrays of size T ,
where T is the number of graph snapshots. The i-th position
of the j-th array, 1 ≤ j ≤ r, is set to one, if at least one
neighbor of u at distance j has label l at the corresponding
time instant ti. TINLA(r) is depicted in Fig. 4(b).

We also consider replacing the bit arrays associated with
each label l with counter arrays where the i-th position of

the j-th counter array is equal to the number of neighbors
of u at distance j that have label l at time instant ti. We call
this variation, counter-time-neighborhood-label or CTINLA(r)
index. CTINLA(r) is shown in Fig. 4(b).

Furthermore, we explore a compact representation of
TINLA and CTINLA using Bloom filters. Bloom filters are
probabilistic data structures often used to represent a set A
of n elements to support membership queries [17], [18]. The
idea is to allocate an array of F bits, initially all set to 0,
and then choose l independent hash functions, hi, 1 ≤ i ≤ l,
each with range {1, . . . , F}. The hash functions are applied
to each element a of the set A and the bits at positions h1(a),
. . . , hl(a) are set to 1. To check whether an element b belongs
to the set, the hash functions are applied to b and the bits
at positions h1(b), . . . , hl(b) are checked. If at least one of
the bits is 0, then we are certain that b does not belong to A.
Otherwise, we conjecture that b belongs to A, but there is a
certain probability that this is not the case. This is called a
false positive. Parameters F and l are chosen such as the false
probability rate is acceptable (usually ≤ 1%).

For the probabilistic representation of TINLA(r), de-
noted TINLAB(r), we maintain a Bloom filter with infor-
mation for the labels of neighbors at distance r of node u.
Specifically, we insert in each Bloom filter a set that consists
of pairs (t, l) where l is a label of a neighbor of node u at
distance r at time instant t.

A more compact representation of CTINLA(r), denoted
CTINLAB(r), is achieved by using counting Bloom filters
[18]. In this case, each entry of the filter array is not a single
bit but a small counter. When an element (t, l) is inserted
in the filter, the corresponding counters are incremented by
one. When we want to find the number of neighbors of node
u that have a specific label l at time instant t, again, we
apply the hash functions. We retain the smaller of the filter
counters as an estimate of the number of neighbors.

TINLA(r) requires storage at most r |VI | |ΣI |T , since for
all nodes in the worst case we have to store for each label a
bit array of size T . Using Bloom filter, TINLAB(r) requires
storage at most r |VI |F , where F is the average size of the
Bloom filer. We do not use the same size Bloom filters for
all nodes. Instead, we estimate the size of each Bloom so
as to achieve a specified false positive rate. In the case of
CTINLA and CTINLAB, we store an integer value for each
label instead of a bit array.

Finally, we consider a time-path-label or TIPLA(λ) index,

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

6

in which we maintain for each time instant t in T and each
node u ∈ VI , the label paths of length up to λ starting from u
at t. TIPLA(λ) enumerates all paths up to a maximum length
λ using BFS. The number Pl of possible label combinations

is very large: Pl = (

|λ|∑
r=1

|L|!
(|L| − r)!

), but experimentally λ

= 3 proved a good choice. Paths are stored as strings. For
example, for λ = 2 the label path l1 → l2 → l3 is stored as
key [l1, l2, l3]. Each key is associated with the set of nodes
that are the sources of the corresponding path. For instance,
key k = [l1, l2, l3] is associated with the nodes that are
labeled with l1, connected to a node labeled with l2, that
is in turn connected to a node labeled with l3. TIPLA is
shown in Fig. 4(c). The required storage is Pl |VI | T .

For the compact representation of TIPLA, TIPLAB, we
maintain a Bloom filter for each node u in which we insert
pairs (t, lpath), where each lpath denotes the label path of
length up to λ starting from u at time instant t. The required
storage is |VI | F , where F is the average size of the Bloom
filters.
Construction Time. The total time for constructing TINLA(r)
is O(r(|EI | + |ΣI |T)). To achieve this, we construct
TINLA(1) by checking for each node the labels of its 1-hop
neighborhood; this can be constructed in O(|EI | + |ΣI |T).
Then, for each node u and for each ri-hop, 1 < ri ≤ r
we retrieve the labels of the (ri−1)-hop neighborhood of its
adjacency nodes which constitutes the TINLA(ri) of u. Con-
structing CTINLA(r) requires the same time as TINLA(r).
For TIPLA(λ), for each node we compute all paths of length
λ, which requires a total time of O((|VI | + |EλI |)|ΣI |T),
where |EλI | is the number of edges that need to be traversed
until depth λ. Creating the compressed indexes requires the
same time as needed for constructing the uncompressed
ones plus the time for applying the hash functions. We
evaluate the compression rate and the performance of the
compressed filters in Section 8.

4.2 Computing and Filtering Candidate Nodes
The indexes (either, the uncompressed or the compressed
versions) are used to compute and filter the candidate
nodes. VILA is first used to get the initial set of candidate
matches of a pattern node. In the case of neighborhood-
based indexes, the indexes are used to retain a node u
as a candidate match of a pattern node p, only if the
neighborhood subgraph of u is sub-isomorphic to that of p
in at least one time instant in I . To enforce this requirement,
we use TINLA(r) to remove a node u from the candidate
set C(p), if u does not have a matching distance r neighbor
whose label lifespan intersects in at least one time instant
in I with the label of a corresponding distance r neighbor
of p. CTINLA(r) performs a refined test in which we also
take into account the multitude of the labeled nodes in
the r-neighborhood, thus the candidate sets produced by
CTINLA(r) are subsets of the corresponding candidate sets
produced by TINLA(r), i.e., C(p)CTiNLa(r) ⊆ C(p)TiNLa.

When TIPLA is used, we first compute for each pattern
node p all label paths starting from p up to length λ. Then,
for all label paths Lpath(p) of p and for each time instant
of I , we use TIPLA to retrieve the set of nodes that are
the source nodes of each lpath ∈ Lpath(p). Since, a feasible

match of p must be a node that is the source node of all
paths in Lpath(p), we intersect the retrieved sets in each
time instant.

Generally, for each candidate setC(p) of p ∈ VP , it holds:

|C(p)TiPLa(λ)| ≤ |C(p)TiNLa(r)| ≤ |C(p)V iLa|, λ = r

However, there is no direct relationship between the
candidate sets of CTINLA(r) and TIPLA(λ), with λ = r.
Instead, the sizes of the corresponding candidate sets de-
pend on the pattern query. For example, for a pattern query
with a node p connecting to two other nodes that have the
same label l, TIPLA will return as candidates for p, even
nodes that have just a single path l, whereas CTINLA will
prune such nodes and return only nodes that have at least
two neighbors with label l. On the other hand, for a pattern
query where p is connected with a node with label l1 which
in turn is connected with a node with label l2, CTINLA(2)
will return as candidate a node that has a neighbor with
label l1 at distance 1 and a neighbor with label l2 at distance
2, even if these two nodes are not connected with each other,
while TIPLA will prune such nodes.

5 DURATION THRESHOLD

Our durable graph pattern matching algorithm (Algo-
rithm 2) is driven by a threshold duration ϑ, in the sense
that the algorithm searches for matches whose lifespan
has duration at least ϑ, thus ϑ determines the order of
searching for possible matches. The value of ϑ is set to an
appropriate initial value (line 1) and in refining of candi-
dates (REFINECANDIDATES) and searching for subgraphs
(DURABLEGRAPHSEARCH), we look for subgraphs with du-
ration at least ϑ.

The first strategy for determining ϑ, called MIN, initial-
izes ϑ with 1, that is the minimum possible value, look-
ing for matches that appear in at least one time instant.
While we search for matches (DURABLEGRAPHSEARCH),
ϑ is updated accordingly. For a most durable query, ϑ is
updated such as to be equal to the duration of the most
durable match found so far. For a top-k durable query, ϑ
is updated so as to be equal to the duration of the k-th
match found so far. With the MIN strategy, in the first calls of
the recursive durable graph search procedure, the algorithm
explores edges that have a short duration compared to the
actual duration of a potential match. Thus, the algorithm
pays a cost for exploring many matches of small duration.

The next two strategies, called MAXRANK and MAXBI-
NARY, follow a different approach and initialize ϑ to a value
that is close to the actual duration of the seeking match(es).
This approach reduces the number of candidate matches,
since fewer subgraphs qualify as such. Since the actual
duration of the durable matches is not known, we use the
time indexes to determine the maximum possible duration
of a match and use this value to initialize ϑ. If no matches are
found with this estimated duration, we recompute another
smaller value for ϑ.

To this end, we introduce the ranking structure Rank,
which maintains a ranking of candidates for each pattern
node p based on their duration. In particular, Rankθ(p)
includes the nodes that are candidate matches of p with
duration at least θ ranked by duration. To construct

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

7

Rankθ(p), we use the time indexes VILA, TINLA (CTINLA)
and TIPLA during the FILTERCANDIDATES procedure.
Rankθ(p) using VILA refers to a set of nodes that are
feasible matches of p and have the same label as p for a
duration at least θ. Similarly, the Rankθ(p) using TINLA
(CTINLA) refers to a set of nodes that have the correct
adjacency and label as p for a duration at least θ. Finally,
the Rankθ(p) using TIPLA refers to a set of nodes that have
the required paths as p for a duration at least θ.

The maximum duration of a match cannot be larger than
the minimum value among the maximum durations of the
candidates for each nodes p ∈ P . Formally, for each node p,
let θmax(p) be the maximum value of θ for which Rankθ(p)
is not empty. MAXRANK and MAXBINARY initialize ϑ as:

ϑ = min
p∈VP

θmax(p) (1)

By doing so, the candidate sets that have to be exam-
ined are smaller, since we use only candidate nodes with
duration greater or equal to ϑ. If no solution is found with
duration at least ϑ, a new smaller threshold is determined.
The MAXBINARY strategy uses binary search for determin-
ing the next smaller ϑ value. The MAXRANK strategy gets
for each node p the maximum θ smaller than the current ϑ
for which Rankθ(p) is not empty and selects as the new ϑ
the minimum among these values. In recomputing ϑ, both
strategies take also into account the duration of matches
found during the previous execution of DURABLEGRAPH-
SEARCH. This is explained in detail in Section 6.

For a top-k query, for both strategies, we also check
whether the combination of candidates nodes with duration
at least ϑ produces at least k matches. If this is not the case,
we use the largest ϑ value that fulfills this requirement.

Note that at each step we select larger candidate sets
including nodes that have candidate duration smaller than
the previous threshold. Thus, searches get more expensive
as ϑ decreases. In terms of the number of calls to DURABLE-
GRAPHSEARCH, the algorithm is called at most |Θ| times,
where Θ is the set of distinct values of ϑ that the algorithm
uses to find durable matches. For the MAXBINARY strategy,
Θ is at most logarithmic to the initial value of ϑ.

6 GRAPH SEARCH

The DURABLEGRAPHSEARCH algorithm (shown in Algo-
rithm 3) searches in a depth-first manner for durable
matches with duration at least ϑ.

DURABLEGRAPHSEARCH first checks if the given candi-
date sets contain isomorphic matches to the given pattern.
First, it creates a copy C ′ of C (line 19), isolates a node u
in C(pi) and treats it as if it were the only node to match
pattern node pi (line 20). Then, a refinement is performed
on C ′, which removes all nodes in C(p1), . . . , C(p|VP |)
that are not contained in an isomorphic match with u. If
the pruning of candidates eliminates all nodes in C ′, no
isomorphic match exists with the current mapping, and the
algorithm backtracks. Otherwise, the search procedure is
called recursively, passing the subsequent pattern node pi+1

until all pattern nodes are examined or refining eliminates
all remaining possible matches. The above procedure is
performed for each pattern node in C(pi).

Algorithm 3 DURABLEGRAPHSEARCH(V GI , P , C , i, ϑ, IP ,
M , Ptype)

Input: Version graph V GI , pattern P , candidates set C, pattern
node to be matched i, duration threshold ϑ, set of intervals
IP , matches structure M , query type Ptype

Output: Solution M of durable graph pattern P of type Ptype

1: if i = |VP | then
2: for each (pi, pj) ∈ EP do
3: I ← IP ⊗ Le((C(pi), C(pj))
4: I ← I ⊗ LC(pi).label(pi) ⊗ LC(pj).label(pj)

5: if Ptype = topk then
6: UPDATETOPKSTATE(C,M, I, ϑ)
7: if |M | = k and M.durationMin ≥ ϑ then
8: FINISH()
9: else if Ptype = most then

10: if |I| = ϑ then
11: UPDATESTATE(C , M)
12: else if |I| > ϑ then
13: ϑ← |I|
14: RESTORESTATE(C , M , ϑ)
15: else
16: KEEPTRACK(M , |I|)
17: else
18: for each u ∈ C(pi) and u /∈ C(pj), j < i do
19: C′ ← copy of C
20: C′(pi)← {u}
21: C′ ← REFINECANDIDATES(V GI , P , C′, ϑ, IP)
22: if C′ 6= ∅ then
23: DURABLEGRAPHSEARCH(V GI , P , C′, i+1, ϑ, IP ,

M , Ptype)

When a candidate match is found (line 1), an additional
check is made (lines 2–4) to ensure that all nodes and edges
of the candidate matching subgraph appear in the same
time period during IP . This is achieved by joining both the
lifespans of all edges of the matching subgraphs and the
lifespans of the labels of their incident nodes.

Next, we present details regarding storing matches
across recursive calls. We also discuss how to maintain
information for enhancing the selection of the ϑ threshold.
Most durable graph pattern queries. Regardless of the
strategy used for selecting ϑ, the algorithm maintains the
duration of the best match found so far, let us denote this
value as θcur . Since, our algorithm is using recursion, all
recursion calls must be notified when a match is found
with a duration larger than θcur , so as to prune subgraphs
with duration less than the new value. In addition, we
need to store the new durable matches and delete the
ones with duration less than θcur . UPDATESTATE keeps the
current durable matches, while RESTORESTATE removes old
matches and keeps the new ones (lines 10 – 14).

We also use the duration of the best match to improve the
selection of the new smaller ϑ by the MAXRANK or MAXBI-
NARY strategies, when DURABLEGRAPHSEARCH finds no
matches for a given ϑ. Let us denote with ϑold the old
threshold, with ϑnew the new smaller threshold computed
by MAXRANK or MAXBINARY and with θbest, θbest < ϑold,
the duration of the best match found by DURABLEGRAPH-
SEARCH. The new call to DURABLEGRAPHSEARCH is with ϑ
= max{θbest, ϑnew}. The reason is that, since we have found
at least one match with duration θbest, we should search for
matches with a larger or equal duration. The equal duration

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

8

is needed for locating all most durable matches when θbest
happens to be the largest possible duration.
Top-k durable graph pattern queries. We maintain a min
heap structure M with the top-k matches found so far
ordered by their duration. UPDATETOPKSTATE handles this
heap. Let θheap be the minimum duration of any match in
the heap and mmin be the (top) match in the heap with
duration equal to θheap. The algorithm stores any match in
the heap, until the heap becomes full. When the heap is full,
mmin is replaced by a new match m, if the duration of m is
larger than θheap.

As with most durable graph pattern queries, we use the
duration of the matches found so far to improve the selec-
tion of the new smaller ϑ, when DURABLEGRAPHSEARCH
fails to find k matches with a duration at least ϑold. Again
let ϑnew be the new threshold computed by MAXRANK or
MAXBINARY. If the heap is full, the new call to DURABLE-
GRAPHSEARCH is with ϑ = max{θheap + 1, ϑnew}. The
reason is that, since we have already found k matches with
duration at least θheap, we should search for matches with a
larger duration.

7 REFINE CANDIDATES

Let us now describe the refine procedure outlined in Algo-
rithm 4. Our refine procedure is based on the dual graph
simulation technique [20] that was shown in [21] to out-
perform the commonly used VF2 algorithm [6]. The refine
procedure checks for each node p and its candidate node u
whether the neighborhood of p ∈ VP is sub-isomorphic to
that of u in the graph. Specifically, given a set of candidates
nodes C(p) of p ∈ VP , the refine procedure retrieves all its
neighbors p′ (1–2). Then, for each u ∈ C(p), it examines
if there are any neighbors of u contained in C(p′) using
TIME JOIN described next (lines 4–9). If this is not the case,
then u is removed from C(p), otherwise its neighbors in
C(p′) are stored in a temporary set C ′p′ (lines 6–9). Now,
every node in C(p′) must be a neighbor of at least one
node in C(p). Thus, the candidate set of pattern node p′

is updated to contain only the nodes that are neighbors of
nodes in C(p) (line 12).

Since we seek durable matches, TIME JOIN that im-
plements the refinement checks if a candidate node has
the required neighbors during IP . In particular, given a
pattern node p′ and a graph node u, TIME JOIN returns
the intersection of the neighbors of u with C(p′). It starts
by checking if the neighbor v of u belongs to C(p′) (lines
17–18). Next, the algorithm joins the label lifespan of both
u, v with IP and then with their edge lifespan (line 19). The
reason is that, it has to identify in which time instances u
and v are connected with the correct labels as defined by
the pattern nodes p and p′ respectively. TIME JOIN ignores
all neighboring nodes v of node u for which the resulting
duration I is less than the current duration ϑ. Note that,
although REFINECANDIDATES checks for the duration of the
lifespans of the labels and edges of the candidate nodes, it
does not ensure that all edges of a found match are active
at the same time instants. This is the reason why when a
pattern match is found, Algorithm 3 checks for its duration
in IP (lines 1–4 in Algorithm 3).

Algorithm 4 REFINECANDIDATES(V GI , P , C, ϑ, IP)

Input: Version graph V GI , pattern P , candidate sets C, dura-
tion threshold ϑ, set of intervals IP

Output: Candidate sets C after reduction
1: for each p ∈ VP do
2: for each (p, p′) ∈ EP do
3: C′p′ ← ∅
4: for each u ∈ C(p) do
5: Cu(p

′)← TIME JOIN(p, u, p′)
6: if Cu(p

′) = ∅ then
7: C(p).remove(u)
8: else
9: C′p′ ← C′p′ ∪ Cu(p

′)

10: if C′p′ = ∅ then
11: return ∅
12: C(p′)← C′p′

13: return C
14:
15: procedure TIME JOIN(p, u, p′)
16: C′ ← ∅
17: for each (u, v) ∈ EI do
18: if v ∈ C(p′) then
19: I ← IP ⊗ Lu.label(p) ⊗ Lv.label(p′) ⊗ Le((u, v))
20: if |I| ≥ ϑ then
21: C′.add(v)

22: return C′

In the end of the procedure, the new set C ′ is returned
with all nodes that are appropriate neighbors of u, otherwise
an empty set is returned and node u is removed (lines 6–7).

8 EXPERIMENTAL EVALUATION

In this section, we evaluate: (i) the efficiency of our durable
graph pattern matching algorithm and (ii) the effectiveness
of our approach in discovering interesting durable patterns.

TABLE 1: Dataset characteristics

Dataset # Nodes # Edges # Labels # Instances
DBLP 1,167,796 4,919,780 4 58

DBLPC 42,060 141,899 19 58
YT 1,138,499 4,452,646 10 37

WIKI 2,987,535 9,379,561 10 1,000
AIDS 245 11,792 62 40,000
PCMS 883 52,608 21 200

SYNR (default) 100,000 2,723,856 5 100
SYNP (default) 100,000 3,265,747 5 100

8.1 Datasets and Setting

We use a number of real datasets. The DBLP1 datasets in-
clude publications in time interval [1959, 2016], where each
graph snapshot corresponds to one year. A node denotes
an author and there is an edge between two authors if they
wrote a paper together in the corresponding year. We use
two datasets: DBLP and DBLPC . In DBLP, we include all
publications in the DBLP dataset and assign labels to authors
based on the number of their publications, pub no, at the
corresponding year. Specifically, a label takes 4 different
values: BEGINNER, if 1 ≤ pub no ≤ 2; JUNIOR, if 2 <
pub no ≤ 5; SENIOR, if 5 < pub no ≤ 10; and PROF, if

1. http://dblp.uni-trier.de/

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

9

TABLE 2: Size and construction time

Dataset Size in memory (MB) Construction time (sec)
LVG VILA TINLAB (cprsn) CTINLAB (cprsn) TIPLAB (cprsn) LVG VILA TINLAB TINLA CTINLAB CTINLA TIPLAB TIPLA

DBLP 1,512 149 467 (16.46%) 1,037 (59.43%) 335 (90.49%) 21.32 3.18 16.35 6.12 38.46 10.43 553 72.39
DBLPC 73 14 17 (56.41%) 39 (71.53%) 19 (81%) 0.65 0.69 0.03 0.32 1.91 1.07 22.33 2.18

YT 1,667 3,104 694 (10.22%) 734 (85.47%) 781 (97.13%) 16.67 29.33 15.32 8 36.65 26.2 2,552 6,265
WIKI 5,123 10,299 770 (29.68%) 1.828 (92.04%) 1.299 (95.13%) 49.61 25.32 71.63 17.61 5,419 155.45 3,539 1,263
AIDS 129 149 32 (41.82%) 246 (89.55%) 11 (98.35%) 1.80 0.08 3.94 0.41 36.39 23.69 84.19 15.97
PCMS 20 5 2.73 (9%) 15 (88.64%) 41 (96.38%) 0.99 0.01 0.70 0.1 2.38 1.3 6.69 11.44
SYNR 294 597 82 (3.53%) 326 (87.86%) 98 (97.03%) 8 4 7.52 3.85 28.22 6.24 23.46 41.54
SYNP 553 596 110 (22.72%) 393 (95.93%) 163 (97.78%) 19 4 8.42 3.88 48.23 9.03 58.16 104.65

pub no > 10. In DBLPC , we include publications in 19 major
database, data mining, computer systems, theory, network,
and graphics conferences. Authors are labeled by the venues
they published at the corresponding year.

We also use a YouTube (YT) [22] and a Wiki-talk2 (WIKI)
datasets in time intervals [1, 37], and [1, 1000] respectively.
For both YT and WIKI, each snapshot corresponds to one
day. Since, these datasets do not contain any other informa-
tion besides the graph structure, we generate 10 different la-
bels and assign them to nodes using a Zipf distribution. For
example, labels in WIKI can refer to the expertise, language,
nationality, region, and number of edits of a user. Using
a larger number of labels would only make the problem
easier due to smaller candidate sizes. In addition, we use
two biological networks [23] namely AIDS and PCMS. The
AIDS dataset consists of 40,000 instances where each instance
denotes a topological structure of a molecule. The PCMS
dataset consists of 200 instances where each instance repre-
sents relationships among amino acids. The AIDS and PCMS
datasets have 62 and 21 unique label values, respectively.
Finally, we use synthetic datasets with varying number of
nodes and snapshots, one random (SYNR) and one (SYNP)
generated using preferential attachment [24]. All synthetic
datasets have 5 labels assigned using Zipf distribution.

The DBLP, biological and synthetic networks are undi-
rected graphs, while YT and WIKI are directed graphs. The
dataset characteristics of the real datasets and the default
synthetic datasets are summarized in Table 1. The number
of nodes and edges are those of the LVG.

We ran our experiments on a system with an Intel Core
i7-3820 3.6 GHz processor using 64 GB memory. We use all
8 threads for index construction and one thread for query
processing.

8.2 Time Indexes Storage and Construction

In this set of experiments, we report the size and time
needed to construct the various time indexes. We use as
default the compressed version of the indexes and compare
their performance with their uncompressed counterparts,
since the compressed indexes are space efficient and achieve
similar query performance. The size of the Bloom filters is
set so as to achieve a false positive rate of 1%. We use for
TINLAB and CTINLAB, r = 1 and for TIPLAB, λ = 3 and
present experiments for different values.

Size. In Table 2, we report the size of LVG and the size of
the various indexes. LVG is our in-memory representation
of the temporal graph. Comparing the size of the various
indexes, CTINLAB is overall the most expensive one due to

2. https://doi.org/10.5281/zenodo.49561

the use of counters. Although TIPLAB maintains all paths
(up to length λ = 3) per time instant, the use of Bloom filters
make it space efficient. Comparing the different datasets,
note that the size of TIPLAB for the YT dataset is larger than
DBLP since YT nodes and edges are active during all time
instances, whereas DBLP is more active in the last 20 years
in the interval. Thus, for each time instant of YT, all nodes
are assigned to label paths resulting in a larger structure.
Although, WIKI has the largest number of instances (almost
30 times more than YT), the corresponding indexes are only
2-3 times larger. For the biological networks, the neighbor-
hood time indexes for AIDS are larger that those for PCMS
and this is due to the large number of instances of AIDS.
TIPLAB in PCMS is larger than AIDS because AIDS contains
smaller graphs with much fewer paths compared to PCMS.

In Table 2, we also report the compression rate achieved
by using the compressed indexes over using the uncom-
pressed indexes. We observe that the reduction in size is
significant especially for costly indexes such as CTINLA and
TIPLA.

Construction time. As shown in Table 2, the construction
of VILA is the fastest one, because it links only each node
with the corresponding label for each time instant. TINLAB
requires time for checking the labels of the neighbors of
each node for each time instant. Since WIKI has a large
number of instants CTINLAB require almost 2 hours to
be created, since for each time instant we have to check a
very large number of neighbors. The TIPLAB construction
is also expensive in all datasets, because it has to perform a
traversal from each node and compute label paths for each
time instant. Also notice that constructing TIPLAB for AIDS
requires more time than for PCMS even if it leads to a smaller
structure, and this is due to the large number of instances in
AIDS dataset that need to be examined for label paths.

In Table 2, we also report the construction time for the
uncompressed indexes. Compression introduce overhead,
which is however justified by the reduction in storage and
the fact that the indexes are constructed once.
Scalability. We also test the scalability of the indexes in
terms of both the size of the graphs and the number of
snapshots using the synthetic datasets. For testing scalability
with size, we create an initial graph snapshot G1 with N
nodes (for N = 100,000 up to 500,000) either using a random
(SYNR) or a preferential attachment (SYNP) model. Then for
each graph, we create 100 snapshots as follows. Given Gt,
we create Gt+1 be deleting 10% random edges in Gt, and
adding 10% of new edges. The addition of edges is done
using the corresponding model. The results of the indexes
of the created temporal graphs are shown in Fig. 5(a) and
5(c). All indexes scale linearly with the number of nodes,
while the increase for TIPLAB and TINLAB is very small.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

10

0

700

1400

2100

2800

3500

100 200 300 400 500

Si
ze

 (
M

B
)

nodes (thousands)

VILA TINLAB CTINLAB TIPLAB

(a) SYNR

0

700

1400

2100

2800

3500

100 200 300 400 500

Si
ze

 (
M

B
)

snapshots

VILA TINLAB CTINLAB TIPLAB

(b) SYNR

0

700

1400

2100

2800

3500

100 200 300 400 500

Si
ze

 (
M

B
)

nodes (thousands)

VILA TINLAB CTINLAB TIPLAB

(c) SYNP

0

700

1400

2100

2800

3500

100 200 300 400 500

Si
ze

 (
M

B
)

snapshots

VILA TINLAB CTINLAB TIPLAB

(d) SYNP

Fig. 5: Index size for varying (a)(c) size of nodes, and (b)(d)
number of snapshots

For testing scalability with the number of graph snap-
shots, we create an initial graph G1 with 100,000 nodes
and then create T = 100 up to 500 snapshots as described
previously. We report the results in Fig. 12(b) and 12(b). The
results are similar as with the number of nodes. Scalability
with time is also linear with the number of nodes and the
number of snapshots.

8.3 Graph Pattern Query Processing

Let us now focus on processing durable graph pattern
queries. As our default pattern queries, we use two type
of queries: (a) random graph pattern queries, and (b) clique
queries where all nodes have the same label.

Random graph pattern queries are generated as follows.
For a random query of size n, we select a node randomly
from the graph and keep among its label the one having the
largest lifespan duration. Then, starting from this node, we
perform a DFS traversal keeping for each visited node the
label with the largest lifespan duration until the required
number n of nodes is visited. We use as our pattern, the
graph created by the union of visited labeled nodes and
traveled edges. We report the average performance of 100
random queries for each size n.

In terms of clique queries, in the DBLP dataset, we
have four label cliques. This gives us pattern queries with
varying selectivities among them the BEGINNER cliques
have the largest number of matches and the PROF cliques
the smallest. Similarly, for the YT and WIKI datasets, we get
10 different cliques. Let us call MOST and LEAST the cliques
with nodes having the most and the least frequent label,
respectively. We get similar cliques for the other datasets.

As query interval, we use the whole duration of the
temporal graph. We limit our algorithm to get the first
1,000 durable matchings for frequent patterns. In case of
durable top-k durable queries we use 10 as the default
k value. We only report the response time of collective-
time queries, since, in all cases, contiguous-time queries are
processed much faster by our algorithm because of the more
effective pruning of candidate sets due to the constraint
of the consecutive time instances. We use as default the
MAXRANK duration strategy.

TABLE 3: Comparison with the baseline algorithm

Most durable (sec) Top-k durable (sec)
Dataset Q. Size Baseline VILA Baseline VILA
DBLP 2 >5,400 3.01 >5,400 3.18
DBLP 4 >5,400 14.08 >5,400 10.23
DBLP 6 >5,400 161.07 >5,400 111.15

DBLPC 2 3.08 0.006 3.24 0.008
DBLPC 4 3.84 0.11 4.23 0.031
DBLPC 6 2.97 0.157 3.74 0.404

YT 2 >5,400 4.08 >5,400 4.08
YT 4 >5,400 6.79 >5,400 6.58
YT 6 >5,400 12.73 >5,400 12.90

WIKI 2 >5,400 3.28 >5,400 2.86
WIKI 4 >5,400 5.26 >5,400 4.58
WIKI 6 >5,400 120.14 >5,400 108.80
AIDS 2 38.53 0.98 41.56 0.94
AIDS 4 31.77 1.15 32.91 1.06
AIDS 6 27.34 1.38 29.32 1.36

Comparison with the baseline algorithm. Let us first com-
pare the performance of our algorithm with the baseline. In
this experiment, we use just VILA, the most basic time in-
dex. Table 3 reports the results for random queries for most
and top-k durable queries. Since the baseline algorithm
needs to generate all matching patterns, it is prohibitively
slow. In many cases, we had to stop the baseline after 1.5h.
As shown, the baseline algorithm takes less than 1.5h only
for small datasets or datasets with selective query patterns,
i.e., for query patterns with few matches per snapshot. Still
our algorithm with the basic time index is considerably
faster in such cases as well. For instance, in DBLPC for
small query sizes, it is up to ∼513x faster than the baseline
for both most and top-k durable queries. Also even for the
AIDS dataset, where the graphs are small, the large number
of instances makes baseline ∼30x slower.

We also run the baseline algorithm for finding durable
cliques and the results are similar. In general, the baseline
algorithm tends to generate many redundant matches even
for selective queries. (e.g., for the PROF 2-clique query,
the baseline approach generates a total of 62,302 matches,
whereas there is only one durable match).

Varying r and λ. Fig. 6, shows the impact of parameters
r (TINLAB, CTINLAB) and λ (TIPLAB) for DBLP. We
observe that increasing radius r for TINLAB and CTINLAB
does not improve performance. We examined this behavior
and found that the additional checks in each neighborhood
do not reduce the search space satisfactorily and thus the
overhead induced by these checks leads to larger response
times. TIPLAB seems to perform better as we increase λ,
since there is a huge decrease in search space. We did not
examine larger values for λ because it was prohibitively
expensive for our graphs due the very large number of
different paths. Similar observations have been made for
the other datasets and thus we use r = 1 for TINLAB
(CTINLAB) and λ = 3 for TIPLAB as default values.

Duration threshold. In this set of experiments, we compare
the different strategies for setting the duration threshold.
The results for DBLP and YT using the MAXRANK and
MAXBINARY strategies are depicted in Fig. 7 for most and
in Fig. 8 for top-k durable random queries. We also report
the results for WIKI in Fig. 10. Results with the MIN strategy
are not shown, since this strategy requires more than 1.5h in
many cases. This is due to the large size of the candidate
sets of MIN, since setting threshold ϑ equal to one in

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

11

0

100

200

300

400

500

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

r = 1 r = 2 r = 3 r = 4 r = 5

(a)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

r = 1 r = 2 r = 3 r = 4 r = 5

(b)

0

80

160

240

320

400

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

λ = 1 λ = 2 λ = 3

(c)

Fig. 6: Query time for random most durable queries for varying r for (a) TINLAB, (b) CTINLAB, and varying λ for (c)
TIPLAB in DBLP

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(a)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(b)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(c)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(d)

Fig. 7: Query time for random most durable queries using MAXRANK in (a) DBLP and (c) YT, and MAXBINARY in (b)
DBLP, and (d) YT

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(a)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(b)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(c)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(d)

Fig. 8: Query time for random top-k queries using MAXRANK in (a) DBLP and (c) YT, and MAXBINARY in (b) DBLP, and
(d) YT

0

180

360

540

720

900

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(a)

0

15

30

45

60

75

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(b)

0

600

1200

1800

2400

3000

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(c)

0

150

300

450

600

750

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(d)

Fig. 9: Query time for most durable clique queries: (a) BEGINNER in DBLP, (b) PROF in DBLP, (c) MOST in YT and (d)
LEAST in YT, note that for cliques of size 12 in DBLP, the plot is limited to 900 secs, the actual time for VILAG, TINLAB,
is 1555, 1548 respectively and for TIPLAB 1331 secs

0

60

120

180

240

300

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(a)

0

60

120

180

240

300

4 6 8 10 12

Ti
m

e
(s

ec
)

Query Size

VILA TINLAB CTINLAB TIPLAB

(b)

Fig. 10: Query time for random most durable queries using
(a) MAXRANK, and (b) MAXBINARY in WIKI

the first steps of the algorithm results in searching in all
graph snapshots for durable matches. Similar results hold
for cliques queries and the other datasets.

Overall, the MAXRANK strategy outperforms the
MAXBINARY strategy for all datasets and all but the largest
query sizes. This is because MAXBINARY reduces the ϑ
threshold at each step in half often producing values far
below the actual duration thus creating large candidate sets
and more recursive calls in each step. MAXBINARY performs
better only for the largest query sizes since for such queries
the actual duration of the matches is small and thus by
reducing ϑ at each step in half, MAXBINARY is able to reach

the correct threshold faster.

TABLE 4: Number of selected ϑ values and number of
recursive calls for TIPLAB in DBLP

MAXRANK MAXBINARY
Q. Size # ϑ # recursions # ϑ # recursions

2 15 3 2 10
4 16 166 4 348
6 19 932 3 2,026
8 19 1,853 3 759
10 19 2,263 3 1,169

In Table 4, we present the number of selected ϑ values
and the recursive calls required for returning the most
durable cliques in DBLP using MAXRANK and MAXBI-
NARY, where the number of recursive calls accounts for
the actual cost of the algorithm. The number of calls is not
proportional to the number of ϑ values, since for larger ϑ
values we have smaller candidate sizes. MAXRANK selects
more ϑ values but these values are large, whereas ϑ selects
fewer but smaller ones.

Overall, MAXRANK seems to strike a good balance giv-
ing few recursive calls with high enough ϑ values and we
use this strategy as the default one.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

12

0

120

240

360

480

600

10 20 30 40 50

Ti
m

e
(s

ec
)

k

4 6 8 10 12Query Size:

(a)

0

120

240

360

480

600

100 200 300 400 500

Ti
m

e
(s

ec
)

k

4 6 8 10 12Query Size:

(b)

Fig. 11: Query time using TIPLAB for top-k durable queries
for various k and query sizes in DBLP

0

200

400

600

800

1000

100 200 300 400 500

Ti
m

e
(s

ec
)

nodes (thousands)

VILA TINLAB CTINLAB TIPLAB

(a) SYNR

0

200

400

600

800

1000

100 200 300 400 500

Ti
m

e
(s

ec
)

snapshots

VILA TINLAB CTINLAB TIPLAB

(b) SYNR

0

70

140

210

280

350

100 200 300 400 500

Ti
m

e
(s

ec
)

nodes (thousands)

VILA TINLAB CTINLAB TIPLAB

(c) SYNP

0

250

500

750

1000

1250

100 200 300 400 500

Ti
m

e
(s

ec
)

snapshots

VILA TINLAB CTINLAB TIPLAB

(d) SYNP

Fig. 12: Query time for random most durable queries for
varying (a)(c) size of nodes, and (b)(d) number of snapshots

Time indexes. Let us now compare the performance of the
different time indexes using the default MAXRANK strategy.
Results are shown for most durable random queries in
Fig. 7(a), 7(c) and Fig. 10(a) and for top-k durable random
queries in Fig. 8(a) and 8(c). In addition, in Fig. 9, we depict
results for the most and least selective cliques queries. A first
observation is that the relative performance of the indexes
is the same for the most and the top-k random queries. The
same observation was found to hold for top-k clique queries
(not shown).

Overall, the indexes that lead to smaller candidate sets
and thus achieve more effective refinement work better.
Which index works best depends on the type of the query.
For random queries, TIPLAB and CTINLAB work the best,
with TIPLAB working better for large networks such as
WIKI. On the other hand, for clique queries, CTINLAB
outperforms TIPLAB. The reason is that, since we use
cliques with the same labels, the matches need to have a
specific number of neighbors with this label, and the prun-
ing achieved by CTINLAB is substantial. Note also, that the
most selecting queries PROF and LEAST are considerable
faster than the corresponding less selective ones, BEGIN-
NER and MOST respectively. Between the two datasets, YT
consists of edges with large lifespan which is an important
factor that leads large queries to have matches with high du-
ration. Thus, the algorithm answers faster the corresponding
queries in YT than in DBLP since more steps are required
for locating the durable matches. Finally, in few cases for
queries of small size, the reduction in the search space
achieved by the indexes is small and the overhead caused by
the extra checks surpasses the gain from this reduction. For
example, in DBLP and for the smallest BEGINNER cliques
VILA outperforms all other indexes. Although, the total

-60

-40

-20

0

20

40

4 6 8 10 12

Ti
m

e
d

if
fe

re
n

ce
 (

se
c)

Query Size

TINLAB CTINLAB TIPLAB

(a)

-100

-80

-60

-40

-20

0

20

40

60

4 6 8 10 12

Ti
m

e
d

if
fe

re
n

ce
 (

se
c)

Query Size

TINLAB CTINLAB TIPLAB

(b)

Fig. 13: Comparison with the non-compressed indexes for
random most durable queries: in (a) DBLP, and (b) YT

recursions using time-neighborhood indexes are less than
using VILA, the extra cost of processing the indexes leads to
this small difference in query time.
Varying k. We also run the top-k algorithm using TIPLAB
for various k values. In Fig. 11(a), we depict the results for
small k values. Overall processing does not increase with k
as long as there are enough matches in the first runs of the
algorithm. Fig. 11(b) depicts the processing time for larger
values of k. Overall TIPLAB seems to be stable in term of
query processing time, with a small increase with k. Results
for the other indexes are similar.

Scalability. In this set of experiments, we use synthetic
datasets to study the performance of random most durable
queries as we increase the number of nodes and the number
of snapshots in Fig. 12(a)(c) and Fig. 12(b)(d) respectively.
We observe that for all time indexes the response time
increases linearly with both the number of nodes and snap-
shots. In particular, TIPLAB shows excellent scalability.
Comparison with the non-compressed indexes. We also
compare the performance of TINLA (CTINLA) and TIPLA
versus their compressed versions using random most
durable queries in Fig. 13. Overall, the compressed indexes
are clear winners given the size and their comparable query
performance.

8.4 Case Studies
Finding durable graph patterns can reveal interesting in-
formation about the datasets. In this section, we present
example results of durable cooperations among authors
using DBLP and biological datasets.

Conferences with durable cliques. In our first study, we
use the DBLPC dataset and study the appearance of author
cliques in conferences. To this end, we use clique patterns
labeled with the name of the conference. The results using
cliques of various sizes are summarized in Table 5. Various
observation can be made, for example, ICDE has the most
durable cliques among the database conferences followed
by SIGMOD, while in data mining, the most durable cliques
appear in KDD. As expected in theory, cliques are smaller,
with SODA having both the largest and the most durable
cliques.

Some of the authors forming the most durable matches
are shown in Table 6, while the top-5 most durable authors
in ICDE are shown in Table 7(a) .
Durable pattern in biological datasets. In our last study,
we present in Table 7(b) results regarding amino acids
using the PCMS dataset. We study the appearance of dif-
ferent hydrophobic amino acids which are buried inside
the protein molecules hydrophobic cores. We observe that

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

13

TABLE 5: Author cliques in major cs conferences. Symbol
“**” depicts a very large number (≥ 1000) of matches

Cliques Size 2 Size 3 Size 4 Size 5 Size 6

Conference Duration Matches Duration Matches Duration Matches Duration Matches Duration Matches

SIGMOD 11 1 5 2 4 1 3 1 2 **

ICDE 14 1 7 1 4 1 3 1 2 **

VLDB 8 1 4 4 3 6 3 1 2 **

EDBT 10 1 3 5 2 ** 2 ** 2 **

KDD 14 1 6 2 4 2 3 7 3 1

WWW 7 1 5 1 3 3 2 8 1 1

CIKM 11 1 5 4 4 1 3 1 2 **

SIGIR 11 1 6 1 4 1 3 1 2 **

FOCS 7 1 3 2 2 4 --- --- --- ---

STOC 8 1 4 1 3 1 2 3 --- ---

SODA 12 1 6 1 3 1 2 6 2 1

ICALP 6 1 4 1 3 1 2 1 --- ---

OSDI 4 4 3 2 2 13 2 1 --- ---

SOSP 7 1 3 5 2 20 2 2 --- ---

USENIX 3 1 3 2 2 34 2 ** 2 **

SIGCOMM 10 1 4 2 3 6 3 1 2 **

SIGMETRICS 8 1 4 4 4 1 3 1 2 **

SIGOPS 3 3 2 7 2 1 --- --- --- ---

SIGGRAPH 8 1 5 1 4 1 3 1 --- ---

TABLE 6: Example authors with durable cooperation

Conferences Duration Authors

KDD 14 Charu C. Aggarwal, Philip S. Yu

ICDE 14 Divyakant Agrawal, Amr El Abbadi

SODA 12 Micha Sharir, Pankaj K. Agarwal

SIGMOD 11 Vivek R. Narasayya, Surajit Chaudhuri

CIKM 11 Clement T. Yu, Weiyi Meng

SIGIR 11 Craig Macdonald, Iadh Ounis

SIGCOMM 10 Ion Stoica, Scott Shenker

WWW 7 Andrew Tomkins, Ravi Kumar

SIGMOD – SIGCOMM 7 Joseph M. Hellerstein, Ion Stoica

VLDB – EDBT – SIGMOD 3 Laks V. S. Lakshmanan, H. V. Jagadish, Divesh Srivastava

the most connections to Phenylalanine (F), produce high
number of matches. This can be explained by the fact that
phenylalanine is an essential amino acid meaning the body
needs this ingredient and is unable to produce it naturally.
In addition, it is used to biochemically form proteins, coded
for by DNA. We also sought durable cliques of various
sizes for all amino acids and we observed that they do not
participate in cliques of size greater than two.

TABLE 7: (a) Top-5 pairs of authors, (b) results from PCMS

Amino acids Duration Matches Amino acids Duration Matches

R – G 40 1 F – V 24 51

L – I 32 2 F – A 24 40

L – V 32 1 L – M 24 33

A – V 28 2 F – M 24 29

L – F 28 1 S – P 24 22

F – I 24 55 G – A – R 24 9

Duration Authors (ICDE)

1 14 Divyakant Agrawal – Amr El Abbadi

2 12 Jeffrey Xu Yu – Xuemin Lin

3 12 Beng Chin Ooi – Kian-Lee Tan

4 10 Vivek R. Narasayya – Surajit Chaudhuri

5 10 Charu C. Aggarwal – Philip S. Yu

(a) (b)

9 RELATED WORK

Graph pattern matching in static graphs has been widely
studied. To the best of our knowledge, we are the first to
introduce and study the problem of finding durable graph
pattern matches in a graph history. Next, we survey related
work on graph pattern queries in static graphs and on
queries in temporal graphs.

Graph Pattern Queries. Finding graph matches is an impor-
tant problem in many applications involving data modeled
as graphs. The problem has been studied first in the theo-
retical literature as the subgraph isomorphism problem [4]

where it was shown to be NP-complete [25], and given the
size of the graphs, this often proves to be too computation-
ally expensive. In recent years, many algorithms have been
proposed to solve it in a reasonable time using different
indexing and pruning techniques. Based on the approaches
followed to process graph pattern queries, we can categorize
representative graph pattern matching approaches into two
categories [26].

The first category includes indexing algorithms [1], [4],
[6], [23], [27], [28], [29] that find all embeddings for a given
query graph and a data graph. In particular, these algo-
rithms first captures auxiliary neighborhood information to
retrieve for each query node all the candidate data nodes
that may be part of a match. Then, they prune candidate
nodes that do not meet the required neighborhood prop-
erties defined by the query graph and return the nodes
that form a graph pattern match. The second category
includes algorithms [5], [7], [8], [9] which are processing
pattern queries by decomposing the query graph into paths
and looking for candidate graph data paths whose join
produces query matches. According to this classification,
our approach is closer to the first category.

In both categories, algorithms use various indexing tech-
niques to accelerate subgraph pattern matching. In partic-
ular, neighborhood indexes [1], [30] are proposed for the
nodes in the graph where each index contains properties of
nodes in the neighborhood. Combining these indexes with
a distance measure, any pair of query nodes is compared to
the data graph nodes in order to locate the query matches. A
different type of index is proposed in [7] where the authors
use for each node the shortest paths from each node in
the graph within its k-neighborhood to capture the local
structural information around the node. Then a query graph
decomposition is performed into a set of indexed shortest
paths in order to locate candidate paths from data graph
that cover the original query graph. The study in [29] tries
to access label frequency information and the frequencies of
a triple (fromLabel, edgeLabel, toLabel). For each pattern
query, they weight query graph edges accordingly and uses
these weights to order the search by creating a minimum
spanning tree. The recent work in [31] is the first one to use
caching techniques for higher pruning power during graph
pattern query processing. Finally, the authors in [32] identify
a set of key factors that influence the performance of sub-
graph isomorphism algorithms and report the construction,
indexing and query processing time of six methods.

In this paper, we are looking for top-k durable matches.
Previous work has considered top-k graph matches in dif-
ferent contexts. For example, when there is some weight as-
sociated with nodes or edges, matches are ranked based on
their weight [33]. Alternatively, to minimize overlap among
matches, the authors in [3] introduce diversity constraints
and look for the top-k diverse matches of a given query.

Temporal Queries. Although, graph data management has
been the focus of much current research, work in process-
ing temporal queries is rather limited. The main focus of
research on temporal graphs has been on efficiently storing
and retrieving graph snapshots. Various optimizations for
reducing the storage and snapshot reconstruction overheads
have been proposed. Optimizations include the reduction of

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2823754, IEEE
Transactions on Knowledge and Data Engineering

14

the number of snapshots that need to be reconstructed by
minimizing the number of deltas applied [12], using a hier-
archical index of deltas and a memory pool [11], avoiding
the reconstruction of all snapshots [13], and improving per-
formance by parallel query execution and proper snapshot
placement and distribution [34].

Concerning temporal graph processing, recent works
address indexing for temporal reachability queries using
an index that contains information about membership in
strongly connected components at various time points [15],
indexing in native graph databases [35], and indexing for
temporal shortest path distance queries [16]. The work in
this paper extends previous work in [36] by considering
top-k durable graph pattern queries and introducing com-
pressed time indexes and various optimizations in selecting
appropriate values for the threshold duration.

10 SUMMARY

In this paper, given the history of a node-labeled graph
in the form of graph snapshots corresponding to the state
of the graph at different time instances, we introduce the
problem of finding the durable matches of an input pat-
tern, that is, those matches that persist over time, either
contiguously or collectively. We have presented an approach
termed DURABLEPATTERN that efficiently identifies durable
matches by traversing a compact representation of the graph
snapshots and using a compressed time neighborhood and
path indexes for pruning the number of candidate matches.
Finally, we have proposed strategies for estimating the
actual duration of the durable matches to further reduce the
search space. Our extensive experimental evaluation with
real datasets demonstrated the efficiency of our algorithm
in finding durable matches.

REFERENCES

[1] S. Zhang, S. Li, and J. Yang, “GADDI: distance index based
subgraph matching in biological networks,” in EDBT, 2009, pp.
192–203.

[2] S. Choudhury, L. B. Holder, G. C. Jr., K. Agarwal, and J. Feo,
“A selectivity based approach to continuous pattern detection in
streaming graphs,” in EDBT, 2015, pp. 157–168.

[3] W. Fan, X. Wang, and Y. Wu, “Diversified top-k graph pattern
matching,” PVLDB, vol. 6, no. 13, pp. 1510–1521, 2013.

[4] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, 1976.

[5] H. He and A. K. Singh, “Graphs-at-a-time: query language and
access methods for graph databases,” in SIGMOD, 2008, pp. 405–
418.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 10, pp. 1367–1372, 2004.

[7] P. Zhao and J. Han, “On graph query optimization in large
networks,” PVLDB, vol. 3, no. 1, pp. 340–351, 2010.

[8] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph
matching on billion node graphs,” PVLDB, vol. 5, no. 9, pp. 788–
799, 2012.

[9] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang, “Fast graph
pattern matching,” in ICDE, 2008, pp. 913–922.

[10] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast
best-effort pattern matching in large attributed graphs,” in ACM
SIGKDD, 2007, pp. 737–746.

[11] U. Khurana and A. Deshpande, “Efficient snapshot retrieval over
historical graph data,” in ICDE, 2013, pp. 997–1008.

[12] G. Koloniari, D. Souravlias, and E. Pitoura, “On graph deltas for
historical queries,” CoRR, vol. abs/1302.5549, 2013.

[13] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On querying
historical evolving graph sequences,” PVLDB, vol. 4, no. 11, pp.
726–737, 2011.

[14] A. G. Labouseur, J. Birnbaum, P. W. O. Jr, S. R. Spillane, J. Vijayan,
J.-H. Hwang, and W.-S. Han, “The g* graph database: efficiently
managing large distributed dynamic graphs,” Distributed and Par-
allel Databases, 2014.

[15] K. Semertzidis, E. Pitoura, and K. Lillis, “Timereach: Historical
reachability queries on evolving graphs,” in EDBT, 2015, pp. 121–
132.

[16] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical
shortest-path distance queries on large evolving networks by
pruned landmark labeling,” in WWW, 2014, pp. 237–248.

[17] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[18] A. Z. Broder and M. Mitzenmacher, “Survey: Network applica-
tions of bloom filters: A survey,” Internet Mathematics, vol. 1, no. 4,
pp. 485–509, 2003.

[19] C. S. Jensen and R. T. Snodgrass, “Temporal element,” in Encyclo-
pedia of Database Systems, 2009, p. 2966.

[20] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing topology in
graph pattern matching,” PVLDB, vol. 5, no. 4, pp. 310–321, 2011.

[21] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ra-
maswamy, “Dualiso: An algorithm for subgraph pattern matching
on very large labeled graphs,” in IEEE International Congress on Big
Data, Anchorage, 2014, pp. 498–505.

[22] A. Mislove, “Online social networks: Measurement, analysis, and
applications to distributed information systems.” Rice University,
Department of Computer Science, 2009.

[23] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and
D. Shasha, “Grapes: A software for parallel searching on biological
graphs targeting multi-core architectures,” PloS one, vol. 8, no. 10,
p. e76911, 2013.

[24] M. E. J. Newman, “The structure and function of complex net-
works,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[26] J. Lee, W. Han, R. Kasperovics, and J. Lee, “An in-depth compar-
ison of subgraph isomorphism algorithms in graph databases,”
PVLDB, vol. 6, no. 2, pp. 133–144, 2012.

[27] L. Zou, L. Chen, J. X. Yu, and Y. Lu, “A novel spectral coding in a
large graph database,” in EDBT, 2008, pp. 181–192.

[28] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: Tree + delta >=
graph,” in Very Large DataBases, 2007, pp. 938–949.

[29] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism,”
PVLDB, vol. 1, no. 1, pp. 364–375, 2008.

[30] S. Zhang, S. Li, and J. Yang, “SUMMA: subgraph matching in
massive graphs,” in CIKM, 2010, pp. 1285–1288.

[31] J. Wang, N. Ntarmos, and P. Triantafillou, “Indexing query graphs
to speedup graph query processing,” in EDBT, 2016.

[32] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Performance
and scalability of indexed subgraph query processing methods,”
PVLDB, vol. 8, no. 12, pp. 1566–1577, 2015.

[33] J. Cheng, X. Zeng, and J. X. Yu, “Top-k graph pattern matching
over large graphs,” in ICDE, 2013, pp. 1033–1044.

[34] A. G. Labouseur, P. W. Olsen, and J. Hwang, “Scalable and robust
management of dynamic graph data,” in International Workshop on
Big Dynamic Distributed Data, 2013, pp. 43–48.

[35] K. Semertzidis and E. Pitoura, “Historical traversals in native
graph databases,” in ADBIS, 2017, pp. 167–181.

[36] ——, “Durable graph pattern queries on historical graphs,” in
ICDE, 2016, pp. 541–552.

Konstantinos Semertzidis is a PhD candidate at the Dept. of Com-
puter Science and Engineering of the University of Ioannina in Greece.
He received his BSc from the same institution in 2012 and his MSc from
York University in 2013. He has worked as an Intern for IBM Research
and Nokia Bell Labs in Ireland. His research interests include storage,
indexing and processing of historical graph data.

Evaggelia Pitoura received the BSc degree in Computer Engineering
from the University of Patras Greece, in 1990, the MSc and the PhD
degrees in Computer Science from Purdue University, in 1993 and 1995,
respectively. She is a Professor at the Dept. of Computer Science and
Engineering of the University of Ioannina in Greece, where she leads
the Distributed Data Management laboratory. She is a member of the
IEEE Computer Society.

