Time Traveling in Graphs using a Graph Database

Konstantinos Semertzidis
Computer Science & Engineering Department
University of loannina, Greece
ksemer@cs.uoi.gr

ABSTRACT

Most graph structured data, such as data created from the
web, social, citation and computer networks, evolve over
time. In this paper, we assume that we are given the his-
tory of a graph in the form of a sequence of graph snapshots.
Our goal is to define the different types of queries that one
can ask regarding the graph history and present an initial
approach to storing graph snapshots and processing histor-
ical queries in a native graph database. We define three
general types of historical queries, namely, historical graph
queries, historical time queries and historical top-k queries.
We present two representations of graph snapshots that use
either a single or a multi-edge approach. We evaluate the
two approaches experimentally for various types of historical
reachability queries.

Categories and Subject Descriptors

H.2 [Database Management|: Systems query processing

General Terms

Measurement, Performance

Keywords
Graph Database, Historical Queries, Reachability

1. INTRODUCTION

In recent years, increasing amounts of graph structured
data are made available from a variety of sources, such as
social, citation, computer and hyperlink networks. Almost
all such real-world networks evolve over time. In this paper,
we focus on structural evolution, that includes node and
edge additions and removals.

There has been a lot of interest on analytical processing
and mining of evolving graphs, including among others de-
veloping models [14], discovering communities [2], and com-
puting measures such as PageRank [3]. There has been also

(©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

Evaggelia Pitoura
Computer Science & Engineering Department
University of loannina, Greece
pitoura@cs.uoi.gr

research on building graph engines tailored to supporting an-
alytical processing in dynamic graphs, such as Kineograph
[5] and Chronos [8]. Instead in this paper, we focus on on-
line query-based processing of dynamic graphs.

We assume that we are given an evolving graph, in the
form of a sequence of graph snapshots corresponding to the
state of the graph at different time points. Our goal is to
study the types of queries that one can ask on these sequence
of snapshots. We call such queries historical queries. Al-
though graph query processing has received a lot of interest,
querying an evolving graph has received limited attention.

First, we provide a taxonomy of historical queries. We in-
troduce three categories of historical queries, namely, histor-
ical graph queries, historical time queries and historical top-
k queries. Historical graph queries are graph queries applied
at past snapshots. For example, a historical graph reacha-
bility query may ask whether two nodes were reachable at
some time interval in the past. Historical time queries are
graph queries that ask about the time point or the time
interval that a query had a specific result. For example, a
historical time reachability query may ask for the time point
at which two nodes become reachable for the first time. Fi-
nally, historical top-k queries ask for the nodes that had a
property for the longest period of time. For example, a his-
torical top-k reachability query may ask for the k pairs of
nodes that remained connected for the longest interval.

We then address the problem of processing historical reach-
ability queries in a native graph database. We study two
approaches of storing graph snapshots, using either a single
edge or multiple edges to represent connections that appear
at different time points. We present algorithms for process-
ing all different types of historical reachability queries using
these approaches and experimentally compare their perfor-
mance. Due to the native support of an edge-type traversal
by the graph database, the multiple-edge approach outper-
forms the single-edge approach. Indexing boosts the perfor-
mance of both approaches.

Previous work on historical queries is limited and includes
only historical graph queries [1, 4, 9, 10, 11, 12, 15, 16] with
the exception of [1] that studied one instance of a historical
time query and the recent work in [17] that studies historical
top-k graph patterns. Also, none of the previous approaches,
with the exception of [4], is built on top of a native graph
database. The work in [4] proposes a general approach for
storing an evolving graph in a native graph database, specif-
ically Neo4j, and experimentally tests a number of general
graph queries that include past time instances. Our focus
here is on structural updates and reachability queries. We

include an experimental comparison with their model.

The rest of the paper is structured as follows. In Section
2, we formally define historical reachability queries. In Sec-
tion 3, we introduce two approaches to storing the evolution
of graphs in graph databases and algorithms for processing
historical reachability queries. In Section 4, we evaluate our
approaches by presenting experimental results. In Section
5, we present related work. Section 6 concludes the paper.

2. HISTORICAL QUERIES

Most real world graphs evolve over time. In this paper, we
focus on structural evolution, that includes node and edge
additions and removals. We assume that time is discrete and
use successive integers to denote successive points in time.
Let G = (V, E) be a graph where V is the set of nodes and
E the set of edges. We use G; = (V4, E:) to denote the graph
snapshot at time point ¢, that is, the set of nodes and edges
that exist at time point ¢.

Definition 1 (EVOLVING GRAPH).
An evolving graph gm,tj] in time interval [t;, ¢;] is a sequence
{G4;, Gt;+1, ..., Gy, } of graph snapshots.

One can think of two interpretations of time points. One
interpretation is that of actual time, for example time point
t may correspond to say February 9, 2015, 5:00am PDT.
Another view is operational. In this case, a new time point
is created, after a specific number of inserts and deletes of
nodes and edges has occurred. We use the term time granu-
larity to refer to how often a new time point and the corre-
sponding graph snapshot are created. In the case of actual
time, granularity may range for example from milliseconds
to years, whereas, in the case of operational time, granular-
ity may be at the level of one or more operations.

For a node u (or, edge e), its lifespan denotes the set of
time intervals during which u (resp. e) existed in an evolving
graph. More formally, given an evolving graph G; = {G4,,
Gi;+1, .-, G, }, the lifespan, L(u), (resp. L(e)) of a node
u (resp. edge e) is a set of intervals such that an interval
[ti,t;] C I belongs to L(u), (resp. L(e)), if and only if, for
all t; <t < tj,u € V,, (resp. e € Ey,,).

Let us now discuss the type of queries that one can pose
on evolving graphs. We call such queries historical to distin-
guish them from queries that consider only the current graph
snapshot, Geurr. In the following, we first present various
types of general historical queries and then formally define
these types for the case of historical reachability queries.
Historical Graph Queries. The first category of histori-
cal queries include queries that are similar to current graph
queries but refer to past snapshots. Let @ be any type of
graph query, e.g., a reachability, shortest distance, or graph
pattern query. The corresponding historical query Qm on
an evolving graph Gy, ¢,) is a pair (Q,Ig), where Ig is an
interval [t,tm], ti < &1 < tm < t;. Query Qu is executed
by applying query @ at all graph snapshots G, t; <t < t.m,
of Gj1, +;), and returns as result an appropriately defined ag-
gregation of these results. For example, let Q be a query
that asks for the shortest path distance between nodes u
and v and let Qu = (Q, [ti, tm]). The shortest path distance
between nodes u and v is computed at all graph snapshots
Gy, Gy41, ... Gy, and these t,, - t; + 1 distances are
appropriately combined to produce the result of Q.

There are three general ways of combining the results:
(a) use all snapshots, (b) use only one of the snapshots, and

(c) an intermediate case, in which we use r of the involved
snapshots. For example, in the case of shortest path queries,
we may combine the results by returning in case (a) the
average shortest path distance, in case (b) the minimum
shortest path distance and in case (c) the minimum shortest
path distance in at least r of the snapshots. Let us now
define formally the three ways of combining results in the
case of reachability queries.

Definition 2 (HISTORICAL REACHABILITY QUERY).
Given an evolving graph Gi;, ;.), a time interval Iq = [ti, tm],
ti <t <ty < t; and a pair of nodes v, u:

(a) a conjunctive historical reachability query (CONJ) re-
turns true, if there exists a path from v to v in all
graph snapshots G¢, &1 < ¢ < tm of Gy, 1))

(b) a disjunctive historical reachability query (DisJ) re-
turns true, if there exists a path from w to v in at
least one graph snapshot G, & <t < tm, of Gy, 4,1,

(c) an at least v historical reachability query (LEAST) re-
turns true, if there exists a path from u to v in at least
r graph snapshots G, t1 <t < tin, of G

istjil*

In the special case in which ¢; = t,,, we just apply @ on

the single past snapshot Gy, of Q[t“tj]. We call such queries
stab (STAB) queries.
Historical Time Queries. Another type of queries perti-
nent to evolving graphs are queries that focus on the timing
aspect. Such queries ask when an event happened. For ex-
ample, depending on the type of query, we may ask when
a specific graph pattern occurred, when two nodes become
reachable, or when their shortest path distance was equal to
a given value.

We make a distinction between queries that ask (a) when
is the first time that an event happened, (b) what is the
longest continuous interval that the event lasted, or (c¢) what
is the total time that the event occurred. For reachabil-
ity queries, we have the following types of historical time
queries.

Definition 3 (HISTORICAL TIME REACHABILITY QUERY).
Given an evolving graph g[tmj], a time interval Ig = [ti, tm],
ti <t <tm < tj and a pair of nodes v, u:

(a) a first time reachability query (FIRST) returns the small-
est time point ¢, t; < t < t.,, such that, there exists a
path from u to v in graph snapshot G; and there is no
path from u to v in any Gy, t; < t' < t,

(b) a longest continuous time reachability query (INTV) re-
turns an interval [tx,,tk,], &1 < thy, < thy < tm, such
that, there exists a path from u to v in all graph snap-
shots G, tr, <t <ty, of g[ti,tj] and there is no longer
interval that this holds,

(c) a longest total time reachability query (TOTAL) returns
the time points ¢, t; < t < t,,, such that there exists a
path from u to v in G.

Historical Top-k Queries. The last type of historical
queries are queries that ask for the top-k nodes that satisfy
a condition for the longest time period. Depending on the
query, this may mean what is the graph pattern that appears
in the majority of graph snapshots, what are the pairs of
nodes that remained reachable the longest, or what are the

nodes whose distance was below some given value for most
of the time points. Again, we make a distinction between
queries that ask for nodes that satisfy the property for the
longest duration, either (a) continuously or (b) in total. For
reachability queries, this gives us the following two types of
top-k queries.

Definition 4 (HISTORICAL TOP-k REACHABILITY QUERY).
Given an evolving graph G, ¢}, a time interval Io = [t, tm],
t; <t < tm <t; and a pair of nodes v, v and an integer k,
k> 0:

(a) a top-k continuous reachability query (TOPK_I) returns
a set of k pairs (u,v) of nodes u and v such that there
exists a path from v to v in all graphs G in an interval
of size d and there is no pair of nodes u’, v, for which
a path from v’ to v’ exists in all graphs in an interval
of size larger than d,

(b) a top-k total reachability query (TOPK_T) returns the
k pairs (u,v) of nodes u and v such that there exists
a path from w to v in the largest number of graph
snapshots G¢, t; < t < ti,

3. HISTORICAL QUERIES ON A GRAPH
DATABASE

In this section, we first present two different approaches of
representing an evolving graph within a graph database and
then algorithms for processing historical reachability queries
using these representations.

As a running example, we use a bibliographical database
where nodes correspond to AUT HORS and there is a PUB-
LISH edge between two AUTHORS if they are co-authors.
Time granularity corresponds to years.

3.1 Single and Multi Edge Representation

In the single-edge approach, the lifespan of a node or edge
is modeled using a label (i.e., an attribute or property) of
the corresponding node or edge. Figure 1 shows an exam-
ple of edge lifespans represented by a single label of type
String. For example, the co-authorship between authors A,
C in 2010, and 2012, is represented by the edge with label
72010,2012”. Graph evolution can be tracked by processing
the node and edge lifespan labels. Thus, to obtain the graph
snapshot G, for a time point t, we get all edges and nodes
and then keep only those edges and nodes whose lifespan
label contains t.

While in the single-edge approach there is at most one
edge between two nodes, the multi-edge approach uses a dif-
ferent edge type between two nodes for each time point of
the lifespan of the edge. For instance, in order to represent
co-authorship between authors A, B, C' in 2010, 2012, and
2014, we use three different labeled types of edges to connect
A, B, and C. An example is shown in Figure 2 which depicts
co-authorship between A, B and C in 2010, 2012, and 2014
using multiple type of edges. Multiple type of edges provide
an efficient way of retrieving graph snapshots, since a graph
database supports an efficient traversal of edges of a given
type. Note that when a node wu is connected by an edge of a
type that corresponds to a time point ¢, it is obvious that u
existed in ¢t. Thus to get information about the lifespan of
u, we access its edges, which is a fast process, since graph
databases provide efficient indexing for this process.

PUBLISH
Lifespan: 2014

Author: A

Author: B

PUBLISH
Lifespan: 2010, 2012

PUBLISH
Lifespan: 2010, 2012

Figure 1: Time as attribute/label

PUBLISH
Type: 2014

Author: B

PUBLISH
Type: 2010

PUBLISH
Type: 2010

PUBLISH PUBLISH
Type: 2012 Type: 2012

Figure 2: Time as a different edge type

For both the single-edge and the multi-edge approaches,
we explore whether an index on the lifetime property of each
node improves the performance of retrieving a snapshot of
the graph. We build an index within the graph database
(shown in Figure 3) by creating a new node type TIME
where each node of the given type has a unique value that
corresponds to a specific time point. A TIME node that
denotes a time point ¢ has relations to all AUTHOR nodes
that existed at time ¢. To obtain all nodes that exist in
an interval, we get the neighbors of the TIME nodes that
correspond to this interval.

3.2 Historical Reachability Query Processing

All graph databases provide a BF'Straversal method that
visits all edges of a given type. This method starts from a
source node, visits all its neighbors at distance 1 by travers-
ing edges of the given type, then all its neighbors at distance

2, and so on.
TIME TIME TIME TIME
Year: 2010 Year: 2011 Year: 2012 Year: 2013
Author: B

TIME
Year: 2014

\
\

* PUBLISH

N\ Jype: 2010

PUBLISH
Type: 2010

Author: C

PUBLISH PUBLISH
Type: 2012 Type: 2012

Figure 3: Time index for year 2010 to 2014

For answering if two nodes are reachable in the multi-
edge approach, we use this method. For example, to find if
two nodes are connected in a given interval I, we call the
BF Straversal method for each time instant ¢; in I passing
as an argument the edge type that corresponds to ;.

However, we cannot use the BF Straversal method for
the single-edge approach, since we need to post-process the
lifespan label of each edge to find the time instants where the
nodes were reachable. The BF Straversal method provided
by the deployed graph database does not return the path
visited but just the reachable nodes. Thus, we implemented
our own BFStraversal algorithm which processes the edge
lifespans.

The time index can be used similarly in both single-edge
and multi-edge approaches to prune some computations. For
example, for the LEAST query that asks whether nodes u and
v are reachable at least r time points in I, we can first check
using the index whether both nodes were active at the same
time points at least r times. If they were not active, we do
not need to traverse the graph.

To summarize, (a) in the single-edge approach, we use
our own implementation of the BF Straversal method and
(b) in the multiple-edge approach, we invoke the provided
BF Straversal method once for each edge type correspond-
ing to the time points in the query interval.

Let us now discuss in more detail how to process the dif-
ferent types of historical reachability queries that ask for a
path from u to v in interval I. A CONJ query returns true,
when there is no ¢; in I where v is not reachable from u. A
DisJ query returns true, when the first ¢; in I is found in
which v is reachable. Finally, for a LEAST query, we keep
a counter c¢ of the time points in I that v is reachable. If
the counter reaches the given r, the query returns a positive
answer, otherwise it stops when the sum of the counter and
the remaining time instants is less than r.

Historical time reachability queries return time points or
time intervals. For a FIRST query, we return the first ¢; when
v is reachable. For a INTV query, we keep a counter ¢ for the
consecutive times that v is reachable and a max variable of
the current maximum c. For each ¢;, that v is not reachable,
c is reset and max is updated if ¢ > max. The query stops
and returns the interval corresponding to the max value,
when ¢ and the remaining time instants are less than mazx.
Finally, for a TOTAL query, we return all time points in
where v is reachable.

For the top-k historical reachability queries, we use the
time index to obtain the top-k (active) nodes uiop, that is
the k£ nodes that exist for the longest period in /. In par-
ticular, for each node u we found in a time instant of I
we increase a counter that denotes the number of instants
that u is active. We also use a Min Heap structure to keep
the top-k pairs of nodes that were connected for the longest
interval (TOPK_I query) or for the largest number of time
points (TOPK_T query). The Min Heap stores each pair as
a triple (u, v, value) where value is a counter that keeps the
longest interval or the largest number of times that u and v
were connected.

For a TOPK_I query, we start traversing from each top
active node wuop for each time instant in I. Intuitively, top
active nodes have more active paths to other nodes. For
each node v reachable from u,p, we increase a counter C(v),
each time v is reachable. We also keep a max(v) variable
for the maximum C'(v). Each time v is not a reachable from

Utop, C(v) is reset and maxz(v) is updated if C(v) > maxz(v).
In the end of the traversal from w¢op, we insert in the Min
Heap the triple (utop, v, maz(v)) if maz(v) is larger than the
smallest element of the Min Heap. The query stops when the
Min Heap has size £ and its minimum element is larger or
equal to the lifetime in I of the remaining top active nodes.
Processing of a TOPK_T query is similar. The only difference
is that in the Min Heap, we store the number of time points
instead of the duration of the interval.

4. EVALUATION

As our graph database, we use Sparksee [6] that supports
fast loading of the graph data and efficient operations that
scan all edges in the graph. Sparksee is based on a compact
representation that uses bitmaps and highly compressible
data structures [7]. As our dataset, we used the whole DBLP
dataset ! for the interval [1958, 2015]. Each graph snapshot
corresponds to a year in this interval.

We ran all queries on a system with a quad-core Intel Core

i7-4770 3.4 GHz processor and 32 GB memory. We only use
one core for all experiments.
Storage. We created two different graph database instances
(GDBs). The first graph database instance stores our dataset
following the single-edge approach, whereas the second fol-
lows the multi-edge approach.

Table 1 shows the characteristics of each graph database
instance. Single-edge differs from multi-edge in the number
of edge types, since the second one uses a different edge type
for each time point, which leads to a larger size. The index
nodes size states the number of time points which in our
case is 58 years. The edge types for single-edge are two, one
type represents the PUBLISH edge and the other one the
index edge. Multi-edge has 59 types, one type for the index
edge and 58 types for each year in [1958, 2015].

Historical Query Processing. To evaluate the perfor-
mance of both true and false queries, we generated for each
query type 250 true and 250 false queries.

For Cony, DisJy, LEasT, FirsT, TOPK_I, and TOPK_T, the
query interval is I = [2005,2014], for STAB, the time point
is a random year within I, for INTv, TOPK_I the interval is
I = [1958,2015]. For LEAST, r was randomly chosen from
[2, 9], while in TOPK_I, and TOPK_T, k is equal to 10.

Table 2 reports the average time of true and false queries,
on both graph instances. Also, we report the query time
when the time index is used, as well the average execution
time of TOPK_I, and TOPK_T on the multi-edge GDB in-
stance.

Queries that ask for events that have the longest dura-
tion, either continuously or in total require the most time
to be processed, (since we need to check long time inter-
vals) followed by queries that seek for the largest number of
time points that something holds or the longest continuous
interval that something holds.

Comparing the GDB instances, we notice that queries are
faster when using multiple types of edges to represent the
time points. This can be explained by the fact that using a
single edge type requires the processing of the edge to find
if a time point is contained in the lifespan label.

A general remark is that false conjunctive queries are
faster than true conjunctive queries, since processing stops
as soon as a time point is found at which the two nodes

"http://dblp.uni-trier.de/

Table 1: Graph database properties

GDB # Nodes # Edges # Index Nodes # Index Edges # Edge Types Size (MB)
Single-edge 1,013,762 3,849,319 58 2,542,405 2 538
Multi-edge 1,013,762 5,186,596 58 2,542,405 59 660

Table 2: Queries average time (ms)
Single-edge GDB Multi-edge GDB
With Index [Without Index With Indez || Without Index
true false true false true false true false
STAB 1.23 1,162 3.23 4,955 0.43 8 0.18 45
ConJ 5,790 0.24 9,481 6,464 433 0.25 424 21
DisJy 269 633,413 268 543,881 || 9.52 227 9.32 492
Least | 54,038 | 13,777 | 55,454 | 285,467 || 113 | 18 | 114 | 397
FIRST 68,764 42,476 251,728 | 375,220 65 61 178 457
INTV 763,283 | 434,196 763,828 | 440,672 || 827 72 1,619 570
Torar | 1,352,035 | 542,213 || 1,364,020 | 632,630 || 966 | 65.56 || 1,691 500
TOPK_T 13,020 (Multi-edge with Index)
TOPK_T 12,650 (Multi-edge with index)

Table 3: Top 10 pairs of authors from TopPK_ 1 and
TOPK_T on Multi-edge GDB and I = [2005, 2014]
Pairs
Ravishankar K. Iyer — Zbigniew Kalbarczyk
Wesley De Neve — Rik Van de Walle
M. Brian Blake — Walter Binder
Juan A. Rodriguez Aguilar — Axel Polleres
S. V. N. Vishwanathan — Zbigniew Kalbarczyk
Hans-Peter Kriegel — Fabio Gadducci
Kenneth R. Koedinger — Jie Xu
Bernhard Steffen — Frank Seide
Stefania Gnesi — Maurice H. ter Beek
Mariangiola Dezani-Ciancaglini — Luca Padovani

OO || U =W N+~

—
o

are not reachable. Analogously, true disjunctive queries are
faster than false disjunctive queries, since processing stops
as soon as a time point is found at which the two nodes are
reachable. Also an observation that holds independently of
the graph GDB used to evaluate queries is that the time
index boosts query processing. We gain more speed in false
queries than true ones, since we can prune traversals from
nodes that are not active in a given time point or in the
whole interval. For example, if we seek to find the longest
interval during which A and B were connected and there is
not any time point that both authors were active, then a
false answer is returned without executing any traversal.
Table 3 shows the top 10 authors pairs returned from
Topk_1, and TOPK_T. Both queries return the same pairs
because the authors of each pair were reachable in the whole
interval (10 years). Thus, the authors that were connected
for the longest interval are the same with the authors that
are connected the most time in the past. We clarify that
the top-k processing steps that were followed in TOPK_I,
and TOPK_T stop when they find the first k pairs that meet
the requirement. Hence, ties, i.e., pairs that have the same
property may not be reported.
Comparison with the Time-Varying Approach. Fi-
nally, we implemented the data model introduced in [4] and
tested its performance for the STAB query. The approach

100000

10000
= 1000
E
[
£
£ 100
10 I
! |
MHd M sH S TMV MH M sH s TMY
TRUE FALSE
Figure 4: STAB time (log scale) on different ap-
proaches

in [4] introduces a specific node to model the interaction
between two nodes at a specific time point. They also use
a hierarchical index to support different time granularities,
which is an issue that we do not address here, thus, we do
not implement such an index.

We created a new type of node PAPER which denotes
the interaction of publishing a paper and an AUTHOR node
type for the authors. We connect with each PAPER its au-
thors using an edge type PUBLISH. For the time index, we
connect each AUTHOR and PAPER node to the time index
nodes to which they belong. For example, if authors A and
B wrote a paper P together in ¢ then from the time index
node that corresponds to ¢, we create edges that connect
the time index node with the A, B and P nodes. To find
if two authors A and B are reachable, we have to obtain
the authors from each PAPER node that A is connected
and from them to obtain their co-authors. We repeat this
process until we find B. This process is costly for finding
PAPER nodes that were active at a specific time point, since
we check the time index for each PAPER node to see if it
was active in that time.

Running a STAB query using this approach requires 67.8

seconds for true queries and 58.5 seconds for false queries
(shown in Figure 4), while our best approach requires only
0.43 and 8 milliseconds for answering true and false queries
respectively. This can be explained by the fact that their
model has not been designed for answering historical reach-
ability queries but for querying the presence of objects in a
number of given time points.

S. RELATED WORK

Although, graph data management has been the focus of
much current research, work in processing historical queries
is rather limited. The main focus of research on query pro-
cessing in evolving graphs has been on efficiently storing
and retrieving graph snapshots. In this paper, our focus is
on defining different types of historical queries and on pro-
cessing them in a graph database.

Historical query processing in these approaches requires
as a first step reconstructing the relevant snapshots. Then,
queries are processed through an online traversal on each of
the snapshots. Various optimizations for reducing the stor-
age and snapshot reconstruction overheads have been pro-
posed. Optimizations include the reduction of the number of
snapshots that need to be reconstructed by minimizing the
number of deltas applied [11], using a hierarchical index of
deltas and a memory pool [10], avoiding the reconstruction
of all snapshots [15], and improving performance by parallel
query execution and proper snapshot placement and distri-
bution [13].

Recent work also addresses indexing for historical reach-
ability queries through an index that contains information
about strongly connected components membership at vari-
ous time points [16], indexing for historical shortest path dis-
tance queries [1, 9] and indexing for durable pattern queries
on historical graphs [17].

Finally, the only work on evolving graphs using a native
graph database we are aware of is the work in [4] where the
authors use Neo4j. Their evolving graph besides structural
updates, also includes time-varying attributes. They do not
provide a taxonomy of historical graph queries, instead they
implement a number of historical queries that also include
attributes.

6. CONCLUSIONS

In this paper, we studied queries on evolving graphs. We
have proposed a taxonomy of historical graph queries, that
are queries that involve past graph snapshots. We presented
different approaches of storing and retrieving an evolving
graph in a graph database by either using a single-edge with
a lifespan attribute or multiple-edge types where each type
corresponds to a different time point. We have proposed
algorithms for evaluating historical reachability queries and
evaluated our approaches using the DBLP dataset.

There are many possible directions for future work. One
such direction is exploiting our algorithms towards answer-
ing other types of historical queries, such as shortest path
ones. Another direction concerns historical queries that take
into account attributes on the nodes and edges as well evolv-
ing graphs with time-varying attributes.

7. REFERENCES

[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida.
Dynamic and historical shortest-path distance queries

2]

8]

[4]

[5]

(6]

[7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

on large evolving networks by pruned landmark
labeling. In WW W, pages 237-248, 2014.

Lars Backstrom, Daniel P. Huttenlocher, Jon M.
Kleinberg, and Xiangyang Lan. Group formation in
large social networks: membership, growth, and
evolution. In KDD, pages 44-54, 2006.

Bahman Bahmani, Abdur Chowdhury, and Ashish
Goel. Fast incremental and personalized pagerank.
PVLDB, 4(3):173-184, 2010.

Ciro Cattuto, Marco Quaggiotto, André Panisson, and
Alex Averbuch. Time-varying social networks in a
graph database: a neo4j use case. In GRADES,

page 11, 2013.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan
Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong
Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected
world. In FuroSys, pages 8598, 2012.

Sparksee Graph Database.
http://www.sparsity-technologies.com/.

David Dominguez-Sal, P. Urbén-Bayes, Aleix
Giménez-Vand, Sergio Gémez-Villamor, Norbert
Martinez-Bazan, and Josep-Lluis Larriba-Pey. Survey
of graph database performance on the HPC scalable
graph analysis benchmark. In WAIM, pages 3748,
2010.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan
Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang
Chen, and Enhong Chen. Chronos: a graph engine for
temporal graph analysis. In EuroSys, page 1, 2014.
Wenyu Huo and Vassilis J. Tsotras. Efficient temporal
shortest path queries on evolving social graphs. In
SSDBM, page 38, 2014.

Udayan Khurana and Amol Deshpande. Efficient
snapshot retrieval over historical graph data. In ICDE,
pages 997-1008, 2013.

Georgia Koloniari, Dimitris Souravlias, and Evaggelia
Pitoura. On graph deltas for historical queries. WOSS,
2012.

Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen
Jr, Sean R. Spillane, Jayadevan Vijayan, Jeong-Hyon
Hwang, and Wook-Shin Han. The g* graph database:
efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases, 2014.

Alan G. Labouseur, Paul W. Olsen, and Jeong-Hyon
Hwang. Scalable and robust management of dynamic
graph data. In VLDB, pages 43—48, 2013.

Jure Leskovec, Jon M. Kleinberg, and Christos
Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In
KDD, pages 177-187, 2005.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and
Reynold Cheng. On querying historical evolving graph
sequences. PVLDB, 4(11):726-737, 2011.
Konstantinos Semertzidis, Kostas Lillis, and Evaggelia
Pitoura. Timereach: Historical reachability queries on
evolving graphs. In EDBT, pages 121-132, 2015.
Konstantinos Semertzidis and Evaggelia Pitoura.
Durable graph pattern queries on historical graphs. In
ICDE, 2016 (to appear).

