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A B S T R A C T

In the artificial intelligent and big data technology era, the marine industry among others is inevitably
developing in this direction, aiming at becoming autonomous and completing tasks without relying on human
involvement while providing safety. The technology of small unmanned surface vehicles (USVs) is relatively
mature but with a large development potential and wide research interest expecting significant benefits such as
safety and high efficiency in shipping and transportation systems. This article addresses these issues and utilizes
an imitation learning algorithm to resolve autonomous navigation for USVs even in complex environmental
conditions. We formulate the trajectory modeling as a data-driven imitation learning problem where we
employ a state of the art imitation learning algorithm. Experiments are performed in a particular simulated
environment tailored to match the specific weather conditions of the local area. The simulation results show
the potential of the proposed imitation learning scheme to create advanced intelligent agents for USVs under
real-world environmental settings, and USV actuation constraints that allow to predict trajectories with high
accuracy and safety.

In addition, we evaluated the method’s robustness in generating successful trajectories under environmental
conditions that differed from those encountered during training, thereby promoting knowledge reusing without
the need for retraining.
1. Introduction

During the last years we are witnessing a constantly increasing
use and interest for Autonomous Systems in marine applications. The
development of control techniques, based on artificial intelligence (AI),
to generate autonomous marine vehicles has received a lot of attention
from the research community and has become a lighthouse of the
strategic research in this domain. In this perspective, AI manages to
handle uncertain and heavily-constrained dynamic systems by provid-
ing its ability to adapt to changes in the environment and to implement
efficient decisions.

Autonomous systems become more and more a core component of
transportation systems (Rahman et al., 2017). Dealing with Unmanned
Surface Vehicles (USVs) currently displays remarkable progress. There
are plenty of benefits of making surface vehicles unmanned such as
shipping flexibility, reducing costs, and minimizing the impact, limita-
tion and cost of human operators (Qiao et al., 2022). USVs have been
involved in military, research, and commercial applications, including
surveillance, data collection, and sea, surface and space communication
hubs (Liu et al., 2016).
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Motion control of USVs is an essential part and constitutes an impor-
tant challenge that can increase its autonomous operation. The marine
environment is complex due to the appearance of environmental factors
and stochastic weather conditions such as wind, waves and currents
that lead to large disturbances. Therefore, it is necessary to build more
comprehensive and accurate ship kinematic models able to achieve ship
motion prediction and compensation in advance (Bai et al., 2022).

Ship navigation algorithms favor machine learning, reinforcement
learning, and deep reinforcement learning, among other algorithms,
which have a higher accuracy than the traditional algorithms because
they can learn by themselves and search for an accurate path faster
when facing a real situation. Most learning algorithms applied in ma-
rine platform navigation and modeling, set the ships’ velocity to a fixed
value and do not consider the influence of wind, waves, and currents
during their process, see Bai et al. (2022). This constitutes a disadvan-
tage of algorithms that might not allow a successful integration into the
navigation in the real world environment. In addition, the paths created
by many algorithms are not rounded and smooth enough, and lack a
certain continuity, which is not in line with vessel motion trajectories.
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Existing trajectory prediction methodologies can be divided into
mechanistic and data-driven. Mechanistic are model-based approaches
that typically require a set of parameters to be tuned and are not pre-
cisely known at prediction time. This reduces their efficiency allowing
to be used only for a limited prediction horizon. On the other hand,
data-driven methods based on machine learning algorithms are more
flexible, powerful and manage to produce ship transitions from state to
state through time, achieving trajectory evolution models.

This paper follows a data-driven approach for the navigation of
USVs by formulating the problem as an imitation learning problem. Un-
der this prism, the aim is to learn models that imitate expert demonstra-
tions offered by input USV trajectories and spatio-temporal evolution
of transitions among states. Combining deep learning techniques with
reinforcement learning (RL) has shown promising results. However,
there are two well-known issues of Deep RL. From one hand there
is the problem of specifying a suitable reward function for the agent
to optimize and on the other hand another problem is that of time
complexity, i.e. the model requires multiple trial-and-error episodes
for learning a satisfactory behavior policy. The advantages of imitation
learning is that it enables the agent to mimic an expert policy without
usage of reward function, as well as it requires less training time than
the state-of-the-art deep RL method, achieving improved performance
in the navigation problem and good generalization capabilities. The
latter has been also proved and measured in our experimental study.

More specifically, we apply an imitation learning algorithm known
as Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon,
2016) that allows USVs to directly learn control policies from expert
demonstrations in complex environments. Here, the desired trajectories
used for the imitation learning process of the agent were created by
an ‘‘expert’’ USV based on a virtual potential field technique. It must
be noted that the choice of the technique is arbitrary, and any other
technique could be used, as it does not affect the proposed imitation
learning algorithm.

Our proposed method involves mimicking a predefined route be-
tween two ports situated in distinct geographic locations, with known
and fixed obstacles. No moving or stationary obstacles along the path
were considered. To evaluate the approach’s efficacy, we created com-
plex scenarios that incorporated environmental disturbances with vary-
ing degrees of variability and erratic behavior. Through these eval-
uations, we assessed the method’s robustness and ability to generate
successful trajectories under partially observable conditions, thereby
promoting its knowledge reusing capabilities.

It must be mentioned that the scope of this work is not to propose a
new navigation method, but rather to describe a method for imitating
and to provide a way to replicate any existing method. Ideally, by
imitating an existing navigation method, researchers or developers
can evaluate its effectiveness in a controlled environment and make
possible modifications or improvements if necessary. Imitation learning
can also be used to improve the adaptability of USV navigation systems
by allowing them to learn from experience and adjust their behavior
accordingly. This approach can enable the USV to handle new or
unforeseen situations that were not encountered during the training
phase. This has the potential to promote effective, and adaptable
navigation systems in complex environments.

Furthermore, the advantages of imitation learning is that it enables
agent to mimic an expert policy without usage of reward function, as
well as it requires less training time than the state-of-the-art deep RL
method, achieving improved performance in the navigation problem
and good generalization capabilities. The latter has been also proved
and measured in our experimental study.

The specific contributions of this work are as follows:

• We are investigating the implementation of the cutting-edge imi-
tation learning algorithm GAIL for navigating unmanned surface
vehicles (USVs) in a specified geographic region with realistic
environmental disruptions sourced from real-world datasets.
2

• The agent is trained using a range of values for the direction
of disturbances, without any specific assumptions. This approach
promotes the development of policies that can more effectively
adapt to a range of environmental conditions offering generaliza-
tion properties and resulting in improved performance.

• Our approach involves implementing the intelligent agent with a
continuous action space, without imposing any constraints on the
velocity of the USV. The agent’s action space comprises both the
USV’s velocity and the desired heading, with both variables being
continuous in nature.

• We conducted evaluations on multiple simulated scenarios that
encompassed complex environmental conditions. Moreover, we
assessed the efficacy of the agents’ learned policies by measuring
their capability to transfer their knowledge to new agents in
unfamiliar situations, without necessitating retraining.

The structure of this paper is as follows. Section 2 reviews the
literature on the research topic of RL based USVs navigation systems
and also on imitation learning. Then, Section 3 specifies the problem
to be solved and describes the proposed data-driven imitation learning
algorithm for modeling USVs trajectories under variable environmental
conditions. Finally, Section 4 presents the simulation cases and the
obtained results, and Section 5 concludes the paper with findings and
future directions.

2. Related work

In the recent literature, there are several methods that have been
proposed for marine platform navigation using reinforcement learning
(RL) schemes, see for example (Blekas and Vlachos, 2018; Tziortziotis
et al., 2018). In the case of USVs, Deep Reinforcement Learning (DRL)
approaches are also introduced. For instance, Gonzalez-Garcia et al.
(2020) combined DRL algorithms such as the Deep Deterministic Policy
Gradients (DDPG) (Lillicrap et al., 2015), with an adaptive sliding mode
controller. Specifically, DDPG provides as action the desired heading,
while an adaptive sliding mode scheme drives the heading and velocity
achieving the USV path-following. Ma et al. (2020), presented a DRL
algorithm for collision avoidance between multiple USVs in complex
encounter situations, under the rules of International Regulations for
Preventing Collision at Sea (COLREGS), which are imposed to the
proposed method.

Moreover, Wang et al. (2021a) developed an actor–critic RL scheme
to perform trajectory tracking of an unmanned ground vehicle based on
optimal control and Wang et al. (2021b) proposed a prior knowledge-
based USV RL method for obstacle avoidance in complex environments.
In particular, they used an actor–critic architecture along with prior
knowledge-based reward shaping for obstacle avoidance. Finally, Holen
et al. (2022) studied the problem of autonomous docking and obsta-
cles avoidance using DRL in a boat simulator environment for the
development of USVs.

On the other hand, in Inverse Reinforcement Learning (IRL), the
agent aims to approximate the underlying reward function based on
the expert demonstrations, and then use it to find the optimal policy
via RL. Nevertheless, through this process there can be found many
reward functions that explain the same optimal policy. To tackle this
problem, the maximum entropy principle can be utilized, assuming that
the optimal probability distribution should be the one with the highest
entropy. In the case of IRL, this means that a policy that imitates the
expert state–action distribution must also have the maximum entropy
among all policies. However, a RL optimization step is necessary af-
ter every update of the reward function, which renders this method
inefficient.

The Generative Adversarial Imitation Learning (GAIL) (Ho and Er-
mon, 2016) has been proposed to address the need for approximating a
reward function. This method directly learns the expert optimal policy,
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Fig. 1. The Pamvotis lake at Ioannina, Greece.
without obtaining the expert reward function, relying on the combina-
tion of IRL and Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014).

A recent work presented in Vedeler and Warakagoda (2020) used
the GAIL framework in order to steer a USV to avoid obstacles using
expert demonstrations. Contrary to this work, our proposed method has
two principal advantages: (a) the action space consists of the velocity
(constant in the former work) and the heading angle of the USV, and
(b) the dataset is based on realistic weather conditions of the local area
which increases the difficulty. Moreover, in another recent study, Jiang
et al. (2022) proposed an extension of GAIL, called GA2IL, in order
to train an Autonomous Underwater Vehicle (AUV) agent to follow
expert paths. This method builds on standard GAIL with a reward
modification that allows the human expert to evaluate the generated
trajectories. To the best of our knowledge, there are no other research
works for imitation learning on navigating USVs under the presence of
environmental disturbances.

3. The proposed method

In this section the proposed method is introduced by describing the
specific test environment and the way of designing the demonstrated
trajectories under disturbances. Our goal is to train an intelligent agent
to navigate through the lake, on demonstrated paths that connect two
ports, in the presence of known stationary obstacles. This is achieved by
using an imitation learning framework that constructs a navigation pol-
icy following expert trajectories under various weather conditions. The
concepts of imitation learning and the generative adversarial scheme
under the umbrella of reinforcement learning are described to further
design and implement an efficient USV navigation policy.

3.1. Data acquisition-trajectories construction

The way of obtaining the surface trajectories used for the training
and evaluation procedure is described next.

3.1.1. The lake environment
We chose the lake Pamvotis located in the central part of the Ioan-

nina regional unit in north-west Greece, as the main test environment
for this work, see Fig. 1. The island in Pamvotis lake is a popular tourist
destination and is considered as one of Europe’s few inhabited lake
islands with no cars. There is a regular boat service from the city of
Ioannina to the island that takes around 10 min1 and (ideally) follows
the path shown in Fig. 2 taken by Google maps.

In our study we used an image captured from Google Maps. The
selected section of the map covers an area of 2074 × 2074 m. The start
position, [166, 166] in m, and goal position, [1659, 1120] in m, are on the

1 Since the distance between Ioannina and the port of the island is about
2 km, typical boats used in the lake have a mean velocity of 3.3 m∕s.
3

Fig. 2. The Pamvotis lake area and the connection of the ports of Ioannina city and
the island by boat.

bottom left corner and upper right corner respectively, as depicted in
Fig. 2.

The objective is to implement an appropriate autonomous system by
training a RL-based intelligent agent with imitation learning. Agent’s
learned policy will be used to efficiently control a USV so as to opti-
mally complete the task of reaching the destination port of the island
starting from the city port (starting point). The term optimal is referred
to the ability of the intelligent agent to establish effective and robust
motion planning policies that allow to design suitable paths for quick
and efficient trips, under the presence of realistic environmental distur-
bances of different level and of significantly large variability. The study
is focused on the proposed method’s ability to imitate the demonstrated
trajectories that are available in order to generate physically realizable
paths at a reasonable computational cost under its motion constraints
and the external disturbances.

We tried to provide a simulated environment tailored to match the
specific weather conditions of the local area. For this reason, we used
the wind velocity and wind direction information provided by the data
from Hellenic Data Service, National Observatory of Athens Institute of
Environmental Research and Sustainable Development,2 for modeling
the disturbances. These meteorological data provide several data points
from the time period between 2010–2019.

We selected the wind velocity and the wind direction data of the
year 2019 as it is the most recent data available to simulate the
environment according to the real-world data and to portrait the overall
environmental conditions that the USV might encounter. Fig. 3 depicts
the average wind velocity and the dominant wind direction recorded
between June and December of 2019. It is interesting to observe the

2 https://data.hellenicdataservice.gr/

https://data.hellenicdataservice.gr/
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Fig. 3. Average wind velocity and dominant wind directions of the local area around
lake Pamvotis during a time period of almost 200 days in the year 2019.

large variability of the wind direction, as well as the mean value of
around 4 kn for the wind velocity.

3.1.2. The USv dynamic model
In this work, we consider the model and specifications of a typical

USV model, like the WAM-V family,3 with a twin hull, pontoon style
with a length of 7 m, 3.66 m beam, and shallow draft at 0.56 m with a
weight of 544 kg. The propulsion is provided by two thrusters, one on
each side of the pontoon, and in this work we assume that the thrusters
cannot be rotated. Each thruster can apply a maximum allowed force of
2000 N. The choice of the marine vehicle model is arbitrary, and does
not affect the imitation learning algorithm.

A short description of the dynamic model of the USV is given next,
but a detailed description and analysis of the WAM-V family USVs can
be found in Klinger et al. (2013), Klinger et al. (2014), and Sarda et al.
(2016).

A three DOF (surge, sway and yaw) dynamic model is used to
develop the equations of motion, Fossen (1995). The model designates
the origin of the body-fixed frame, {𝐵}, at the center of gravity and
assumes port/starboard symmetry. The equations of motion are the
following:

𝐌𝐵 �̇� + 𝐂𝐵𝐯 + 𝐃𝐵𝐯 = 𝐵𝝉𝐸 + 𝐵𝝉 (1)

and the kinematics equations of the plane motion are described by

�̇� = 𝐉(𝜂)𝐵𝐯 (2)

3 https://wam-v.com/
4

where 𝐌 is the mass and added mass matrix, 𝐂(𝐯) is the Coriolis matrix,
𝐃(𝐯) is the drag matrix, 𝐵𝝉𝐸 is the vector of disturbance forces and
moment caused by the wind and waves, and 𝐵𝝉 is the vector of forces
and moment generated by the propulsion system (thrusters), all w.r.t.
the body-frame. The vector �̇� describes the vehicle’s North (�̇�), East (�̇�)
velocities and the angular velocity (�̇�) around the z axis in an inertial
reference frame, 𝜼 = [𝑥, 𝑦, 𝜓], and the vector 𝐯 contains the vehicle
surge velocity (𝑢), sway velocity (𝑣) and yaw rate (𝑟), in the body-
fixed frame. 𝐉 is the rotation matrix from body-fixed to inertial frame,
see Sarda et al. (2016).

The wind induced forces and torque included in vector 𝐵𝝉𝐸 are
described by the following equations:

𝑓𝑥,𝑤𝑖𝑛𝑑 = 0.5𝐶𝑋 (𝛾𝑅)𝜌𝑉 2
𝑅𝐴𝑇 (3)

𝑓𝑦,𝑤𝑖𝑛𝑑 = 0.5𝐶𝑌 (𝛾𝑅)𝜌𝑉 2
𝑅𝐴𝐿 (4)

𝑛𝑧,𝑤𝑖𝑛𝑑 = 0.5𝐶𝑇 (𝛾𝑅)𝜌𝑉 2
𝑅𝐴𝐿𝐿 (5)

where 𝐶𝑋 and 𝐶𝑌 are force coefficients and 𝐶𝑇 is a moment coefficient.
These coefficients are functions of the relative angle, 𝛾𝑅, between the
wind and the USV direction, and are taken from tables. 𝜌 is the density
of air, 𝐴𝑇 and 𝐴𝐿 are the transverse and lateral projected areas, and
𝐿 is the overall length of the USV, see Fossen (1995), and Sarda et al.
(2016). 𝑉𝑅 is the relative wind speed, given in knots. The wind velocity
magnitude and direction are time depended waveforms and, for simu-
lation purposes, are produced by integrating white noise taking under
consideration the real data in lake Pamvotis, presented in Fig. 3. In
addition, the wave induced forces included in vector 𝐵𝝉𝐸 are simulated
assuming wind generated waves, where the Pierson Moskowitz wave
spectrum was used, see Fossen (1995) and Perez and Blanke (2002).
The wave induced forces are calculated using the mean wave drift
force equation derived in Faltinsen (1990). Example wind velocities are
depicted in Fig. 4. The induces wind and wave forces corresponding to
the aforementioned wind velocities and direction are depicted in Fig. 5.

The disturbances of the water current are included in the dynamic
equations of motion by representing (1) in terms of the relative velocity
between water current and USV. Again, the water current velocity
magnitude and direction used in the simulations are produced by inte-
grating Gaussian white noise. Example current velocities are depicted
in Fig. 4. A similar approach and a more detailed description can be
found in Vlachos and Papadopoulos (2015).

The vector of actuation force and torque, 𝐵𝝉, generated by the
thrusters is described as:

𝐵𝝉 =
⎡

⎢

⎢

⎣

𝐵𝑓𝑥
0

𝐵𝑛𝑧

⎤

⎥

⎥

⎦

(6)

where 𝑓𝑥 and 𝑛𝑧 are the force and torque applied w.r.t. the body-frame
of the USV.

3.1.3. Constructing the expert trajectories
Next, we need to construct the expert trajectories that the agent

will learn to imitate. For this purpose we used a virtual potential field
approach, Khatib (1985), Choset et al. (2005). We should point out
that any other method could be used, and that it is irrelevant for the
imitation learning methodology. For example, the desired paths could
be alternatively constructed by observing and recording the actual
routes of the boats for a sufficient number of days, but it would be
time consuming. In our study we assumed the start and goal position of
the USV (Ioannina and island port), and the obstacles in the area to be
known. The original map presented in Fig. 2 was further converted into
binary as shown in Fig. 6(a), where the darker area denotes the land
(obstacles) and the lighter area denotes the water surface (free space).
The USV is considered to have reached the goal when the distance to
the destination point is less than 20 m.

The construction procedure of the trajectories involved three major

steps:

https://wam-v.com/
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Fig. 4. Example wind and water current velocities.

Fig. 5. Induced wind and wave forces corresponding to the wind velocities and
directions depicted in Fig. 4.

(a) The first step was the construction of the suitable gradient vector
field that directs the robot from the start position to the goal
position while avoiding obstacles, resulting in the desired path,
see Fig. 6(b).
The start and goal positions are equal to 𝐪𝑠𝑡𝑎𝑟𝑡 = [166 166]⊤ and
𝐪𝑔𝑜𝑎𝑙 = [1659 1120]⊤ respectively as shown in Fig. 6. Virtual
obstacles have been placed, in suitable positions on the map,
along the coastlines. The number and position of the virtual
obstacles is chosen by trial and error, so that the resulted path
is about the same as the one followed by the local ferries.
5

Table 1
List of parameters and their values for constructing the virtual potential field.

Parameter Symbol Value

Gain of attractive potential 𝐾𝑎𝑡𝑡 1450
Gain of repulsive potential 𝐾𝑟𝑒𝑝 620
Influence distance of each obstacle 𝜌0 15

A potential function is constructed using the following equation:

𝑈 (𝐪) = 𝑈𝑎𝑡𝑡(𝐪) + 𝑈𝑟𝑒𝑝(𝐪) (7)

where 𝑈𝑎𝑡𝑡(𝐪) represents the virtual attractive potential to the
goal, and 𝑈𝑟𝑒𝑝(𝐪) represents the sum of the virtual repulsive
potentials from each virtual obstacle. Both, are functions of the
position 𝐪 = [𝑥 𝑦]. The potentials are calculated using the
following equations:

𝑈𝑎𝑡𝑡 =
1
2
𝐾𝑎𝑡𝑡(𝐪 − 𝐪𝑔𝑜𝑎𝑙)2 (8)

𝑈𝑟𝑒𝑝 =
𝑛
∑

𝑘=1
𝑈𝑟𝑒𝑝𝑘 (9)

𝑈𝑟𝑒𝑝𝑘 =

⎧

⎪

⎨

⎪

⎩

1
2
𝐾𝑟𝑒𝑝

(

1
𝜚𝑘

− 1
𝜚0

)2
if 𝜚𝑘 ≤ 𝜚0

0 if 𝜚𝑘 > 𝜚0
(10)

where 𝑈𝑟𝑒𝑝𝑘 represents the virtual repulsive potential from the
𝑘 virtual obstacle, and 𝐾𝑎𝑡𝑡 and 𝐾𝑟𝑒𝑝 are gains used to scale the
effect of the attractive and repulsive potentials respectively. 𝜚𝑘
is the distance from obstacle 𝑘. The repulsive effect of obstacles
at a distance greater than 𝜚0 is ignored.
In theory, the gradient of the potential is a vector that can be
viewed as a virtual force acting on the USV, so the negative
gradient of 𝑈𝑎𝑡𝑡(𝐪) points to the goal, 𝐪𝑔𝑜𝑎𝑙, while the negative
gradient of 𝑈𝑟𝑒𝑝(𝐪) points away from the obstacles. However,
in this work, we view the gradient as desired linear velocity
vector, instead of force vector, that the low-level controller has
to realize, as described in Section 3.1.4. Hence, The desired
linear velocity vector, is equal to

𝐯(𝐪) = −∇𝑈 (𝐪) (11)

The parameters are determined by trial and error and are listed
in Table 1.

(b) The second step was to let the USV follow the desired linear
velocity, from the start position to the goal position, avoiding
the physical obstacles, without any environmental disturbances,
see Fig. 6(b). To this end, a simple and effective low-level head-
ing/velocity control scheme is employed, as it will be described
later in Section 3.1.4.

(c) The third step was to repeat the same procedure under various
environmental disturbances (see Fig. 8). This results into the
construction of expert trajectories that will be next used as inputs
to the imitation learning framework.

The resulting expert trajectories and environmental conditions are
used for the training and evaluation procedure of the agent,

3.1.4. Low-level controller
The aim of the controller is to ensure that the USV maintain the

desired velocity, i.e. analog to the negated gradient of the potential
function, i.e. the surge velocity should follow the desired velocity
vector magnitude, and the USV heading should be equal to the desired
velocity vector angle as produced by the potential field method.

The control vector includes the force 𝑓𝑥 in 𝑥𝑏 axis, and the torque 𝑛𝑧
about the 𝑧𝑏 axis of the USV’s body-frame. A velocity controller ensures
that the USV’s surge velocity is the desired, where the input is the
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desired velocity of the USV, i.e. the desired velocity vector magnitude
as produced by the potential field method, and the output is the control
force according to

𝑓𝑥 = 𝐾𝑝,𝑓 (𝑢𝑑𝑒𝑠 − 𝑢) +𝐾𝑖,𝑓 ∫

𝑡

0
(𝑢𝑑𝑒𝑠(𝑡) − 𝑢(𝑡))𝑑𝑡 (12)

where 𝐾𝑝,𝑓 , and 𝐾𝑖,𝑓 are the controller gains related to the desired
force, 𝑢𝑑𝑒𝑠 is the desired surge velocity, and 𝑢 is the actual surge velocity
in 𝑥𝑏 axis. The controller gains are equal to, 𝐾𝑝,𝑓 = 0.01, and 𝐾𝑖,𝑓 = 0.15.

A heading controller ensures that the USV’s heading is the desired,
where the input is the desired orientation of the USV, i.e. the angle of
the velocity vector as produced by the potential field method and the
output is the control torque according to

𝑛𝑧 = 𝐾𝑝,𝑛(𝜓𝑑𝑒𝑠 − 𝜓) +𝐾𝑖,𝑛 ∫

𝑡

0
(𝜓𝑑𝑒𝑠(𝑡) − 𝜓(𝑡))𝑑𝑡 −𝐾𝑑,𝑛�̇� (13)

where 𝐾𝑝,𝑛, 𝐾𝑖,𝑛 and 𝐾𝑑,𝑛 are the controller gains related to the desired
torque calculation, 𝜓𝑑𝑒𝑠 denotes the desired orientation of the USV,
i.e. the orientation of the negated gradient vector of the potential
function, and 𝜓 is the actual orientation of the USV in every time step.
The gain values are the following, 𝐾𝑝,𝑛 = 0.0085, 𝐾𝑖,𝑛 = 0.025 and
𝐾𝑑,𝑛 = 0.0003.

The control force, 𝑓𝑥, and torque, 𝑛𝑧, are implemented by the
thrusters of the USV, port and starboard, according to
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(14)

where 𝑏 is the beam of the USV, and 𝑓𝑝 and 𝑓𝑠 are the actuation forces
applied by the USV’s port and starboard thruster respectively. The
resulting path without any environmental disturbances is depicted in
Fig. 6, where the USV reaches the goal avoiding the obstacles following
a smooth path. The output thrust per thruster is depicted in Fig. 7. We
choose the condition with the highest environmental disturbances at
10 knots wind to convey the efficiency of this low-level controller at
its most difficult scenario. We can see that the thrusters are below the
maximum allowed thrust (2kN), even in the worst scenario of 10 knot
wind.

3.2. Generative adversarial imitation learning for USV navigation

In Inverse Reinforcement Learning (IRL), the objective is to deduce
a reward function from a set of observed behaviors exhibited by an
agent. The reward function serves as a representation of the underlying
objective that the agent aims to achieve, and it provides guidance for
the agent’s decision-making process and behavior.

Generative adversarial imitation learning (GAIL) is an IRL approach
that combines the power of Generative Adversarial Networks (GANs)
with the imitation learning framework, in order to train an agent to
imitate an expert’s behavior. To accomplish that, GAIL tries to match
the generated state–action distribution with the expert’s state–action
distribution by minimizing the Jensen–Shannon divergence.

GAIL is rooted in the principle of maximum entropy reinforce-
ment learning, which involves maximizing the entropy of the policy
while also ensuring the maximization of expected reward. This ap-
proach seeks to balance exploration and exploitation by promoting
policy diversity through entropy maximization, while simultaneously
optimizing the policy for high expected rewards.

The model consists of two components: a generator and a dis-
criminator. Both networks are trained simultaneously in a zero-sum
game, where the goal of the generator is to generate samples that are
indistinguishable from the expert demonstrations, and the goal of the
discriminator is to correctly identify the expert demonstrations. This
process continues until the generator is able to generate samples that
are sufficiently similar to the expert demonstrations, at which point the
6

Fig. 6. Constructing the expert path without the presence of any environmental
disturbances.

discriminator network will not be able to tell the difference between the
two.

Once the generator is sufficiently trained, it can be used to generate
new samples, that mimic the expert’s behavior. This allows the policy
network to learn from the expert demonstrations without directly ob-
serving the environment, which can be useful in cases where collecting
expert demonstrations is expensive or difficult.

Formally, the objective of GAIL is denoted as:

min
𝜋𝜃

max
𝐷

𝐸𝜋𝜃 [𝑙𝑜𝑔𝐷(𝑠, 𝑎)] + 𝐸𝜋𝐸 [𝑙𝑜𝑔(1 −𝐷(𝑠, 𝑎))] − 𝜆𝐻(𝜋𝜃) , (15)

where 𝜋𝐸 and 𝜋𝜃 are the expert and generated state–action distributions
respectively, 𝐷 is the discriminative network and 𝐻(𝜋) is the causal
entropy of the policy 𝜋𝜃 , which plays the role of the regularizer. The
first term in the objective function encourages the generator to produce
trajectories that can be classified as expert-like by the discriminator,
while the second term encourages the discriminator to correctly dis-
tinguish between expert and generated trajectories. The final term,
encourages the generator policy to be diverse.

Finally, GAIL uses a surrogate reward:

𝑟 = −𝑙𝑜𝑔𝐷(𝑠, 𝑎) , (16)

in order to update the policy 𝜋𝜃 , with either Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015) or Proximal Policy Op-
timization (PPO) (Schulman et al., 2017).

In our work, the agent focuses on imitating expert USV trajectories
that present similar patterns of navigational behavior. The trajectory,
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Fig. 7. Simulated velocity, orientation and output thrusts produced by the PI and PID controller in the scenario with 10 knots wind.
Fig. 8. Demonstrated trajectories of the wind velocity and direction of the scenarios used in our experimental study. They include three different mean wind velocity values of 4
(blue), 7 (orange) and 10 (green) knots, correspondingly. All possible wind directions (b) were considered of range [0, 360] degrees at every scenario of wind velocity (a).
𝑇 , is defined as the movement of the USV on the water, which is
a chronologically ordered sequence of USV states, containing vari-
ables that include the 2D position on x, 𝑦 axis and the orientation 𝜓 .
Moreover, the state space is enriched with environmental disturbances
(wind velocity, wind direction, current velocity and current direction).
Regarding the action set, 𝐴, it is a combination of the desired velocity
(𝑢𝑑𝑒𝑠 in m/s) and the desired heading (𝜓𝑑𝑒𝑠 in degrees). The execution
of the desired action, is then implemented by the low-level controller
described in 3.1.4. Algorithm specifies the training process of GAIL for
USV navigation.

In the testing phase of the method, the goal is to accurately predict
the evolution of the trajectory until the USV reaches the destination
port. To that end, we utilize the trained policy of the generator network
as follows: Given an initial state from an expert trajectory of the testing
set and the weather conditions for that trajectory, the agent rolls-out
the whole trajectory. It must be noted that – in order to fairly compare
the generated and expert trajectories – the weather conditions under
which the expert trajectory was created, should remain the same.

4. Simulation studies

We studied the performance of the proposed imitation learning
approach using several simulated experiments. The simulation envi-
ronment includes the kinematic and dynamic model of the USV, and
7

Algorithm 1: GAIL for USV navigation
Input: expert trajectories, empty buffer ;
Initialize the policy weights 𝜃 using BC ;
for i = 1, 2, ... do

while buffer is not full do
Sample an initial state from the expert demonstrations;
Roll-out the trajectory:

Sample action (𝑢𝑑𝑒𝑠, 𝜓𝑑𝑒𝑠);
Apply action to the low-level controller (eq. (12), (13),

(14));
Store state-action tuples (𝑠, 𝑎) to the buffer;

Update discriminator’s parameters with
𝛥𝑤 = E𝑥𝐸 [∇𝑤𝑙𝑜𝑔(1 −𝐷𝑤(𝑠, 𝑎))] + E𝑥𝐺 [∇𝑤𝑙𝑜𝑔𝐷𝑤(𝑠, 𝑎)];

Update 𝜃 using TRPO with the surrogate reward:
𝑟 = −𝑙𝑜𝑔𝐷𝑤(𝑠, 𝑎)

simulated wind, wave, and current disturbances. Moreover, actuation
limits on the thrusters are implemented.

The experiments are divided into three (3) scenarios by the intensity
of the wind velocity. From the wind velocity data illustrated in Fig. 8,
we categorized the intensity into low disturbance starting at 4 knots,
medium disturbance at 7 knots and high disturbance at 10 knots.
The recorded dominant wind directions show that the wind mostly
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Fig. 9. Comparison between the demonstrated and the predicted trajectories. They are created under the same environmental disturbances shown in Fig. 8. (a) are the expert
trajectories, obtained by the construction procedure described in Section 3.1.3. (b) and (c) are trained using the trajectories from (a) on each scenario.
approaches from the north eastern which translates to 225 degrees
direction and the west which translates to 0 degrees direction in
our simulation environment. The designated direction is depicted in
Fig. 6(b). In order to cover all the wind directions we divided the
starting wind directions between 0, 45, 135, 180, 225 and 315 degrees,
then subsequently added integration of white noise on each time step.
The wind direction white noise parameter is (

√

0.004 × 𝜖1)𝑑𝑡, where
𝜖1 is normal distribution with 𝜇 = 0, 𝜎 = 8, 𝑑𝑡 = 0.2 s and the white
noise parameter for wind velocity is (

√

0.1 × 𝜖2)𝑑𝑡, where 𝜖2 is normal
distribution with 𝜇 = 0, 𝜎 = 0.86. The simulated wind velocity and
direction are shown in Fig. 8.

Following the above procedure, we constructed two sets of 100
expert trajectories each, one set for training the GAIL structure and
the other for the agent’s evaluation purposes (testing set). It must
be noted that any scenario, regardless of the disturbance level (low,
medium or high), has the same distribution of wind direction shown
in Fig. 8(b) that simultaneously reflects the direction of the wave
disturbances. Although, at first sight, this may bring major difficulties
in the navigation problem with increased computational complexity,
8

we expect that it will encourage the learning process and enhance the
learned policies by incorporating generalization capabilities.

4.1. Experimental design and implementation issues

In this section we provide some implementation details about the
architecture of GAIL and the design of the simulations.

The generator network follows an actor–critic architecture, with a
policy and a value network. For the policy network, the states are given
as input to a fully-connected layer of 100 nodes, followed by another
hidden layer of 50 nodes that leads to an output layer of two nodes for
estimating the USV velocity and direction that specify the action to be
taken. It must be noted that the output of the final layer is the mean of a
Gaussian distribution for each action. Moreover, the policy parameters
are initialized using Behavioral Cloning in order to minimize the mean
squared error between expert and estimated actions, using the Adam
optimizer.

On the other hand, the critic and discriminator networks have the
same architecture. They consist of two (2) layers of 100 nodes each, and
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Table 2
Comparative results of the method in terms of five evaluation measurements in three scenarios.
Scenario Method Success rate (%) 𝑅𝑀𝑆𝐸 (m) 𝑉 (m/s) 𝑇 (s) 𝑓𝑝 (N) 𝑓𝑠 (N)

4 kn Expert – – 3.82 514.67 1134.35 1118.39

GAIL agent 100 14.99 3.93 500.69 1161.12 1142.11

7 kn Expert – – 3.83 513.13 1153.82 1113.43

GAIL agent 100 17.03 3.88 511.17 1171.19 1121.89

10 kn Expert – – 3.84 509.60 1188.30 1109.37

GAIL agent 100 23.63 3.87 514.55 1201.33 1106.29
Fig. 10. The architecture of the policy and discriminator networks used in GAIL.

an output layer of one (1) node. In the case of critic, the output node
is linear predicting the value of the state, while for the discriminator
the output node uses a sigmoid activation function that indicates the
probability of a state–action sample being real. The overall architecture
of both policy and discriminator networks used in the proposed GAIL
framework is presented in Fig. 10.

During training, the number of epochs was set to 500, where in each
epoch the policy rolled-out 10000 samples. The collected samples were
used in mini-batches of size 1000 for 100 training cycles.

The proposed imitation learning scheme was evaluated regarding
its ability to predict the USV trajectories in all scenarios in terms of the
following five (5) measurements:

• Success rate (%) of the agent calculated as the percentage of its
ability to successfully reach the destination port.

• Root Mean Squared Error (RMSE) in meters (m) of the distance
between the demonstrated by the expert and the generated tra-
jectory using the two spatial dimensions. It must be noted that
initially the actual trajectory points are matched to the closest
predicted trajectory points, as measured by applying the dynamic
time warping (DTW) distance between both trajectories. Then,
measurements of error are calculated over the corresponding
points.

• Mean velocity (V) in m/s of the USV across all trajectory points.
We report the mean value of this metric over all trajectories used
for evaluation.

• Mean value of the actuation forces, 𝑓𝑝 and 𝑓𝑠, in 𝑁 that are
applied from the USV’s port and starboard thruster (Eq. (14)) in
every trajectory point. Again, we report its average over all tested
trajectories.

• Mean duration (T) in 𝑠 of all trajectories that take to reach the
destination port.

All simulated results reported are the mean values of ten (10) inde-
pendent runs per case. Finally, our experimental study was exclusively
9

made on a PC with the following specification: AMD Ryzen 5 3600 CPU,
32 GB Ram and GeForce GTX 1660 Super with 6 GB Ram GPU.

4.2. Results

The efficiency of the proposed approach was evaluated on the
testing sets of three scenarios, after training the agents with the cor-
responding training sets. In all cases we used the Behavioral Cloning
(BC) as a baseline and simultaneously as a way for initializing the
weights of the policy network. According to the results we received, the
performance of the BC was not satisfactory since it could not produce
meaningful trajectories and imitate the expert (success 0%). Thus, we
did not include its results in the remaining experimental analysis.

Table 2 presents the depicted results in terms of all evaluation
criteria suggested. For comparison purposes, we also provide in the
same table the values of the measurements (except for success rate)
that were calculated by the demonstrated trajectories used for evalu-
ation. As it can be observed, in all cases the trajectories of the USV
following the agent’s policies with GAIL managed to successfully reach
the destination port (100% success), even under the most difficult and
unusual weather conditions (i.e., scenario with wind velocity 10kn).
Furthermore, the results seem to be intuitively consistent since all rest
measurements are in accordance with the difficulty of the scenarios.
For example, the predicted trajectories in the scenario with 4 kn wind
velocity yielded the best RMSE value (14.99 m) followed by those of the
7 kn scenario (17.03 m) and the 10 kn scenario (23.63 m). We observe
also the capability of the method to maintain the same average velocity
(around 3.9 m/s) and traveling time (around 500 s) in every level of
environmental disturbances. It is worth reminding that the typical boats
– under ordinary weather conditions – reach a mean velocity of 3.3 m/s
and traveling time of 600 s

Comparing the results between the predicted and the demonstrated
trajectories, shown in Table 2, it is interesting to observe the ability of
the proposed method to successfully imitate the expert demonstrations
and can replicate the tendency of both average actuation forces to
three levels of scenarios. However, there is a small difference on
the mean velocity (V) and mean duration (T), where it seems that
the predicted trajectories are faster mainly in the scenarios of 4 kn
and 7 kn. To further investigate this finding, in Fig. 9(b) we plotted
the predicted trajectories per scenario and compared them with the
demonstrated ones shown in Fig. 9(a). Also, in the same figure we
give the corresponding trajectories predicted by the BC approach, see
Fig. 9(c). Looking carefully these diagrams we can view the tendency
of our method to construct trajectories with less variability and closer
to the mean values that constitutes an outcome of the GAIL. We
believe that this finding can be also explained by the capability of
the learning strategy we followed (use demonstrated trajectories of
almost all directions) which significantly increases the robustness of
the learned policies. On the other hand the BC completely fails to reach
the destination port where either terminates earlier, or follows wrong
direction.

It is crucial to emphasize that our work’s objective is not to optimize
the expert paths, but rather to develop the capacity to imitate them.
Our focus is on learning from observed expert behaviors and generating
policies that can imitate those behaviors effectively. The simulation
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Fig. 11. Zooming the part of the generated trajectories near the destination port of the island. The ability of creating smooth solutions is obvious in all scenarios.
Table 3
The performance of the agent’s learned policies of 7 kn wind velocity in unknown
scenarios considering two different wind velocity values, 4 kn and 10 kn.

Wind velocity Wind direction (degrees)

0 45 180 225

4 kn 100% 100% 100% 100%

10 kn 70% 60% 65% 90%

results obtained thus far indicate promising success in achieving this
goal. By prioritizing imitation over optimization, we aim to leverage the
expertise of human operators and transfer their skills to autonomous
systems in a safe and efficient manner.

Finally, Fig. 11 shows examples of the generated trajectories in
three different environmental cases. Obviously the learned policy is
able to generate smooth and dynamically feasible trajectories that
reflects the method ability to offer robust and accurate navigation
solutions and smoother journeys to the island independent on the level
of environmental disturbances. This can be seen clearly by taking a
closer look to the part of the generated trajectories towards the goal
(destination port), as shown in Fig. 11.

4.3. Knowledge reusing

One of the key challenges in designing intelligent agents to a task is
to alleviate the burden of learning and allow the exploitation, sharing
and reusing of the knowledge generated throughout decision-making pro-
cess (Taylor and Stone, 2009; Lazaric, 2012). Transfer learning focuses
on storing obtained knowledge from the solution of one problem and
applying it to a different but related problem. It can significantly reduce
learning time and create more solid intelligent agents. Knowledge reuse
becomes a core technology in agent-based learning systems that can
establish relationships with other agents that allow implicit or explicit
knowledge sharing, and integrate the received information with its
previous experience to improve learning.

In our study, we tried to investigate the capability of the proposed
method to offer knowledge reusing for USV autonomous navigation
tasks. Knowledge is offered through the learned policies of the RL agent
which can be (re)used in unknown environments. More specifically, we
have taken as basis the agent’s policies that have been learned by the
scenario of wind velocity equal to 7 kn. To measure their effectiveness,
we have tested them to different (unknown) scenarios created using
wind velocity equal to 4 kn (small level of disturbances) and 10 kn
(large level of disturbances). A number of 100 test trajectories were
created, by the construction procedure as described in 3.1.3, for any
scenario, and all learned policies of 7 kn scenario were applied for
reconstructing them starting from the same initial point and having the
same environmental conditions.
10
Table 3 gives the results where we report the ability of policies to
successfully reach the destination (port of island) in terms of the per-
centage of the success. An interesting observation concerns the ability
of all agents to not decrease their performance when using scenarios
with smaller wind velocity (4 kn) reaching always the destination port.
This shows the capability of the method to efficiently offer knowledge
reusing and maintain its decision-making policies to unknown envi-
ronments. The percentage of success becomes lower when examining
scenarios of larger wind velocity (10 kn) as shown in Table 3 with a
success rate of more than or equal to 60%. The best behavior (90%)
was obtained in the case of the direction of 225 degrees even if this
is opposite to the main boat travel direction from the initial port. As
shown in Fig. 9(b) that illustrates the predicted trajectories, the ship
must turn a half-circle around the top of the island in order to dock
successfully. As a result, this will change the orientation of boat and
now the wind direction would be relatively modified for the motion.
Thus, the direction of 225 degrees will be favorable for approaching
the destination port, while the direction of 0 degrees may get the boat
away from the destination port. When the wind velocity is strong,
counteracting the forces of the wind become a difficult task.

5. Conclusions

In this work, we presented a USV navigation system based on GAIL
which learns a policy that imitates expert trajectories. This approach
trains the policy to map states to desired velocity and heading angles.
We tested our system on three (3) scenarios of increased difficulty,
where the agents showed their capability to produce realistic trajecto-
ries for the USV under diverse environmental disturbances. We further
evaluate the agents’ learned policies and measure their knowledge
reusing capability where we displayed a way of transferring the agent’s
knowledge to unknown scenarios.

Based on the encouraging results, there are a number of directions
in which we plan to extend our work:

• Consider more complex scenarios with

– trajectories of multi-modal behaviors and/or of longer dis-
tance,

– moving or (unknown) stationary obstacles and alternative
collision avoidance algorithms during training, and

– marine traffic in the port environment.

• Study alternative schemes of learning algorithms (such as Offline
RL) to imitate expert trajectories.
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