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Abstract— This paper presents the design of a robust tube-
based nonlinear Model Predictive Control (MPC) law for a
triangular marine platform, that is over-actuated with three ro-
tating jets. The goal is safe navigation and dynamic positioning
of the platform under realistic wind and wave environmental
disturbances, as well as real-time obstacle avoidance employing
Control Barrier Functions (CBF) as constraints in the robust
MPC strategy. Extensive Monte Carlo simulations have been
conducted under a control allocation scheme, taking into
account the actuator thrust and rotation dynamics, sensor noise,
as well as additional state and input constraints. The simula-
tion results show that the nonlinear controller ensures robust
and safe navigation with obstacle avoidance and accomplishes
accurate positioning of the floating platform at a given goal
pose, while satisfying the actuator limits.

I. INTRODUCTION

Floating platforms are widely used in offshore oil and gas
production, aquaculture and fish farming, in offshore renew-
able energy plants, [1], as research in-the-field laboratories
[2] and in general as auxiliary systems in marine applica-
tions. A common task for these platforms is to navigate to
a desired goal pose, where they must remain stationary. To
accomplish this, an appropriate actuation system must be
able to provide the necessary forces to cancel environmental
disturbances, like wind, wave and current forces, while
ensuring the fulfilment of the navigation objective.

Safe control of these platforms, and marine vessels in gen-
eral, is a challenging control problem that is of great concern
from a research to a business standpoint. The hydrodynamic
effects that occur as well as rigid body dynamics render the
platform dynamics nonlinear, thus nonlinear control schemes
have to be applied. Usually, these marine platforms are
designed with redundant actuation, making the system over-
actuated. So the control commands have to be efficiently
allocated to the actuators, using allocate schemes that respect
the actuator dynamics and limitations. These characteristics
of the above control problem point to optimization based
controllers that can respect the constraints of the system
by design. By transcribing the control problem to a non-
linear program with constraints, that can be solved online
using appropriate optimization techniques, really efficient
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Fig. 1: The marine floating platform in-the-field and in a plan view

and elegant solutions can be formulated. Nonlinear Model
Predictive Control (MPC) [3] is an approach that can tackle
problems like the above, offering real-time control, while
ensuring constraint satisfaction. Given that the environmental
disturbances can be considered bounded, robust nonlinear
MPC can be used to ensure the navigation and dynamic
positioning of the platform. In addition, given the safety-
critical aspect of the navigation of such a system, Control
Barrier Functions (CBF) can be employed as constraints to
the MPC to ensure robust real-time obstacle avoidance.

In recent years, MPC has been frequently used in ma-
rine vessel control and given the described complexity and
nonlinearity of the problem, many flavors of MPC have
been applied. A Lyapunov-based MPC strategy designed
for dynamic positioning is used in [4] for an autonomous
underwater vehicle and a nonlinear MPC law is used in [5]
for motion control as well as thrust allocation of ships. To
ensure robustness, tube-based MPC is used in [6] for the
task of dynamic positioning of a ship, while [7] uses MPC
for trajectory tracking for a fully-actuated surface vessel.
Based on RCNNs, [8] designs an MPC law for tracking of
under-actuated vessels, while an economic MPC strategy is
presented in [9] with a trade-off between energy efficiency
and safety. With regards to collision avoidance, [10] uses
MPC and trajectory predictions based on RBF to accomplish
multi-ship avoidance, while [11] is using CBFs to achieve
reactive collision avoidance.

In this work, a tube-based nonlinear MPC strategy with
CBFs is implemented for a marine platform, designed for
the task of robust navigation and safe obstacle avoidance.
The design of the tube-based controller follows the work
presented in [12], where the uncertain system trajectories are
forced by an ancillary MPC law to lie within a tube around a
nominal trajectory derived using MPC on the certain system.
Once robustness is ensured using Monte Carlo methods,
CBFs are used as constraints, as in [13], to enable safe obsta-
cle avoidance in a MPC-CBF manner. To our knowledge, this
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is the first time that a CBF is employed as a constraint to a
tube-based nonlinear model predictive controller of the form
used in this work and the total hyperparameters of both the
tube-based MPC strategy and the CBF are simultaneously
tuned through stochastic simulations. Additionally, a non-
linear MPC law for dynamic positioning is used when the
platform reaches a certain distance threshold from the goal
pose. The inherent robustness of the nonlinear MPC law for
dynamic positioning is proven through stochastic simulations
and is able to stabilize the platform with minimal steady state
error. The swap from the tube-based MPC navigation strategy
to the nonlinear MPC law for dynamic positioning relaxes the
computational burden of the platform’s computational unit as
the tube-based strategy requires the solution of two nonlinear
programs simultaneously compared to the one nonlinear
program required for the positioning controller. Altogether,
the designed control scheme ensures the safe navigation of
the marine platform and its accurate dynamic positioning
despite the environmental disturbances. In [14], a robust
MPC strategy with CBFs is presented for nonholonomic
robots, aiming at obstacle avoidance with Input-to-State
Stability and Input-to-State Safety theoretical guarantees. In
comparison to our work, in [14] the constraint tightening is
not done using stochastic simulations and the method is only
aimed at nonholonomic robots.

II. DESCRIPTION OF THE MARINE PLATFORM
Initially designed to assist a deep-sea neutrino telescope,

the marine platform is designed as an isosceles triangle with
a mass of 425× 103Kg, actuated with three rotating diesel
engine jets. At each corner of the platform exists a hollow
double-cylinder in order to issue the necessary buoyancy.
The three jets are placed inside the three hollow double-
cylinders, where they rotate fully-submerged and parallel
to the sea surface, using electro-hydrolic motors and can
apply vectored thrust up to 20KN . A detailed analysis of
the design characteristics of the platform can be found in
[15] along with a model-based PID controller for dynamic
positioning. Other works, include a backstepping controller
[16] and a linear MPC method [17] both designed for the task
of dynamic positioning. Reinforcement Learning approaches
has also been studied for the navigation of the platform, [18].

A. Kinematics

The planar kinematics of the platform are described by
(1). The variables x, y, θ denote the position and orientation
of the platform’s fixed-body frame {B} with respect to the
inertial frame {I}, as depicted in Fig. 1. The fixed-body
frame {B} originates at the platform’s center of mass (CM)
located at point G. The variables u, v, r denote the surge and
sway velocities and the yaw of the platform with respect to
the fixed-body frame {B}. Control of the platform along the
heave axis and about the roll and pitch axes is out of the
scope of this work.

I ẋ =

ẋẏ
θ̇

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

uv
r

 = IRB
Bv (1)

B. Dynamics

Considering the platform dynamics, three distinct forces
are accounted acting on the CM. These forces are the
total control forces/torque from the three pump-jets, the
hydrodynamic forces resulting from the cylinder motion w.r.t.
the water and the forces due to environmental disturbances.

In Fig. 1, JA, JB , JC denote the magnitude of the vec-
torized thrust each pump-jet provides, while ϕA, ϕB , ϕC

denote the corresponding direction of each thrust. These
thrusts provide the resultant forces fc,x, fc,y that act on
the platform’s CM and the resultant torque nc,z around the
vertical axis zb that are used as virtual control inputs. The
resultant forces and torque, contained in Bqc, are derived via
the following linear operator,

Bqc =

fc,xfc,y
nc,z

 =


1 0 0
0 −1 −dAG

1 0 −dDC

0 −1 dDG

1 0 dDC

0 −1 dDG



T 
JA sinϕA

JA cosϕA

JB sinϕB

JB cosϕB

JC sinϕC

JC cosϕC

 = BBfc

(2)
with the parameters in matrix B corresponding to geometric
characteristics of the platform depicted in Fig. 1(b). The
designed controller provides the virtual forces and torque
acting on the CM, that can be allocated to the pump-jets
using the Moore-Penrose inverse as Bfc = B† Bqc, in the
case that the mean norm solution is enough and no additional
requirements should be honored in virtual force allocation.
This way the allocation is derived as:

Jk =
√

(fk sinϕk)2 + (fk cosϕk)2, (3)
ϕk = arctan 2(Jk sinϕk, Jk cosϕk) for k = {1, 2, 3}. (4)

The hydrodynamic force that acts on the CM of the
platform is derived as the total of the forces acting on each
cylinder, i.e., added mass force and drag force. For a detailed
analysis of hydrodynamics see [19]. The total forces acting
on the CM due to rotational velocity of the platform are:

Bq = [mα(2dAD − 3dAE)r
2),mα(

3

2
LBC − 3dBF )r

2, 0]T

(5)
with ma = −Cαπρ[R

2
uc(Huc + R2

lcHlc)], where Cα is
the added mass coefficient, ρ is the water density and
Ruc, Huc, Hlc denote the radius and height of the upper
cylinder and the height of the lower cylinder respectively.

Disturbance forces Bqdist are acting on the platform’s CM
due water and wind environmental disturbances, Bqwater

and Bqwind respectively. The simulation of the disturbance
forces/torque is based on [20] and calculated as

Bqdist =
B qT

water +
B qT

wind (6)

Disturbances coming from water consist of two terms. The
first corresponds to forces depended on water speed and
acceleration and the second corresponds to forces due to
wave oscillation and wave drift. Wave oscillation is simulated
as white Gaussian noise. Wind forces/torque and wave drift
disturbances depend on wind velocity and magnitude that is
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(a) Wind velocity and direction (b) Wind forces acting on CM

(c) Wave forces acting on CM (d) Wave drift acting on CM

Fig. 2: Environmental disturbances taken from simulations.

simulated as integrated Gaussian noise, with maximum value
at 4Beaufort. Bounds on the disturbance values are based
on meteorological data and an example of the disturbances
used in the simulations can be seen in Fig. 2.

Based on the above forces/torques, the dynamic equation
of motion of the platform w.r.t. the fixed-body frame {B} is
derived using first principles as:

MB v̇ = Bq + Bqdist +
Bqc (7)

with the mass matrix M = diag(m− 3mα,m− 3mα,m33)
and m33 = Izz−(d2AG+2d2BD+2d2DG)ma, where m denotes
the mass of the platform and Izz is its mass moment of inertia
about the zb axis, see Fig 1.

1) Actuator Dynamics: The Bqc vector contains the vir-
tual input forces acting on CM, as derived by the control
system. These forces, as mentioned, are allocated to the
pump-jets based on (2). The immediate application of the
desired allocated thrust is not possible due to the pump-jets
dynamics and limitations. The actuator dynamics are simply
modeled as first order lags, as

J̇k =
1

τJ
(Jk,des − Jk) and ϕ̇ =

1

τϕ
(ϕk,des − ϕk) (8)

with τJ , τϕ denoting each jet’s thrust and rotation time
constants. The pump-jet’s model is a lot more complex in
reality, see [15] for more details, but the simplified first-order
lag model is used in the simulation. The actuator limitations
are also considered using the manufacturer sheets.

III. DESIGN OF THE ROBUST NONLINEAR MPC LAW

The design of the control system for the navigation of the
platform is based on a tube-based nonlinear MPC [12], and
obstacle avoidance is accomplished by employing a DCBF,
[13]. For obstacle avoidance, we assume the presence of a
perception system capable of real-time obstacle detection that
can provide coordinates of obstacles with respect to a known
frame, the design and implementation of which, is out of the
scope of this work.

Starting from (7) and combining (1) and its derivative,
B v̇ = IR−1

B

(
I ẍ − IṘBv

)
the open loop dynamics of the

platform is described as
I ẍ =I ṘB

IR−1
B ẋ +I RBM

−1
(
Bq +B qdist +

B qc

)
(9)

By augmenting the model with the observed variables as

xaug =
[
x, y, θ, ẋ, ẏ, θ̇

]T
, the open loop dynamic equation

(9) takes the from of

ẋaug =


O3×3 I3×3

O3×3
IṘB

IR−1

 xaug+


O3×3

IRBM−1

(
Bq +

B qdist +
B qc

)
(10)

with O and I denoting the zero and identity matrices
respectively. This way the model takes the standard form
of the disturbed nonlinear system, i.e.,

ẋ = f (x,u) + w (11)

with x denoting the augmented state vector xaug , u the input
vector Bqc and w the bounded disturbances. The equivalent
certain system has the form

ż = f (z, v) (12)

with z denoting the augmented state vector xaug and v the
input vector Bqc for the certain system.

A. Robust Navigation

Robust navigation is ensured by forcing all the possible
uncertain trajectories within a tube around a nominal tra-
jectory. A nominal MPC law is designed using the deter-
ministic system dynamics (12), that derives a desired state
and input trajectory, that is used as reference. The feedback
control signal for the disturbed system (11) is derived by
an ancillary nonlinear MPC law that steers the trajectories
of the disturbed system to the reference nominal trajectory.
By tightening the constraint set of the nominal deterministic
controller, robustness can be ensured, as the disturbed system
trajectories are forced to be contained within a tube around
the nominal trajectory.

1) Nominal MPC: If xdes denotes a goal state for the
disturbed system, the nominal MPC law, that provides the
reference trajectory for the ancillary controller, is defined as

min
z,v

Vf (zt+N |t − xdes) +
N−1∑
k=0

l(zt+k|t − xdes, vt+k|t) (13)

zt+k+1|t = f(zt+k|t, vt+k|t) (14)
zt+k|t ∈ Z, vt+k|t ∈ V (15)

zt|t = zt (16)
zt+N |t = xdes (17)

for k = {0, 1, 2, .., N−1}, with N being the control horizon
and zt+k|t denoting the state vector at time t+ k, predicted
at time t, if vt:t+k−1|t is applied to the system model from
the current state zt. If v∗t:t+N−1 = (v∗t|t, v∗

t+1|t, ..., v∗t+N−1|t)
is the optimal control trajectory, obtained by solving (13)
at time t, then, only the first input is applied to the sys-
tem leading to an MPC feedback control law of the form
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v(t) = v∗t|t(zt). The nonlinear program is solved at each
time step, leading to the receding horizon controller. In
(13), l(zt+k|t − xdes, vt+k|t) denotes the stage cost, while
Vf (zt+N |t − xdes) represents the terminal cost. The stage
cost has the form (z − xdes)TQ(z − xdes) + vTRv, with the
weighting matrices Q and R defined as diagonal and positive
definite. The terminal cost Vf together with the terminal
equality constraint (17) are chosen as in [21] and [3] to
satisfy the ”stability axioms”. Vf is determined in general
as zTP z with P denoting the Lyapunov matrix, obtained
by linearizing the model (7) at the equilibrium and solving
the Algebraic Riccati Equation. Equation (14) describes the
certain system dynamics. Z ∈ αX and V ∈ βU are compact
sets containing the equilibrium, i.e., xdes ∈ Z × V , and are
tightened versions of the ancillary MPC constraint sets, X ,U .
The hyper parameters α ∈ (0, 1], β ∈ (0, 1] are chosen via
Monte Carlo simulations to ensure constraint satisfaction for
the disturbed system.

2) Ancillary MPC: The ancillary nonlinear MPC defines
the control law for the plant, i.e, the disturbed system
(11). It is designed to drive the disturbed system on the
nominal reference trajectory, thus it’s cost function is de-
fined as the deviation between the reference nominal tra-
jectory, i.e., z∗t:t+N = (z∗t|t, z∗t+1|t, ..., z∗t+N |t), v∗t:t+N−1 =
(v∗

t|t, v∗t+1|t, ..., v∗t+N−1|t) at time t, and the state and control,
xt:t+N , ut:t+N trajectories of the disturbed system.

Thus, the ancillary MPC law is designed as

min
x,u

Vf +

N−1∑
k=0

l(xt+k|t − z∗t+k|t,ut+k|t − v∗
t+k|t) (18)

xt+k+1|t = f(xt+k|t,ut+k|t) (19)
xt+k|t ∈ X , ut+k|t ∈ U (20)

xt|t = xt (21)

where the stage cost l(xt+k|t − z∗t+k|t,ut+k|t − v∗
t+k|t) is

defined as (xt+k|t − z∗t+k|t)
TQ(xt+k|t − z∗t+k|t) + (ut+k|t −

v∗t+k|t)
TR(ut+k|t − v∗t+k|t) with Q, R designed as diago-

nal and positive definite matrices, penalizing the deviation.
Vf := Vf (xt+N |t − xdes) represents again the terminal cost
and is used to ensure stability. In (20), X , U are the state and
input constraint sets, while (19) describes the plant dynamics.

By solving this nonlinear program in every time step,
the optimal input trajectory is derived as u∗

t:t+N−1 =
(u∗

t|t,u∗
t+1|t, ...,u∗

t+N−1|t). The first element is applied to the
disturbed system defining the control law, ut = u∗

t|t. This
control law ensures robustness and stability and can drive
the plant to the desired goal.

B. Tube MPC with DCBF for Safe Obstacle Avoidance

Barrier functions are employed to ensure forward invari-
ance of a set and are used commonly in safety-critical
control. A safe set C is a super-level set of a function
h : X ⊂ RN → R with C = {z ∈ Rn : h(z) ≥ 0} and
∂C = {z ∈ Rn : h(z) = 0} and additionally in the interior
of C, the function h is always positive, [22]. For discrete

systems, if the condition

∆h(zk, vk) ≥ −γh(zk) for γ ∈ (0, 1] (22)

holds, then h is a Discrete Control Barrier function (DCBF)
that renders the set C safe. Intuitively, by starting within
the safe set C and by constraining the value of ∂h so that it
never reaches infinity within C, the set C is rendered forward
invariant. The hyperparameter γ acts on the decay rate of
lower bound of the CBF, as it decreases with rate 1−γ. Thus,
a smaller choice of γ increases the safety of the system.
A small γ on the other hand can render the optimization
problem infeasible, as the safe set C and the reachable set
R may not intersect, i.e., C ∩ R = ∅. The choice of γ in
this work is made w.r.t. to the safety and reachability aspects
using Monte Carlo methods.

By employing an appropriate constraint in the form of
(22) in the MPC formulation, safety-critical systems can be
controlled with safety guaranties. For an in-depth study of
nonlinear system safety control with discrete CBFs (DCBF)
refer to [22]. For the tube-based nonlinear MPC that is
studied in this paper, the DCBF of the from (23) for obstacle
avoidance is employed as a constraint in the nominal MPC
(13), that keeps the system in the safe set C = {X ∖ O},
with X denoting the admissible set of states of the disturbed
system (11) and O the obstacle space.

C. Dynamic Positioning

With regard to dynamic positioning, inherent robustness of
an appropriately designed nonlinear MPC strategy is enough
to robustly stabilize the disturbed system to a goal state, xdes.
The inherent robustness of appropriate designed controllers
is also established in related works [17], [16], [15]. Thus,
nonlinear MPC of the form (13) is designed for the task of
dynamic positioning of the discretized disturbed model (11).

IV. SIMULATION RESULTS

A. Monte Carlo Simulations of Navigation

The robustness of the tube-based nonlinear MPC is estab-
lished using Monte Carlo methods. The tightened constraint
sets of the nominal MPC are chosen through extensive
stochastic simulations, such that x and u always remain in
the interior of X , U and the disturbed plant always converges
to the desired goal state.

The platform was given several initial and goal states,
for which it had to navigate to, commanded by the tubed-
based MPC. When the platform reaches a distance less
than 5m from the goal position the tube-based MPC law
is swapped to an MPC strategy designed specifically for
dynamic positioning, as described in section III. The termi-
nal constraint is omitted during dynamic positioning as xN

always lies inside the terminal set Xf by choosing an appro-
priate horizon length. The penalty matrices for the nominal
MPC were set as Qnom = diag(103, 103, 106, 103, 103, 103)
and Rnom = diag(10−5, 10−5, 10−6) while the ancil-
lary MPC deviation was penalized more intensively as
Qanc = diag(108, 108, 1010, 107, 107, 107) and Ranc =
diag(10−1, 10−1, 10−2) in order to ensure convergence of
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Fig. 3: (a) x,y state trajectories, (b) Tube close-up during navigation,
(c) Close-up of trajectories during dynamic positioning

the ancillary MPC trajectories to the nominal reference
trajectories. The MPC for the dynamic positioning has
Qdyn = diag(107, 107, 107, 102, 102, 102) and Rdyn =
diag(10−3, 10−3, 10−4). The nonlinear controllers have been
implemented using the CasADI framework for nonlinear op-
timization [23] by transcribing the optimal control problems
into nonlinear programs using multiple shooting. IPOPT [24]
is the solver of choice. The horizon is chosen as N = 30 and
a time step of T = 0.3sec is used for all MPC formulations.

Simulations of the closed-loop disturbed system begin
from a random initial choice of tightening hyper-parameters,
α, β. Noise of ±1m and ±5◦ is added to the observed
pose states, to account for GPS sensor noise. An initial
bound of 15knots on the wind velocity is used, which also
enforces bounds on wind and wave drift forces that act
on the platforms CM. The final bound on disturbances, for
which robustness holds, is determined from the stochastic
simulations. The forces due to wave oscillation are simulated
as white Gaussian noise with std = 30KN throughout the
simulations. For a given initial and goal state, a simulation
cycle begins with the wind direction at 0◦ and is incremented
by 10◦ with each simulation, leading to 36 simulations for
each initial and goal state. The wind velocity, wind direction
and wave drift force sequences are calculated based on
random sampling according to the disturbance models. The
results of each simulation cycle points to changes of the
tightening hyper-parameter values α, β that lead to maximum
spreads of the variables of interest such that the constraint
sets are not violated. That way the final hyperparameter
values are chosen after many simulation cycles. Visually,
tubes begin to formulate around the nominal trajectories with
appropriate deviations leading to safety and robustness. The
variables of interest are the x, y position state variables and
their spread around the nominal trajectory must form a tight
tube. The actuation dynamics (8) and limitations are taken
into account during the virtual force allocation throughout

the simulations.
After conducting the described Monte Carlo simulations, it

is derived that for a 13knots bound on the wind velocity and
choosing α = 0.4 in order to tighten the constraints only on
the [ẋ, ẏ, θ̇] states, while β = 1, tubes like the ones depicted
in Fig. 3 begin to formulate around the nominal trajectory.
The tubes maintain the depicted deviation from the nominal
trajectory throughout extensive stochastic simulations that
are conducted using the above bounds. Thus, the choice of a
tube-based nonlinear MPC designed as in section III and us-
ing the constraint tightening and disturbance bounds derived
from Monte Carlo simulations, results in robust navigation of
the platform. The nonlinear MPC that is used for the task of
dynamic positioning, has the inherent robustness to stabilize
the platform as it reaches the goal state as seen in Fig. 3 (c).

B. Obstacle avoidance with CBF

Once robustness has been established and the formulated
tubes have appropriate maximum size with small deviation
from the nominal trajectory, obstacle avoidance can be ac-
complished in a safety-critical manner by using a CBF as
a constraint to the nominal MPC. Using the aforementioned
tightened constraint sets and hyperparameters, a DCBF con-
straint of the form ∆h(xk,uk) ≥ −γh(xk) is used for
obstacle avoidance with

h(xk) = ∥xk − Io∥22 − (ds + r2o) (23)

The variable ro denotes the radius of circular space sur-
rounding a perceived obstacle with position [Iox,

I oy]
T . The

hyper parameter γ is chosen as γ = 0.3 through stochastic
simulations as the system remains safe and the optimization
feasibility holds. ds is a tightening variable of the safe
set, that represents a bound on the distance the platform is
allowed to have from the obstacle. ds is set as ds = dAD+δ,
with dAD being the height of the triangular platform and
δ is a length margin equal to 7m. Monte Carlo methods
have been also applied to the system to verify the robust and
safety-critical obstacle avoidance. An example of obstacle
avoidance from a Monte Carlo simulation cycle is depicted
in Fig. 4. Fig. 4 also depicts the x, y, θ state trajectories
from one of these simulations along with the steady state
error. The nonlinear MPC that is activated when the platform
reaches the threshold of 5m from the goal state results to
accurate dynamic positioning. Fig. 5 (a) depicts the output
virtual forces of the controller that act on the CM and their
corresponding allocation is depicted in Fig. 5 (b), (c).

V. CONCLUSION

The paper presents the design of a tube-based nonlinear
MPC law aiming at safe and robust navigation of an over-
actuated triangular floating platform with obstacle avoidance
capabilities. An appropriate control allocation scheme is
used in order to achieve task completion while honoring the
dynamics and limitations of the actuation. Extensive Monte
Carlo simulations were conducted under realistic actuator
limit constraints and settling delays, as well as realistic
environmental disturbances and sensor noise. Based on many
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Fig. 4: (a) Paths followed while avoiding a static obstacle, under
various bounded environmental disturbances for one simulation
cycle. The black circle is an obstacle of radius robs = 10m. The red
dash-dotted circle with radius r = robs+ds depicts the boundaries
of the safe set C, (b) x, y, θ trajectories with steady state errors
xerror = 0.26m, yerror = 0.008m, and θerror = 0.6◦.

Fig. 5: (a) Input virtual forces Bqc on the CM respecting actuator
dynamics and limitations, (b) Allocated pump-jet forces, (c) Angles
of the pump-jets

sequential stochastic simulation cycles, the robustness and
stability of the tube-based nonlinear MPC is ensured via
appropriate tightening of the constraint sets, hyperparameter
tuning and the use of appropriate terminal costs and con-
straints. The employed DCBF enhances the robust controller
with safety-critical obstacle avoidance capabilities with fea-
sibility guaranties. For the task of dynamic positing the
nonlinear MPC inherent robustness is enough to stabilize the
platform with minor steady state error.
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