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Abstract— While state-of-the-art YOLO approaches have
revolutionized real time object detection in mobile robotics,
most of the publicly available models are trained on datasets
with a small number of available classes. In addition, the
difficulty in creating large datasets with many available classes
for 2D object detection sets limitations to real world robotic
applications and specialized use cases. This paper presents a
solution that tackles these limitations by approaching object
detection via fusion of 2D laser and RGB camera information
resulting to a detector with 1000 learned classes. Object
localization is performed in the 3D world by clustering the point
cloud provided by the 2D laser scanner using the DBSCAN
algorithm. The clusters are projected onto the image plane
providing Regions of Interest (ROI), where proposed object
bounding boxes are obtained, that are labeled with distance
information. Object recognition is achieved using a pretrained,
on the ImageNet dataset, ResNet and a voting schema among
proposed bounding boxes, that also estimates the objects height.
The detection system is used in combination with a navigation
system that employs artificial potential field. The combination
of the two, makes the robot’s perception easily adaptable to
specialized applications and the robot’s behaviour adjustable to
the complexity and variability of unstructured and unknown
workspaces. The method has been implemented in ROS and
tested both in simulation as well as in real case scenarios
using the mobile robot Pioneer 3-DX. The work is aimed at
robots with limited hardware and sensor capabilities and tries
to enable detection via fusion, despite the limitations.

I. INTRODUCTION

Robotic navigation and motion planning is a field of great
importance in robotics that is nowadays greatly enhanced by
the advances in sensory technology and machine learning.
Deep learning revolutionized robotic vision which is now a
core concept in robotic navigation. Of great importance is
the task of object detection which gives mobile robots the
ability to interact with objects of interest in the surrounding
environment. State-of-the-art models like YOLO [1] provide
real time object detection with high accuracy, capable of
reinforcing reliability in navigation, using only camera im-
agery information. Although the state-of-the-art models have
shaped and revolutionized the task of 2D object detection, the
small number of available classes in commonly used datasets
(e.g., COCO [2]), the difficulty in training these models to
new and large datasets, the difficulty to create new datasets
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for specific applications and the existence of various other
sensors attached to robots give space to new approaches.

The exploitation of point cloud data provides another way
to tackle the problem of object detection. Convolutional Neu-
ral Networks like PointNet [3] and VoxelNet [4] are trained
to detect objects using only 3D point cloud data. Available
multi-modal datasets [5] enable multi-modal detection via
fusion of data [6]. Fusion techniques [7], [8], [9], [10] based
on 3D LiDAR and RGB camera information are common
approaches to sensor fusion. Low level fusion achieved by
projecting the point cloud provided by a 3D LiDAR onto
the camera image plane, as in [11], is a common approach
for multi-modal object detection. Detection is achieved via
3D point cloud projection and usage of YOLOv4 in [12].
The combination of PointNet and InceptionV3 is studied in
[13] and a fusion network is presented in [14]. Approaches
like Expandable YOLO [15] and Complexer-YOLO [16] fuse
depth and RGB camera data to perform 3D object detection.

Although a lot of work has been done in multi-modal
detection, the majority of applications concern autonomous
vehicle perception, thus focusing on outdoor urban environ-
ments and aiming at pedestrian and vehicle detection. In
addition the expenses in hardware regarding 3D LiDARs
prohibit the application of these approaches to a wide variety
of indoor mobile robots that rely on cheaper hardware.

The usage of 2D laser scanners waives the constraint
regarding sensor cost and also reduces the computational
power required to process the provided point cloud. The
fusion of 2D laser and imagery data, in most works, is
subject to constraints of small number of available classes.
For example [17] uses an SSD as the backbone network for
recognition. Specializing on specific classes of interest as
in [18], that performs human detection via HOG focusing
on imagery ROI provided by the laser, is also subject to
the same constraint. A pretrained CNN is used for object
classification from a mobile robot in [19] although focusing
on one specific learned object and trying to follow it as a
target, without low level sensor fusion. A disadvantage of
2D lasers is that information corresponding to the height of
objects is lost due to sensor limitations.

The intuition behind the designed perception system pre-
sented here is that of a detector based on data fusion with
a huge number of classes available out of the box. A very
generalized detector can be obtained by taking advantage
of a pretrained state-of-the-art CNN on ImageNet dataset
and the fusion of 2D laser and camera data. However, as
stated above, the objects height information is unknown due
to the limitations of the 2D laser scanner. This information,
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that is essential for object localization on the image plane, is
estimated via a voting schema during the classification of the
object. Voting based on classification results is what enables
the usage of a 2D laser scanner for 2D object detection in the
presented work. As a result, the system as a whole is lifting
sensor high cost and computational power limitations, while
achieving object detection with 1000 available classes.

This paper focuses on the design and implementation of a
perception system, that tackles the problem of object detec-
tion via fusion of 2D laser and RGB camera information.
In the proposed method the two sub problems of object
detection, i.e., object localization and object recognition, are
solved in different spaces using different sensory modalities.
Object localization takes place in the 3D world surrounding
the robot by segmenting the point cloud given by a 2D laser
scanner. By clustering the point cloud using the DBSCAN
[20] algorithm, areas of high point density, i.e., the clusters,
correspond to individual objects. By projecting the clusters
on the image plane of the camera sensor using extrinsic
and intrinsic sensor calibration, the localization of the object
is propagated to that of the digital image plane. Regions
of interest (ROI) in the form of several proposed bounding
boxes, with known width and varying height, are obtained
on the image plane and the second core component of
detection, i.e., recognition, can be achieved with the usage
of a pretrained CNN that performs classification of the
content of the boxes. A cumulative voting schema among
the boxes finalizes the class label and estimates the boxes
height dimension, thus bounding boxes labeled with class
and distance information are inferred.

CNNs such as ResNet [21] are trained on huge datasets,
like the ImageNet [22], and are capable of recognizing
hundreds of objects with high accuracy and fast speed
of inference. These CNNs can also be easily adapted to
specialised use cases via transfer learning and fine tuning,
techniques that are nowadays commonplace. In addition, the
classification of the detected object is enhanced with distance
information provided by the laser scanner.

Compared to YOLOv3 approach for 2D object detection,
the first clear advantage of the proposed detection system
is the ability to detect 1000 objects due to ResNet18 being
trained using ImageNet dataset, in comparison to YOLO that
in most cases is trained to detect 80 objects available in
COCO dataset. A second advantage comes from the easiness
and convenience in adding more classes and retraining the
backbone CNN, adapting the detection system to many
different and specialized use cases. Transfer learning and fine
tuning of pretrained models, available in many frameworks,
is an easy task compared to retraining YOLO approaches in
order to add new classes. The third advantage of the proposed
approach comes from the fusion of the laser with the camera
sensor, that gives accurate information of the detected objects
distance from the robot. That particular advantage enhances
the interaction with the perceived surrounding environment
and increases the reliability.

A navigation system employing ”artificial potential field”
[23] is also implemented that achieves autonomous naviga-

tion, while the robot perceives the surrounding environment
and interacts with it using the proposed detection system. The
combination of the two systems makes the robot’s perception
easily adaptable to specialized applications and the robot’s
behaviour adjustable to the complexity and variability of
unstructured and unknown workspaces. The knowledge of
the distance of the detected objects makes the control of the
robot a lot more convenient. The proposed object detection
system, that combines laser and camera information, has
been implemented and tested on a real robot, the Pioneer 3-
DX, as well as in simulation. The Pioneer 3-DX is equipped
with the Jetson TX2 embedded AI computing device by
NVIDIA. With software developed in the ROS ecosystem
[24], the robot perceives and navigates through the unknown
workspace.

II. APPROACH

The proposed method is implemented as two distinct
systems, i.e, the perception and the navigation system. Each
of them constitutes a stand-alone system, but this paper
focuses on the combined application of the two, which offers
autonomous navigation and interaction within the perceived,
initially unknown, workspace. As proof of concept the robot
is given a goal pose and moves towards it, by incrementally
defining a free path, while it interacts with objects of interest
that are detected using the proposed method.

A. Perception System

Fig. 1: Block diagram of the Perception System.

A block diagram of the proposed perception system is
depicted in Fig. 1. The two heterogeneous sensory data, i.e.,
the 2D point cloud and the RGB image, are fused in a serial
manner to achieve real time object detection. The sensory
data, given the different sampling rates of laser and camera,
are first synchronized using temporal information in the
form of timestamps provided by the ROS messages, thus we
ensure that the data provided by the two sensors correspond
to the same scenery in front of the robot. The information
fusion of the two sensors is achieved via the Direct Linear
Transformation (DLT). Every point P = [X,Y, Z, 1]T of the
2D point cloud that is provided by the 2D laser (where Z =
const), is mapped to its corresponding p = [x, y, 1]T pixel
location on the image plane. The projection is performed as,

p = K R [I3| − t]P (1)

with K(3×3) denoting the Camera Matrix that contains the
intrinsic parameters and R(3×3), −t(3×1) corresponding to
the pose of the camera frame, i.e., the 3D rotation and
translation of the camera frame w.r.t. the laser frame, which
are the extrinsic parameters.
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(a) (b)

Fig. 2: (a) Pioneer 3-DX Sensor Frames, (b) Laser Frame

The six extrinsic parameters are obtained from the relative
configuration of the sensors of the Pioneer 3-DX robot
used in this application, that is depicted in Fig. 2. The
five intrinsic parameters, that are contained in K, i.e., f
corresponding to the focal length of the camera, ax, by
corresponding to the inverse height and width of the pixels
in the photosensitive sensor and cx, cy corresponding to a
translation between the center of the sensor and the center of
the image plane, are obtained via camera intrinsic calibration
which was performed using a ROS package implementation
based on Zhang’s Method [25]. With knowledge of the
eleven parameters of the Direct Linear Transformation every
point P referred from the laser frame can be mapped to its
corresponding [x, y] pixel location via the homography given
in (1) or using the analytic form as,

x = width− (
cY fx
cX

+ cx) (2)

y = height− (
cZ fy
cX

+ cy) (3)

with cX,c Y,c Z denoting each point of the point cloud
coordinates w.r.t. the camera frame, fx, fy denoting the focal
length in pixels and width, height the image size.

The 2D laser scanner data are given initially in the form of
corresponding Euclidean distances and angles of the vectors
between the laser frame and the points on the object surfaces
that the laser beams are reflected from, i.e., (r, θ). The 2D
laser scanner has a fixed pose w.r.t. the robot’s base link and
the data are given in Cylindrical Coordinates, from which the
corresponding Cartesian Coordinates can be easily obtained.
The Cartesian Coordinates [X,Y, Z] of all the points w.r.t.
the laser frame constitute the point cloud dataset, which is
a 2D layout of the surrounding environment providing a 2D
model of the sensed workspace. The point cloud dataset is
updated with a frequency equal to the sampling frequency of
the 2D laser scanner and is made more informative with the
addition of the Euclidean distance of each point, i.e, PCL =
{X,Y, Z, r}, with PCL denoting the point cloud dataset and
r the corresponding distance of each point.

1) Object Localization: Object Localization is based on
the DBSCAN algorithm. Using the Direct Linear Transfor-
mation (2), (3), the dataset is enriched with the [x, y] pixel
coordinates of each point P, thus PCL = {X,Y, Z, r, x, y}.
The {Y, r} data, that correspond to the Y - coordinate and
distance of each point of the 2D point cloud, are passed

(a) (b)

Fig. 3: (a) Simulation World, (b) 2D Point Cloud

to the density based clustering algorithm DBSCAN. Every
cluster inferred corresponds to one object detected by the
laser in the 3D world, thus knowledge is obtained of which
points of the point cloud belong to each object. The usage
of {Y, r} data facilitates clustering in a way that enhances
accuracy in terms of correct number of objects. Given that
the environment surrounding the robot is unstructured, there
is no prior knowledge of neither the number nor the shape
of the clusters. DBSCAN is the algorithm of choice for this
application as it tallies with the complexity of the unstruc-
tured environment because it does not require the number
of clusters as a hyperparameter and can discover clusters
of arbitrary shapes. In addition, the speed of inference it
provides, fits the real time application.

Given that DBSCAN returns K clusters, the dataset after
the point cloud clustering, has the form described in Table
I.

TABLE I: Clustered Point cloud for K objects surrounding
the robot.

X Y Z Distance x y Label(Object)

X1 Y1 Z1 r1 x1 y1 0

X2 Y2 Z2 r2 x2 y2 0

X3 Y3 Z3 r3 x3 y3 0

X4 Y4 Z4 r4 x4 y4 1

X5 Y5 Z5 r5 x5 y5 1

... ... ... ... ... ... ...
XN YN ZN rN xN yN K

Given the simulation environment depicted in Fig. 3 (a),
the perspective 2D layout of the corresponding point cloud
is plotted in 3 (b). The projection of the point cloud onto
the image plane of the camera sensor and the inferred
clusters, after DBSCAN application on the {Y, r} 3D world
information, can be seen in Fig. 4.

(a) (b)

Fig. 4: (a) Point Cloud projection, (b) Clustered Point Cloud
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Given the {x, y, Label(Object)} subset of the data set, we
obtain knowledge of which image pixels correspond to each
object detected in the 3D world by the laser scanner. As seen
in Fig. 5, the clustering in the 3D world is propagated in the
digital image 2D plane. The width of each object in pixel
units on the image plane is the only dimension that can be
directly inferred from the point cloud as the laser scanner is
2D. The height of the objects cannot be estimated from the
2D information.

Fig. 5: Clustering of pixels.

A design choice is made to focus only on the closest
cluster (object) to the robot. Thus the closest cluster is the
only one that provides the ROI via projection on the 2D
image plane from now on. This choice is made w.r.t. the
application of the perception and navigation system, as the
closest object is immediately interactable with the robot,
either by manipulation or by sensor measurement.

So far, identification of the location of the object on the
image plane is accomplished, but for object localization to be
completed as a task, a bounding box must be drawn around
the object, which is nontrivial since height information of
the object is not known. To tackle this problem we use the
voting approach described below.

2) Object Recognition: Object Recognition is based on
ResNet. The intuition is to focus on the ROI on the image
plane provided by the laser. To apply the ResNet, a bounding
box should be specified to define the image window to be
classified. Since we only know the width of the object, we
consider several candidate bounding boxes of fixed width but
different height, in order to enclose the object. A ResNet18,
pretrained on the ImageNet dataset, is used, that takes as
input the image window and outputs the corresponding 1000
class probabilities for each box. To estimate the object’s
height dimension, a voting schema based on the ResNet18
inference is applied among the several potential boxes. The
voting schema outputs the object’s class and the box that
best encloses the object, in the sense that it more reliable
provides the classification results. In general, most objects
have a specific width to height ratio, despite the intra-
class size variation. In addition, most workspaces contain
specific categories of objects. Thus, the selection of the
candidate bounding boxes can be assisted by an abstract prior
knowledge of the robot’s workspace and the possible objects
in it. Below we provide an illustrative example.

Given the environment simulation depicted in Fig. 6 with
the clustered point cloud, the closest object to the robot that
is captured by the camera sensor is that of the traffic light.

(a) (b)

Fig. 6: (a) Simulation World, (b) 2D Point Cloud

Applying the object localization method via fusion de-
scribed above, the ROI width that corresponds to the traffic
light can be seen in Fig. 7 (a). Three potential bounding
boxes with increasing height dimension are placed around
the ROI, given the width, as is depicted in Fig. 7 (b). The
width of each box can be constant, i.e., the width provided
by the laser, making the three boxes have the same width or
incremented by a small scaling factor with each box as in
Fig. 7 (b).

(a) (b)

Fig. 7: (a) Closest object ROI via DLT, (b) 3 candidate boxes

The content of each box is isolated from the rest of the
image by cropping the image in the boxes perimeter. Thus,
three images are created, one for each corresponding box.
The images are forward passed to the pretrained, on the
ImageNet dataset, ResNet18 model as seen in Fig. 8.

Fig. 8: ResNet18 Classifier.

For each one of the three images, 1000 class probabilities
are inferred. The top 5 class probabilities of each image, i.e.,
the 5 classes that the ResNet18 is more confident about, are
the ones that the proposed method uses via the following
cumulative voting schema. Each one of the three boxes
proposes 5 labels. A map data structure is used with the
inferred labels as keys, as in Tables II, III, IV, V that
correspond to the example of Fig. 6. As value for each
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TABLE II:
1stBox

Label Prob.%

traffic light 64.87
loudspeaker 23.44
oscilloscope 1.94
digital clock 0.96

cassette player 0.74

TABLE III:
2ndBox

Label Prob.%

loudspeaker 72.32
traffic light 5.04

switch 4.05
face powder 2.13

lipstick 1.99

TABLE IV:
3rdBox

Label Prob.%

traffic light 71.67
loudspeaker 13.30

spotlight 1.57
switch 1.14

knee pad 0.77

TABLE V:
Voting Score

Label Score

traffic light 47.12
loudspeaker 36.35

switch 1.73
face powder 0.71

lipstick 0.66
oscilloscope 0.64

spotlight 0.52
digital clock 0.32

knee pad 0.26
cassette player 0.24

label/key, a score is used, computed as the average of the
corresponding label’s probabilities among the three boxes.
The label with the highest value/score is chosen as the label
for the detected object. The box that proposed the chosen
label with the highest average probability is the chosen
box, that is drawn around the objects extent. That way, the
missing height information is approximated through voting
of feasible boxes and the class of the chosen box is inferred.

Following this voting method, in the example that is
discussed, the voted label is that of ”traffic light” which
stands correct and the third bounding box is the one chosen,
as it proposed the chosen label with the highest probability.
So accurate detection is achieved as shown in Fig. 9. Note
that, since distance information of the object w.r.t. to the
robot is also available via the laser scanner, the detected
object is also labeled with this information.

Note that before the forward pass, the cropped images are
preprocessed the same way the ImageNet dataset images are
transformed prior to the ResNet training, i.e., resized as 256 x
256 images, normalized with mean = [0.485, 0.456, 0.406]
and std = [0.229, 0.224, 0.225]. After the transformation, the
three images are stacked into a batch, which is transferred to
the GPU. The pretrained ResNet18 model is also transferred
to the GPU, thus the inference can be done using CUDA
operations further enhancing the speed and making use of
the Jetson TX2 computational power.

Fig. 9: Object Detection and Distance Information.

An algorithmic overview of the proposed perception sys-
tem is shown in Algorithm 1.

Algorithm 1: Perception System
Input : PCL: Point cloud dataset {X,Y, Z, r}
Input : RGBimage: Camera RGB Image
Input : C: Camera Parameters
Output: Detected object [label, box, distance]
Data : projected pixels: Pixels on image plane from PCL projection
Data : Cluster labels: Labels of point cloud clusters

1 while PCL and RGB image data are received do
2 Synchronize PCL and RGB image data temporally
3 projected pixels← DLT(PCL,C)
4 PCL← EnchancePCLwithInfo(projected pixels)
5 Cluster labels← DBSCAN(PCL[Y ], PCL[r])
6 PCL← EnchancePCLwithInfo(Cluster labels)
7 Get closest cluster, cluster with min(r) from PCL dataset
8 ROI (cluster width in pixels) ← GetWidth(closest cluster)
9 Potential Boxes ← PlacePotentialBoxes(ROI)

10 boxes content ← CropImage(RGBimage, Potential Boxes)
11 foreach box content do
12 box content ← preprocess(box content)
13 1000 class probabilities ← ResNet(box content)
14 Get Top 5 class probabilities for box content
15 end
16 box,

label← VotingSchema(Top 5 probabilities of all boxes)
17 Draw box and mark with label and distance (r) information
18 end

B. Navigation System

The proposed approach to motion planning achieves au-
tonomous navigation without prior knowledge of the robot’s
workspace by employing ”artificial potential field” [23]. The
robot is given a goal position and orientation and navigates
through the unknown unstructured environment by updating
a free path incrementally until the goal pose is reached by
the use of velocity commands as a control law.

Following the artificial potential field method, we assume
that the robot is an artificially positive charged particle with
configuration q = [x, y, θ]T that moves according to the
forces that are applied to it by the total potential field
generated by the goal configuration, that is assumed negative
charged and the obstacle configurations, that are assumed to
be positive charged.

Commanding a velocity vector proportional to the gradient
of the potential, the robot moves to the goal configuration
avoiding the obstacles and responding to the dynamics of
the workspace. The velocity commands denoted as u =
[ux, uy, uθ]

T are given as,

q̇ =

ẋẏ
θ̇

 = u = −k∇U(q) = −k

∂U
∂x
∂U
∂y
∂U
∂θ

 (4)

with k denoting the gain and U(q) the total potential at
configuration q.

In the absence of obstacles within a distance threshold,
a P-controller with a higher gain than that of attractive
field controller is activated. The switch between the two
controllers makes the robot’s movement more smooth and
more responsive throughout navigation.

III. EXPERIMENTAL RESULTS

Both the perception and the navigation systems have been
implemented using ROS and the combined application of
the two has been tested both in real case scenarios as
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well as in simulation. The computational graph of the ROS
implementation is depicted in Fig. 10.

Fig. 10: ROS Graph of Computations.

The node /BoxesOnImageSpace implements the per-
ception system. The node takes as input the point cloud, the
raw RGB image and the intrinsic and extrinsic parameters
and performs the object detection in real time as described.
The navigation system implemented in the node named
/potential has as input the odometry data provided by the
/RosAria node, as well as the distances of closest objects
provided by the laser scanner. The last input to the navigation
system is the inferred label of the closest detected object
provided by the /BoxesOnImageSpace node.

The mobile robot is equipped with the LMS200, a 2D
infrared (905nm) laser scanner with maximum range, with
10 % reflectivity, at 10m, 180◦ aperture angle and angular
resolution at 0.5◦ at 75 Hz. The camera that provides the
RGB imagery data is a CMOS 5 megapixel (2592 × 1944)
image sensor with OmniBSI-2TM technology and has a
maximum transfer rate of 30 fps for 5 Mpixel. The scan
mode is progressive with lens size of 1/4” and non-linear
lens chief ray angle of 29.7◦. The image area is 3673.6µm×
2738.4µm with pixel size of 1.4µm × 1.4µm. The camera
is attached to the NVIDIA Jetson TX2 Module that acts as
the computational unit of the robot.

In order to experimentally validate the proposed system,
the robot navigates autonomously in an unknown workspace
using the navigation system until a given goal pose is
reached. If a given object of interest is detected via the
perception system the robot stops and interacts with it in
the form of a sensor measurement. As seen in Fig. 11(a) the
object of interest is an oscilloscope placed in the laboratory
environment, whose pose is unknown to the robot, and the
goal pose is that of qgoal = [5m, 5.5m, 15◦]T . The robot
navigates, avoiding perceived obstacles, following velocity
commands derived by the navigation system until it reaches
the goal pose. While navigating the detection system per-
ceives the oscilloscope and the robot stops for 10 seconds,
captures an image and then continues navigating until the
goal pose is reached. The path that the robot follows can be
seen in Fig. 11. The corresponding trajectories are depicted
in Fig 13.

The detected object as captured by the camera sensor can
be seen in Fig. 12 as well as the pose of the robot during
the sensor measurement. The results of more experiments
that took place are given in Fig. 14.
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Fig. 11: (a) Experiment Environment, (b) Path to goal

(a) (b)

Fig. 12: (a) Detection of Oscilloscope, (b) Pose of the robot
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Fig. 13: Trajectories: (a) X, (b) Y, (c) θ

(a) (b) (c)

Fig. 14: Detection cases: (a) Joystick, (b) Space heater, (c)
Car

IV. CONCLUSION

In this work, the proposed perception and navigation
systems achieve the goal of autonomous navigation of a
mobile robot in an unknown environment while it interacts
with objects of interest. The fusion of 2D laser and camera
information successfully completes the task of real time
object detection and distance evaluation, with 1000 classes
of objects available, which is a significant improvement
compered to YOLOv3 and TINY-YOLO-v2, see Fig. 15 (a).
The proposed voting schema provides an estimation of the
objects height, although not always successfully, despite the
fact that it is not directly inferrable from the point cloud. The
implementation also achieves reliable sensor synchronization
as it manages to temporally match the heterogeneous sensory
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data with accuracy. In terms of speed comparison of the real
time 2D object detection, given the specific hardware specs
used in this work, the proposed system (6.2fps) is faster
than YOLOv3 [26] (2.7fps), but slower than TINY-YOLO-
v2 model [26] (17.1fps), as seen in Fig. 15 (b).
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Fig. 15: (a) Classes Comparison, (b) Fps Comparison
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