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Abstract

We propose a cooperative method for resource allocation with power control
in a multihop Direct Sequence Code Division Multiple AccessWireless Visual
Sensor Network (WVSN). Typical multihop WVSNs consist of visual sensors
that record different scenes and relay nodes that retransmit video data until
the base station is reached. The error prone wireless environment contributes
to the end-to-end video quality degradation. Moreover, the limited battery
life span of the network nodes poses challenges on the management of power
consumption. The different resource requirements of the WVSN nodes neces-
sitate a quality-driven and power-aware resource allocation mechanism. We
formulate the joint Quality Enhancement and Power Control problem based
on a utility function that reflects both the benefit in terms of video qual-
ity and the cost in terms of transmission power. This function is employed
by the Nash Bargaining Solution, which achieves higher fairness in terms
of end-to-end video quality among all nodes. For the fairness assessment,
a new metric is introduced. The experiments demonstrate the effectiveness
of the proposed approach and explain the video quality-power consumption
tradeoff as well as the resulting fairness-power consumption tradeoff.
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1. Introduction

Recent advances in video coding technologies and wireless communica-
tions have provided several applications and systems, such as healthcare,
public safety systems, environmental monitoring and traffic analysis [1]. A
simple traditional Wireless Visual Sensor Network (WVSN) is usually orga-
nized in a centralized manner and consists of: a) battery-constrained visual
sensors with wireless communication capability, and b) a Base Station (BS)
that collects the information from the sensors and decides on the resource
allocation among all network nodes. Since the transmission range of a visual
sensor node is limited, the recorded video sequences may need to be trans-
mitted using fixed relay nodes until they reach the BS via multiple hops.
The relay nodes utilize a decode-and-forward protocol. In this context, each
WVSN node transmission causes interference to other transmitting nodes,
which lie within its transmission range, leading to the degradation of the
received video quality at the BS.

Taking into account the fact that the nodes have different resource re-
quirements and that it is crucial to optimize communication in order to
minimize energy consumption and simultaneously maintain an acceptable
quality of the application requirements [2], the establishment of an efficient
cross-layer method that considers all these aspects is a challenging task. Most
of the works in the recent literature consider the optimization of one of the
aforementioned aspects (e.g. power consumption).

Despite the QoS provisioning, a power management policy is required
so that the lifetime of each battery-powered node is prolonged. At the
same time, the interference among nodes that transmit simultaneously causes
quality degradation, which should not be neglected by the power allocation
method. Particularly, a source node’s video may suffer from interference
caused by other source nodes in its cluster. Furthermore, in a multihop
WVSN, the relay nodes can interfere with other source and/or relay nodes.
As a result, the video sequence experiences successive degradation across the
multihop path to the BS. Therefore, in order to avoid such degradation, it is
required to control not only the source and channel coding rates and the used
transmission power of the source nodes, but also the channel coding rates and
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the transmission power of the relay nodes. This control is performed at the
BS, which collects all information from both source and relay nodes and
manages the resource allocation. Nevertheless, the need to optimize both
the end-to-end video quality and the power consumption has motivated us
to propose a game-theoretic bi-objective approach that provides joint Quality
Enhancement and Power Control (QEPC) for multihop WVSNs.

In the present work, we study the resource allocation problem in cooper-
ative multihop Direct Sequence Code Division Multiple Access (DS-CDMA)
WVSNs. Without cooperation, the nodes would simply act selfishly and
greedily, thus use the highest available transmission power in order to achieve
the highest possible video quality at the BS. However, this would result both
in excessive power consumption and intra-cell interference, consequently lead-
ing to quality degradation and higher transmission power consumption. We
consider that some of the recorded scenes are correlated in terms of their
position and the levels of motion. Hence, the correlated groups of visual
sensors have similar resource requirements, which allows us to accordingly
cluster the visual sensors and, thus, reduce the computational complexity
of the resource allocation optimization problem. Furthermore, the network
resources (transmission power, source and channel coding rates) have to be
optimally allocated to the source and relay nodes using a quality-aware strat-
egy, so as to maintain the end-to-end distortion at a low level for all source
nodes. Moreover, power consumption control is dictated for all WVSN nodes
due to limited resources [2, 3].

Briefly, our aim is to define an effective approach for the bi-objective prob-
lem of jointly enhancing the end-to-end video quality and the total power con-
sumption in WVSNs. To this end, in the present work, we assume that our
WVSN nodes form coalitions and cooperate to establish a mutually accept-
able resource allocation. We aim to satisfy both the objectives of enhanced
end-to-end video quality and reduced power consumption by formulating a
bi-objective utility function that acts as a pricing scheme by including both
a benefit term and a cost term.

1.1. Related Work

The problem of the resource allocation in multiple network nodes for
effective video streaming has been examined in many studies [4, 5, 6, 7, 8,
9, 10, 11] and various cross-layer techniques have been proposed. Some of
them [4, 5, 6, 7, 8] focus on the resource allocation (e.g. bit rate or joint
source and channel coding rate) for the optimization of a single objective,
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such as throughput maximization. Other works do not take into account the
resulting power consumption, like the rate-distortion scheme in [12] which
adapts the transmission policy and encoding rate to channel capacity and
varying correlation level of multiple scenes. Despite the effectiveness of those
proposed single objective methods, they do not address the crucial issue of
QEPC.

On the other hand, other studies in the recent literature [9, 10, 11, 13, 14]
aim to allocate the network resources by utilizing bi-objective approaches.
In [9], the joint power control and scheduling problem in wireless multihop
networks is addressed with the objective of total transmission power mini-
mization while QoS for individual sessions, in terms of payload rate and bit
error rate, is guaranteed. Resource allocation schemes that enable relay node
selection of each user in a cooperative network and formulate a bi-objective
problem, aiming at the optimization of power consumption and throughput
experienced by each node are proposed in [10]. Recognizing the fact that
power control itself cannot meet the QoS requirements, a joint channel and
power allocation scheme for cognitive radio networks is proposed in [11].
That scheme is designed to maximize the overall throughput, while guaran-
teeing the proportional fairness and power distribution among the cognitive
radio users.

A joint bi-objective optimization problem was formulated in[13] for a
Orthogonal Frequency Division Multiple Access (OFDMA) system with the
decode-and-forward relaying strategy. The formulated problem was trans-
formed in a two-stage problem in order to be solved. A similar bi-objective
problem was proposed in [14] in order to solve the admission control and fair
resource allocation problem in a wireless multi-user (of constant and vari-
able bit rate) amplify-and-forward relay network. Due to its combinatorial
hardness, the authors proposed its transformation into equivalent one-stage
optimization problem, which can be solved with a higher computational com-
plexity.

It is important to note that most of the proposed bi-objective problem
formulations target at network-related QoS metrics optimization and not
at end-to-end quality of the delivered information. Furthermore, most of
these problem formulations were solved by adopting problem decomposition
techniques. Instead of explicitly optimizing network-related parameters, such
as bit error rate or throughput, we propose a quality-driven optimization
scheme, which aims at maximizing the delivered video quality in terms of the
Peak Signal-to-Noise Ratio (PSNR) under the network’s power constraints
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across the physical, the data link and the application layer. Moreover, we are
employing the Particle Swarm Optimization algorithm that does not require
modifications of the original optimization problem.

Both cooperative and non-cooperative game theoretic frameworks have
been proposed for efficient resource allocation in wireless networks follow-
ing either a centralized or a distributed approach. Furthermore, various
game-theoretic pricing schemes regulate the resource usage through a com-
promise between the users’ desire to optimize their own performance and the
network’s general need for efficient resource allocation. In this context, a
Nash equilibrium based power control method that assumes a wireless relay-
assisted network is proposed in [15], where the users aim to optimize their
transmission rate through the power allocation process, while the relay node
aims at maximizing its total rate. The users make payments to the relay
according to pre-specified prices that enhance the relay’s gain, as they com-
petitively adjust their transmission powers in order to increase the received
signal-to-noise ratio. Another approach [16], also utilizes the Nash equilib-
rium with a joint pricing scheme in a Code Division Multiple Access (CDMA)
based network, so that both the utilities of the users and the network util-
ity are optimized. The users’ utility comprises two factors related to the
achieved throughput and the energy consumption, while the network utility
reflects the network energy consumption.

Many cooperative approaches utilize the Nash Bargaining Solution (NBS)
[17] to reach a beneficial single objective resource allocation for all nodes [4,
6, 7, 8, 11, 18, 19, 13, 20]. Cooperative resource allocation schemes are a
promising approach for competitive wireless environments that require pro-
portional fairness and resource allocation among the nodes. An approach
based on NBS is applied on OFDMA Cognitive Radio (CR) networks [11]
and optimizes the overall system throughput by assigning higher priority to
primary CR users, while guaranteeing a minimum throughput for both pri-
mary and secondary CR users. The problem of fair resource sharing between
two selfish nodes in cooperative relay networks was considered and solved by
using NBS in [20]. An interesting two-stage approach that utilizes NBS to
ensure fairness in the subcarrier and power allocation problem in a relayed up-
link OFDMA system is proposed in [13]. Another work that formulates Nash
bargaining assigns subcarriers, transmission powers and transmit precoders
to the nodes of a multiple-input and multiple-output OFDMA system [19].
Furthermore, a bi-objective NBS-based framework was applied to allocate
bandwidth for elastic services in high-speed networks with fairness and in a
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distributed manner, while maximizing the network revenue [21]. The previ-
ous work [4] was exclusively aiming at the video quality enhancement over
a multihop WVSN. An extension of this work was presented in [22], where
the aggregation of video quality and transmission power was employed. The
present work moves beyond previous work by providing a novel problem for-
mulation based on cooperative Game Theory and by providing enhanced
fairness in the resource allocation.

Fairness in allocation problems is an issue that has been extensively stud-
ied through the years in many areas, notably in social sciences, welfare eco-
nomics, and engineering [23]. However, due to the subjective interpretations
of the notion of fairness, the different characteristics of allocation problems
should be considered. In our case, for the evaluation of resource alloca-
tion schemes for video transmission we need a metric that expresses both
the notion of fairness considering the unique video characteristics. Several
approaches have been performed, which however require the utilitarian allo-
cation (i.e. the criterion that maximizes the network utility) as a reference
resource allocation scheme [24, 25, 23], or the Kalai-Smorodinsky bargaining
solution as in [26].

1.2. Contribution of this paper and Structure

Related work motivated us to propose a pricing scheme that is based
on cooperative game theory, and particularly on the NBS. NBS has the ad-
vantage of satisfying sets of axioms that a fairness scheme should ideally
satisfy [23, 27]. We employ a bi-objective utility function that consists of a
quality-related benefit term and a power-related cost term. These two terms
effectively adjust the transmission power levels and at the same time result
in enhanced QoS (in terms of end-to-end video quality). To the best of our
knowledge, our proposed NBS-based pricing scheme has not been considered
so far for similar resource allocation problems in the literature. Overall, this
study moves beyond the state-of-the-art baseline by bringing the following
contributions.

(i) Bi-objective Cross-layer Problem Formulation based on NBS: Many
video transmission applications require the assignment of resources by
taking into account the multi-layer structure of such networks. On the
one hand, regarding the physical layer, the power consumption has to
be controlled in order to prolong the WVSN lifespan and simultane-
ously reduce the interference among the transmitted signals. On the
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other hand, as far as the application layer is concerned, the distortion
of the delivered video sequences has to be minimized. In this cross-
layer problem formulation, the allocated resources are the transmission
power of the source and the relay nodes, the source coding rate at the
application layer of the source nodes, and the channel coding rate at the
data link layer of both the source and relay nodes. In order to solve this
problem we propose to employ a pricing scheme that is based on coop-
erative game theory, and particularly on the NBS. In this solution, the
employed bi-objective utility function consists of a quality-related term
and a payment term that adjusts the transmission power levels and en-
ables the mediation between the nodes’ demands for high quality and
the minimization of the power consumption.

(ii) Proposing a Fairness metric of the resulting Video Quality: For the
assessment of the resulting end-to-end video quality, we propose a fair-
ness metric that computes the distance of the achieved end-to-end video
quality from the maximum possible video quality for each node (which
could be achieved in an error-free transmission) with no reference to
other resource allocation schemes and provides an overall assessment of
the fairness of the resulting video quality in the network.

(iii) Investigating the Video Quality-Power Consumption and Fairness-Power
Consumption Tradeoffs: The utility function that is employed by the
proposed NBS is formulated so that it provides results on the video
quality and transmission power consumption tradeoff. We study this
tradeoff which leads us to significant results related to the consumed
power and the video quality gain. Moreover, since in this multi-access
system the resource allocation has an immediate effect on all nodes, a
study on the fairness among nodes is required. Thus, we investigate
the resulting fairness versus the transmission power consumption on
the WVSN.

The remainder of the paper is organized as follows. Section 2 describes
the considered system model. The QEPC problem formulation and its con-
straints are detailed in Section 3, while the NBS-based optimization criteria
and the employed optimization algorithm are detailed in Section 4. The fair-
ness metric is introduced in Section 5. The experimental results are presented
in Section 6. Finally, Section 7 concludes the paper.
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Table 1: Notations and Parameters of the System Model.

Notation Description

(αk, βk) Rate-distortion model parameters of a source node k.

(γ, δ) Weights of the QEPC tradeoff.

ρh,n Bit error probability for node n at the h-th hop.

ρn End-to-end bit error probability for node n.

φ Fairness index.

k = 1, 2, . . . , K Index for source nodes.

m = 1, 2, . . . ,M Index for relay nodes.

n = 1, 2, . . . , N Index for network nodes

j = 1, 2, . . . , |J| Index for interfering nodes at hop h.

E{Ds+c,k} Expected distortion for source node k.

En

I0 +N0

Energy-per-bit to MAI and noise ratio for node n.

L Spreading Code Length.

PSNRk Peak signal-to-Noise ratio for source node k.

RS
c,k Channel coding rate for source node k.

RR
c,m Channel coding rate for relay node m.

Ry | y ∈ {k,m, n} Total transmission bit rate.(with N = K +M).

SS
k Transmission power of source node k.

SR
m Transmission power of relay node m.

P S
k Received power from source node k.

PR
m Received power from relay node m.

Rs,k Source coding rate for source node k.

W Channel bandwidth.

2. Description of the Considered System Model

In this section, we describe the considered model of our system. In order
to enhance the reader’s convenience, Table 1 summarizes the frequently used
notations and parameters of our system.

2.1. DS-CDMA based System Architecture

We consider a DS-CDMA based network, where each node is associated
with a spreading sequence of length L. Furthermore, Binary Phase Shift
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Keying (BPSK) is used as the modulation method. Let N be the number of
nodes in a synchronous single-path BPSK channel, and An, bn(i), sn, un the
amplitude, symbol stream, spreading code and noise of node n respectively.
For the i-th bit, the received signal can be expressed as:

r(i) =
√
q1 b1(i) s1 +

N∑
n=2

√
qn bn(i) sn + un , (1)

with n = 1, 2, . . . , N , i = 1, 2, . . . , L and q is the received normalized power
assigned per bit i. The receiver has knowledge of the spreading codes of all
nodes and uses a bank of matched filters to filter out the other nodes’ signals.
We assume the worst-case scenario where interference is decoded as noise.
The received power of a transmitting node n (in W) at the receiver is

Pn = EnRn , (2)

where En is the energy-per-bit and Rn the total transmission bit rate for
source and channel coding in bits/sec, which is defined as:

Rn =
Rs,n

Rc,n

, (3)

where Rs,n is the source coding rate in bits/sec and the dimensionless number
Rc,n is the channel coding rate. If we assume that the total transmission bit
rate is constant, then a node that transmits with a lower source coding rate is
able to use more bits for the channel coding. It can transmit with lower power
and, as a consequence, cause less interference to other nodes’ transmissions.

We assume that the BS (receiver) is out of the transmission range of the
source nodes, thus relay nodes are required to forward the video data to the
BS. Every source node sends its video data to the corresponding relay node
of the cluster. Then, the relay node forwards the video data of all source
nodes of the cluster to another relay node or to the BS. Figure 1 depicts
such an example of a WVSN that comprises source nodes organized in clus-
ters according to their location. The transmission routes are predetermined
based on the location of the WVSN nodes and the source nodes transmit
the recorded videos to the BS via multiple hops. The video data from the
source nodes of Cluster 1 reach the BS after three hops through Relay Node 1
and Relay Node 3. The shadowed boxes show the set of interfering nodes
per hop for the source nodes of Cluster 1. Particularly, in the first hop the
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interference is caused by the source nodes within a cluster. In the second
hop the nodes from Cluster 3 cause interference to the transmitted signal,
and at last Relay Node 2 causes interference in the last hop. So, we denote
with J the set that consists of the interfering nodes for each hop h, and it is
assumed that |J| ≤ N , where |.| is the cardinality of a set. As in the previ-
ous example, we assume that interference exists on each link across the path
to the BS from nodes that are in the effective transmission range. Similar
to other approaches [28], we model interference as Additive White Gaussian
Noise (AWGN). The energy-per-bit to Multiple Access Interference (MAI)
and noise ratio is different in each link, depending on the nodes causing in-
terference to the considered node n and can be expressed for the h-th hop of
a path as follows:

En

I0 +N0

=

Pn

Rn

|J|∑
j=1,j �=n

Pj

W
+N0

, (4)

where I0/2 is the two sided noise power spectral density due to MAI, N0/2 is

Figure 1: Example of a multihop WVSN. The video data from the source nodes of Cluster
1 reach the Base Station after two hops through Relay Node 1 and Relay Node 3. The
outlined boxes show the set of interfering nodes J per hop for the source nodes of Cluster
1.
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the two sided noise power spectral density of the background noise in W/Hz,
W is the total bandwidth in Hz and Pj is the received power from node j ∈ J
that causes interference to node n.

Depending on the terrain profile, different radio propagation models could
be employed to calculate the required transmitted power of a node. For the
present work, we assume clear line of sight and, therefore, employ a mixed
scenario that consists of two propagation models; the Free Space (FS) and the
Two Ray Ground Reflection (TRGR) models [29]. Particularly, for a given
received power Pn at a distance y from a node n, the required transmitted
power Sn is calculated based on the FS model when the communication
distance is under a threshold (which is called the crossover distance y0),
otherwise it is calculated based on the TRGR model, i.e.

Pn(y) =

⎧⎪⎪⎨
⎪⎪⎩

Sn
GtGrλ

2

(4π)2y2l
if y ≤ y0 (FS Model)

Sn
GtGrh

2
th

2
r

y4l
if y > y0 (TRGR Model)

(5)

where y is the communication distance, l ≥ 1 is the system loss factor not
related to propagation, λ the wavelength of the carrier signal, (Gt, Gr) and
(ht, hr) are the antenna gain and height for the transmitter and the receiver,
respectively. The cross-over distance y0 is calculated by equating the expres-

sions for the FS and the TRGR model, i.e. y0 =
4πhrht

√
l

λ
. The used model

takes advantage of the better accuracy of the TRGR model for long distances
while it avoids its poor performance for short distances.

2.2. Channel Coding

For the channel coding of the transmitted signal Forward Error Correc-
tion (FEC) is employed. In this work, we use the Rate Compatible Punctured
Convolutional codes (RCPC), which map information to code bits sequen-
tially with an encoding process that involves convolution of the information
data with a generator sequence. However, other error correction codes could
be used instead.

The end-to-end bit error probability ρn for a node n in a multihop trans-
mission of the video across an H-hop path is [30]:

ρn = 1−
H∏

h=1

(1− ρh,n) , (6)
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where ρh,n is the bit error probability at hop h for the node n. When we
refer to bit error probability at hop h, we mean the bit error probability
for the transmission over the link that is counted as hop h. The different
sources of interference are considered at each hop, i.e. at each video stream
transmission over a link. 2

Furthermore, the Viterbi upper bound for the bit error probability ρh,n
can be given by:

ρh,n ≤ 1

T

∞∑
d=dfree

cdρd (7)

where T is the period of code, ρd is the pairwise error probability in choosing
between two paths of mutual Hamming distance d, dfree is the minimum
Hamming distance between two different coded sequences (free distance of
the code) and cd is the information error weight [31]. Considering an AWGN
channel with BPSK modulation, the pairwise error probability from Eq. (7)
is given by:

ρd = erfc

(√
dRc

En

I0 +N0

)
(8)

where Rc is the channel coding rate and erfc(.) is the complementary error
function given by:

erfc(z) =
(
2

∞∫
z

exp(−t2)dt
)
/
√
π. (9)

2.3. Source Coding and Video Distortion Estimation

For the compression of the video sequences used for transmission, the
H.264/AVC video coding standard is utilized. H.264/AVC allows to maintain
the same level of video quality as previous codecs at a significantly lower bit
rate. The H.264/AVC standard covers two layers in order to offer a network-
friendly design to both real-time and non-conversational applications. The
first is the Video Coding Layer (VCL), which represents the video content
as coded information achieving a high level of compression. The other is the
Network Abstraction Layer (NAL), which formats the VCL data and provides

2This becomes clear from Eq. (8), where the pairwise error probability depends on the
energy-per-bit to MAI and noise ratio per hop.
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information about the transmission of the encoded data over the network [32].
The VCL of H.264/AVC utilizes block-based hybrid video coding.

Due to random errors that occur during the multihop transmission, the
video distortion Ds+c,k of a source node k is a random variable. Thus, we
calculate the value of the expected distortion E{Ds+c,k}. In order to cal-
culate the expected distortion as a function of the bit error probabilities
after channel decoding, we use the Universal Rate-Distortion Characteristics
(URDCs) [33]. By definition, the URDC model provides an estimation of
the expected video distortion due to compression and channel errors given
a bit error probability for a specific source coding rate. This means that
URDCs take into consideration the error propagation in the video stream in
a macroscopic manner.

Owing to Eq. (6), the expected distortion due to lossy compression and
channel errors can be derived by the model for the URDC of each source
node k used in [6, 8, 34]:

E{Ds+c,k} = αk

[
log10

(
1

1−
H∏

h=1

(1− ρh,k)

)]−βk

, (10)

where parameters αk and βk are positive numbers that depend on the motion
level of the transmitted video sequence and the source coding rate and may
vary in time. Values of αk for high motion video sequences are generally
greater than those for low motion video sequences. These parameters are
determined using mean square optimization from a few (E{Ds+c,k}, ρk) pairs.

For the estimation of E[Ds+c,k] at the encoder, the Recursive Optimal
per-Pixel Estimate (ROPE) algorithm [35] is used. The ROPE algorithm re-
cursively calculates in real time the first and second moments of the decoder
reconstruction of each pixel, while it accurately takes into account all rele-
vant factors that cause video distortion, namely quantization errors, packet
losses, error propagation and error concealment. The algorithm for all this
process is detailed in [36]. Since parameters αk,βk depend on the varying
motion levels of the recorded scenes, they need to be recalculated when the
motion changes significantly. For small motion variations, parameters αk,βk

values change slightly, thus the nodes may continue using the same WVSN
resources. Besides, in such cases a resource reallocation would slightly affect
the end-to-end quality and the total transmission power consumption. A
continuous recalculation (e.g. per frame) of parameters αk, βk would burden
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our system with a high computational cost. Hence, we propose a periodic
calculation of these parameters. If the recalculation of parameters αk, βk

reveals a significant change of their values, then we transmit them to the BS.
For transferring these parameters from each source node to the BS, we pro-
pose a low-cost in-band solution. Note that only a few bytes are enough for
representing both αk and βk, therefore this information can be piggybacked
on the header of data packets. In this way, we minimize the cost since we do
not burden the wireless medium with extra packets.

From Eqs. (3)-(10), it follows that E{Ds+c,k} of the video of source node
k is a function of the source coding rate Rs,k, the channel coding rate RS

c,k,
the received power P S

k and the channel coding rate RR
c,m and the received

power PR
m of each relay node m that retransmits the video of k across its

path to the BS. Moreover, due to interference (Eq. (4)), the expected video
distortion also depends on the received powers from the interfering nodes per
hop.

3. Joint Quality Enhancement and Power Control: Problem For-
mulation

In this section, we describe the constraints and the formulation of the
problem of the joint QEPC in a multihop DS-CDMA WVSN.

3.1. Constraints

Regarding the system which is described in Section 2, we make assump-
tions that impose the following constraints on the admissible values of source
and channel coding rates, transmission bitrates and transmission powers of
the considered WVSN’s source and relay nodes.

Letting A be the discrete set of |A| valid source and channel coding rate
pairs for each source node k and B the discrete set of |B| channel coding rate
choices for each relay node m, we set that our resource allocation scheme is
subject to:

(Rs,k, R
S
c,k) ∈ A = {(R1

s , R
S,1
c ), . . . , (R|A|

s , RS,|A|
c )}, (11)

R1
s

RS,1
c

=
R2

s

RS,2
c

= . . . =
R

|A|
s

R
S,|A|
c

= Rk ∀k , (12)

RR
c,m ∈ B = {RR,1

c , . . . , RR,|B|
c } . (13)
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It is also important to take into consideration that each relay node m
needs to use a sufficient bit rate for the simultaneous forwarding of all received
video data. This is related to the source coding rate of the transmitting
source nodes. Since the relay nodes channel decode-and-forward the received
video data, it is required to have enough bits for both the video data and
the redundancy bits of the channel coding. Hence, the transmission bit rate
of a relay m is

Rm ≥
∑
z∈Z

Rs,z

RR
c,m

, (14)

where Z is the set of the source nodes that use relay node m for their data
forwarding and RR

c,m is the channel coding rate for relay node m.
A last constraint imposed on the system concerns the admissible trans-

mission power for the source and relay nodes. Particularly, both types of
WVSN nodes have a lower and an upper transmission power bound, i.e.
SS
k ∈ [

SS
min, S

S
max

]
and SR

m ∈ [
SR
min, S

R
max

]
. Obviously, using Eq. (5), this

constraint is transformed into a constraint on the received power levels.

3.2. Problem Formulation

In this context, we propose a technique that offers a prioritized enhance-
ment of the end-to-end video quality and manages the transmission power
allocation according to the importance of the video sequences of the WVSN
source nodes. It aims at optimally allocating the source and channel coding
rates and the transmitted powers among the source nodes of a WVSN and at
the same time the necessary channel coding rates and transmitted powers to
the relay nodes. For the assignment of the available resources, a compromise
between the power consumption and the distortion of the delivered video
sequences has to be established. Therefore, we define the bi-objective QEPC
problem that actually minimizes a function of both the expected distortions
of the received videos and the received powers. Then, based on the employed
radio propagation models (see Eq. (5)) we compute the transmission powers.

We first define the following vectors for the received powers, source and
channel coding rates of K source nodes and M relay nodes, respectively:

P = (P S
1 , P

S
2 , . . . , P

S
K , P

R
1 , PR

2 , . . . , PR
M)�;

Rs = (Rs,1, Rs,2, . . . , Rs,K)
�;

Rc = (RS
c,1, R

S
c,2, . . . , R

S
c,K , R

R
c,1, R

R
c,2, . . . , R

R
c,M)�.
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Our proposed method determines for each source node k the source coding
rate Rs,k, the channel coding rate RS

c,k and the received power P S
k and for

each relay node m the channel coding rate RR
c,m and the received power PR

m,
so that a function F(.) of the overall end-to-end expected video distortion
E{Ds+c,k} for each source node k and the received power P from both the
source and relay nodes is minimized, i.e.

(R∗
s , R

∗
c , P

∗) = arg min
Rs,Rc,P

F(E{Ds+c,1}, . . . , E{Ds+c,K}, P )

subject to the constraints described in Section 3.1. The type of the function
F(.) is different for each one of the deployed optimization criteria, which we
delineate in Section 4.

For conveying the results of the optimization from the BS to the source
and relay nodes, we propose an out-of-band solution, i.e. the use of a ded-
icated channel (e.g. a different spreading code). This information to be
conveyed sums up to a few bytes, therefore the BS should include it in a
single message and broadcast that message to the nodes. The use of a dedi-
cated channel secures the timely delivery of the information from the BS to
the nodes, while broadcasting a single message, each time the optimization
process is performed, minimizes the bandwidth requirements.

4. Bi-objective Optimization Criteria

The described QEPC problem is solved using the NBS with equal or
different bargaining powers, formulating two bi-objective criteria. The first
criterion employs the NBS with equal bargaining powers while the second
criterion uses different motion-related bargaining powers.

4.1. Bi-objective Utility Function

Based on Game Theory, and particularly on the NBS, a bargaining game
is organized for the resource allocation among the WVSN nodes. The nodes
of a DS-CDMA based multihop WVSN interfere with each other, as they all
transmit simultaneously. Each node tries to increase its transmitted power,
aiming at a better quality for its video, but this can also lead to the degra-
dation of the quality of the other nodes’ videos. It is therefore essential that
cooperation exists among the nodes in the multihop path to the BS. In this
way, the resources are allocated so that a good quality, namely a good PSNR,
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is achieved for all nodes. For the arising bargaining problem, a measure of
satisfaction of the demands of a source node k is the utility function.

In the present paper, it is proposed to be formulated in a way that both
the aspiration of node k to increase its benefit in terms of the video quality
and its willingness to pay for the cost related to transmission power of all relay
nodes employed for the video data forwarding of node k are demonstrated:

Uk = γPSNRk − δ(P S
k +

Y∑
y=1

PR
y ), (15)

where y = 1, 2, . . . , Y is a counter for the relay nodes that a source node
k uses for transmission, parameters γ and δ are non-negative weights with
γ + δ = 1, and PSNRk expresses the video quality in dB per source node
k. The complementary weights show the relative importance of the differ-
ent objectives. Moreover, by definition the convex hull of two objectives is
their convex combination. Thus, the convex combination of the two objec-
tives covers all points in the convex hull. PSNR is defined as a function

of E{Ds+c,k}, i.e. PSNRk = 10 log10
2552

E{Ds+c,k} . Thus, it depends on the

source and channel coding rate of the source node k, and the received power
from all nodes (because the received power plays important role during the
transmission from the source node k to the BS through all relay nodes that
are employed for the video data forwarding of source node k). The defined
utility function of Eq. (15) depends on the same parameters, as well. The
values of γ and δ can be tweaked so that the tradeoff between the resulting
PSNR and the used transmission powers is regulated.

The minimum utility the players expect to receive if negotiations break
down is expressed by the disagreement point d = (d1, . . . , dK)

�. Theoret-
ically, the utility of each player after the cooperation is not allowed to be
smaller than it would be if the player did not join the bargaining game
(as also inferred by the feasibility axiom provided in Section 4.2) [37]. This
means that every cooperating player should either have a gain or remain with
the same utility it had before the cooperation. In this particular bargaining
game, the disagreement point d ∈ U expresses both the minimum accept-
able quality (in terms of PSNR) for each video and the maximum allowed
transmission power for both the source and its relay nodes, i.e.

dk = γPSNRmin,k − δ(P S
max + Y PR

max) , (16)
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where Y is the total number of the relay nodes that a source node k uses
for transmission. It is important to notice that both the PSNRmin,k and
the P S

max, PR
max values are specified by the QoS requirements of a certain

application.

4.2. Nash Bargaining Solution and related criteria
Based on the NBS, we define the bargaining game deployed in our resource

allocation scheme as a pair (U, d), where the feasible set U ⊂ R
K is the set of

all possible vectors U = (U1, U2, . . . , UK)
�. Each one of the possible vectors

U results from different combinations of the vectors of the received power
from the K source nodes and the M relay nodes, the source coding rate of
the source nodes and the channel coding rate for all nodes and represents
the feasible payoffs (resource allocations) of the players (source nodes). It is
mandatory that this set is closed, bounded above, comprehensive, and that
free disposal is allowed [38].

The NBS can be written as a function G(.) of U and d, i.e. G(U, d) ∈ U,
and satisfies three axioms. These axioms guarantee that the solution is Pareto
optimal, invariant to affine transformations, and independent from irrelevant
alternatives [37]:

(i) G(U, d) ≥ d and y > G(U, d) ⇒ y /∈ U.

(ii) Given any strictly increasing affine transformation τ(.), G(τ(U), τ(d)) =
τ(G(U, d)).

(iii) If d ∈ Y ⊆ U, then G(U, d) ∈ Y ⇒ G(Y, d) = G(U, d).

The NBS of this multi-player cooperative bargaining game can be found by
maximizing the Nash Product:

G(U, d) = argmax
U

K∏
k=1

(Uk − dk)
bk (17)

subject to the constraints: (Uk − dk) > 0,
K∑
k=1

bk = 1 and those described in

Section 3.1.
The value bk refers to the bargaining power of a source node k. The

bargaining power indicates the advantage the node has in the bargaining
game. It is assigned in accordance with the rules of the bargaining game. A
node with a higher bargaining power is favored by the rules of the bargaining
game compared to a node with a lower bargaining power.
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4.2.1. NBS-based Criteria

Similar to [8], we consider two different NBS-based criteria according to
the different definition of the bargaining powers of the nodes as follows.

(i) Using equal bargaining powers (e.NBS): This criterion assumes that all
bargaining powers are assigned the same value, i.e.

bk =
1

K
. (18)

(ii) Using motion-related bargaining powers (w.NBS): This criterion assigns
to each node a different bargaining power which is motion-related ac-
cording to parameters αk of Eq. (10), i.e.

bk =
αk

K∑
i=1

αi

, with i = 1, 2, . . . , K . (19)

4.3. Optimization Algorithm

In the proposed scheme, the received and transmitted powers are as-
sumed to take continuous values within a specified range, whereas the source
and channel coding rates take discrete values. Thus, the formulated opti-
mization problems are mixed integer problems. For this reason, a stochas-
tic optimization technique is selected, namely Particle Swarm Optimization
(PSO) [39, 40].

PSO is an efficient, adjustable, and easily implementable population-
based algorithm for black-box optimization. It was inspired by the social
dynamics observed in hierarchically organized societies. Essentially, PSO
mimics the behavior of a fixed-size population, called a swarm. It consists of
a number of search agents, called the particles, which iteratively probe the
search space in order to find solutions for the problem at hand.

Each particle has a memory where it stores the best position it has ever
visited during its search, i.e., the position with the lowest function value
(in minimization problems). Also, the particles exchange information among
them, based on abstract communication schemes. These schemes can be rep-
resented by graphs where nodes correspond to particles and interconnections
represent communication links among them. These schemes are also called
neighborhood topologies, and they can have crucial impact on the informa-
tion flow within the swarm.
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4.3.1. Motivating the use of PSO

The PSO algorithm is one of the most popular population-based, stochas-
tic optimization algorithms. Its efficiency has been shown in a plethora
of engineering problems, along with its superiority against other (deter-
ministic and stochastic) global optimization methods (e.g. see applications
in [39, 41, 42, 43]). Moreover, PSO is accompanied by strong theoretical re-
sults regarding its stability, convergence properties, and parameter settings
(see [40, 44, 45, 46, 47]). Recently, PSO was used in relevant applications
with remarkable success [18, 36, 48]. In fact in [18], it was shown to be
more efficient than deterministic approaches that are typically used in such
problems.

In various multi-objective engineering problems, it is common to apply
normalization of the objectives prior to the mathematical solution of the
problem. However, when it comes to metaheuristic optimization algorithms,
the merit of normalization is mostly related to the interpretation of the so-
lutions rather than the solver itself. PSO has been applied in a plethora of
problems without normalizing the objective functions (see [49]).

All these reasons, along with the high nonlinearity of the involved objec-
tive functions in our problem as well as PSO’s tolerance in noisy environments
that are usually met in real-world applications, were our main incentives for
the use of the specific algorithm.

4.3.2. Using a rough estimation for swarm initialization

In the present work, we use PSO with a different swarm initialization
scheme based on a Rough Estimation (PSO-RE). This initialization scheme,
introduced in [36], offers the advantage of faster convergence compared to
PSO. Let Q =

{
x1, x2, . . . , x|Q|

}
be a swarm consisting of |Q| particles,

where |.| denotes the cardinality of a set. Each particle is defined as a multi-
dimensional vector, xi ∈ X, i = 1, 2.., where X is the search space. In
our problem, xi consists of resources that need to be allocated, namely the
parameters P S

k , Rs,k and RS
c,k for each source node k and of the parameters

PR
m and RR

c,m for each relay node m, as defined in Section 3.2.
For the swarm initialization, according to PSO-RE, we use a rough first

estimation of the resource allocation, based on the expected received power
of each node as proposed in [36]. Particularly, for the source nodes we use
the following equation:

P̂ S
k =

αk

min(α)
P S
min, (20)
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where α = (α1, α2, . . . , αK)
� is the vector of the αk values for each source

node k, and min(α) is the minimum element of vector α. We use the same
equation for the rough estimation of the expected received power P̂R

m of each
relay node, since we observed from the conducted experiments and our pre-
vious work [4] that the relay nodes require a power level proportional to the
power level of the cluster nodes in their reception range. For half of the
particles of the swarm, we initialize the components that correspond to the
expected received power as computed by Eq. (20). For the integer compo-
nents of the swarm, namely the source and channel coding rates, we randomly
assign to them one of the available values. The other half of the swarm is
randomly initialized in the search space, as performed in the traditional PSO
algorithm.

Moreover, letting vi be the corresponding velocity, pi ∈ Q the best po-
sition of the i-th particle, and t the current iteration of the algorithm, then
the velocity and current position of xi are updated according to the equa-
tions [43]:

vi(t+ 1) = χ
[
vi(t) + c1R1

(
pi(t)− xi(t)

)
+ c2R2

(
pgi(t)− xi(t)

)]
, (21)

xi(t+ 1) = xi(t) + vi(t+ 1), (22)

where χ is a parameter called the constriction coefficient, c1, c2 are positive
acceleration parameters called cognitive and social parameter, respectively,
and R1, R2 are vectors with components uniformly distributed in the range
[0, 1]. All vector operations in Eqs. (21) and (22) are performed componen-
twise. Also, the best position pgi of each particle i is updated as soon as it
discovers a better one. Clerc and Kennedy [43] proposed parameter values
that promote convergence of the algorithm towards the most promising solu-
tions in the search space. Based on this study, the default set of parameters
is defined as χ = 0.729, c1 = c2 = 2.05.

5. Fairness of the Resource Allocation based on the Delivered Video
Quality

In video transmission systems, the end-to-end video distortion is a result
of compression errors and transmission errors. Thus, the overall distortion is
the superposition of these two types of distortion. Due to the different rate-
distortion characteristics, each video has different average MSE value after
the video compression for the different source coding rates. If we considered
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that the transmission of a video is error-free, then its average MSE value at
the receiver would be equal to its MSE value after video encoding. This MSE
value in terms of PSNR is the maximum quality PSNRmax, which could be
ideally achieved in an error-free transmission.

We propose to define the fairness of the resulting resource allocation with
regard to the distance of the resulting PSNR values from their correspond-
ing maximum video quality values PSNRmax. We assume that PSNRmax,k

is utopian. We consider as fair resource allocation the one that achieves
the same video quality distance for all nodes from its utopian quality value.
This consideration is expected to provide a better assessment of the fairness
of the resource allocation among the WVSN nodes. For this reason, based on
a quantitative measure that was first proposed for operation systems resource
allocation [50] (and has been used before in similar resource allocation prob-
lems [10, 11] for different notions), we define the fairness index φ, as follows:

φ =

(
K∑
k=1

PSNRmax,k − PSNRk

)2

K
K∑
k=1

(PSNRmax,k − PSNRk)2
, (23)

where PSNRk reflects the end-to-end video quality of source node k and
PSNRk < PSNRmax,k. φ assumes values in (0, 1] and is equal to one when all
achieved PSNR values are equally distant from their utopian quality values.
On the contrary, when the difference values PSNRmax,k − PSNRk of the
different source nodes are dispersed, φ reduces.

6. Experimental Results

In this section, we evaluate the performance of the proposed method,
which is tested in two topologies with different network configurations.

6.1. Experimental Settings

6.1.1. Considered WVSN scenarios and topologies

For the experimental settings, we assume that neighboring visual sensors
monitor the same area. Due to this assumption, the neighboring nodes are
organized with respect to their location in clusters and transmit video se-
quences of the same motion level. Thus, the (αk, βk) parameters of nodes in
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Table 2: Key Parameters and Values for the Experiments.

Description Notation Topology I Topology II

Number of source nodes K 20 15
Number of clusters C 4 3

Number of relay nodes M 4 2
Transmission bit rate for relay nodes (kbps) Rm ∀m : 480 m = 1: 480, m = 2: 960

Channel bandwidth (MHz) Wt 5 4
Transmission power of source nodes (W) SS

k ∀k : [0.1, 0.5] ∀k : [0.1, 0.5]
Transmission power of relay nodes (W) SR

m ∀m : [0.1, 5] m = 1: [0.1, 2.5], m = 2: [0.1, 5]

Figure 2: The first considered WVSN topology, Topology I, for the experiments.

a cluster are considered to be equal. The main parameters of the presented
experiments and their values for each topology are reported in Table 2.

In order to further assess the performance of our method, several cases
with different motion levels (low, medium and high) per cluster have been
considered. The terms “low”, “medium” and “high” motion are used for
video sequences of similar motion levels with the 10-second, 15 fps, “Akiyo”,
“Salesman” and “Foreman” QCIF video sequences, respectively.

Topology I. In the first considered WVSN topology, which is illustrated in
Fig. 2, 20 source nodes are organized in four clusters {C1, C2, C3, C4} of the
same cardinality. As the BS is out of the transmission range of the source
nodes, one of the relay nodes {R1, R2, R3, R4} is committed to each cluster
in order to channel-decode-and-forward the video data to the BS. Interference
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Figure 3: The second considered WVSN topology, Topology II, for the experiments.

exists among the nodes within a cluster as they transmit their videos to their
corresponding relay node, for example for each one of the source nodes of C1
the rest source nodes of C1 cause interference in the first hop. Moreover,
the four relay nodes interfere with each other when they retransmit videos to
the BS. Regarding the motion level of each cluster, C1’s nodes transmit high
motion videos while the nodes of cluster C2 transmit low motion videos and
the nodes of clusters C3 and C4 transmit different medium motion videos.

Topology II. The second WVSN topology, Topology II, consists of 15 nodes,
organized in three clusters {C1, C2, C3}, as depicted in Fig. 3. The BS is
out of the transmission range of the source nodes in clusters C1 and C2,
thus two relay nodes are used {R1, R2} for the retransmission of videos of
these clusters to the BS. The source nodes of cluster C3 directly transmit the
videos to the BS. Similarly to the first topology, interference exists among
the source nodes in the same cluster. The relay nodes R1 and R2 interfere
with the source nodes in clusters C2 and C3, respectively. The nodes of each
cluster transmit video sequences of the same motion level. In particular,
the nodes of C1 transmit low motion level videos, the nodes of C2 medium
motion videos and the nodes of C3 transmit high motion level video.
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6.1.2. Experimental Settings and Parameters

The main parameters of the presented experiments and their values are
reported in Table 2. Since our proposed method is quality-driven, we consider
that the resulting video quality is at least of equal preference as the power
consumption. Hence, regarding the values of (γ, δ), we consider the range
[0.50, 1.00] for γ and [0.00, 0.50] for δ. In order to reduce the infinite number
of points in these ranges, we assume that γ and δ can take values within the
following sets with a step size equal to 0.01: γ ∈ {0.50, 0.51, . . . , 0.99, 1.00} ⊂
[0.50, 1.00] and δ ∈ {0.00, 0.01, . . . , 0.49, 0.50} ⊂ [0.00, 0.50], so that γ+δ = 1.

In both tested topologies, the transmission bit rate of the source nodes
is 96 kbps and the transmission bit rates of the relay nodes are reported in
Table 2. The minimum acceptable PSNR (a.k.a the disagreement point) is
set to 24 dB. We also set Gt = Gr = 3 dB, ht = hr = 3 m and N0 = 1
pW/Hz, while RCPC codes with mother rate 1/4 are used.

In the present formulated problem, source and channel coding rates are
selected from a discrete set and are available as combinations of (Rs, Rc)
for the source nodes and as single choices, Rc, for the relay nodes. Specif-
ically, as also displayed in Table 2, we assumed the following code set and
correspondences:

(i) for the source nodes: 1 for (32 kbps, 1/3), 2 for (48 kbps, 1/2) and 3
for (64 kbps, 2/3);

(ii) for the relay nodes: 1 for 1/3, 2 for 1/2 and 3 for 2/3.

Thus, our optimization problem is a mixed-integer one, since the transmission
powers are continuous and the source-channel coding rate combinations are
discrete (in our case they can take values 1, 2, and 3). Note that instead of 1,
2 and 3, we could use three other successive numbers (e.g. 7, 8, 9). Due to the
fact that PSO particles probe the search space in the continuous range defined
by its frontiers, in order to solve this mixed-integer problem, the source and
channel coding rates were represented with continuous values. Taking into
consideration that we have assumed the aforementioned correspondences for
the valid source and channel coding rates, we have used the range [0.6, 3.4] as
the continuous range of this values. (If three other successive integer numbers
were used for these correspondences, then this range would be different, e.g.
for {7, 8, 9} the range would be [6.6,9.4]) However, these values are rounded
to the nearest integer before each particle xi objective function evaluation,
namely xi = 
xi + 0.5�. For example, if we assume that for a particle the
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source and channel coding rate value is probed in 0.875 value, then before
the particle’s objective function evaluation 0.875 will be rounded to 1. So, 1
will be used to evaluate the objective function value for the specific particle.

6.2. Results and Discussion

In the presented results, we compare the performance of the proposed
QEPC method with the method introduced in [4], which performs resource
allocation without power control (γ = 1.00, δ = 0.00). Moreover, we compare
the results of the NBS-based criteria with two aggregation criteria, EWAD
and MWAD, formulated in [22] and shown in Table 3. These criteria min-
imize the weighted aggregation of expected distortion of source nodes and
the aggregation of the received powers of source and relay nodes. They ei-
ther treat all source nodes equally (EWAD criterion) or use motion-related
weights in order to prioritize the quality enhancement of higher motion videos
(MWAD criterion). We build our discussion around the important issues of
the WVSN power consumption, its tradeoff with end-to-end video quality
and the resulting fairness based on the results for Topology I. For Topol-
ogy II, the proposed method has a very similar performance with analogous
results, thus the same observations and conclusions are drawn.

Table 3: State-of-the-Art Criteria used for results assessment.
Name Acronym Formulation

Equally Weighted Aggregation of Distortion EWAD F =
K∑
i=1

E{Ds+c,i}+
K+M∑
j=1

Pj

Motion-related Weighted Aggregation of Distortion MWAD F =
K∑
i=1

wiE{Ds+c,i}+
K+M∑
j=1

Pj,

with wi =
αk

K∑
i=1

αi

6.2.1. Allocated Source and Channel Coding Rates

Table 4 reports the resulting source and channel coding selection for each
cluster from the set A and the channel coding selection for relay nodes from
the set B for different values of (γ, δ). As far as the resulting channel coding
rates for the relays are concerned, the highest rate has been selected in all
cases for all relays, i.e. equal to 2/3. Besides this, we observe that the
highest source coding rate is selected for the cluster with high amount of
motion videos in almost all cases. Moreover, the motion-aware criteria w.NBS
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Table 4: Source and Channel Coding Rates per cluster and relay for the various values of
γ.

Criterion e.NBS w.NBS EWAD MWAD

Cluster C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

γ = 0.50 1 2 2 2 3 1 1 1 3 2 1 2 3 1 1 2
0.51 ≤ γ ≤ 0.53 1 2 2 2 3 1 1 1 3 2 2 2 3 1 2 2
0.54 ≤ γ ≤ 0.69] 3 2 2 2 3 1 1 1 3 2 2 2 3 1 2 2
0.70 ≤ γ ≤ 0.75 3 2 2 2 3 1 1 2 3 2 2 2 3 1 2 2
0.76 ≤ γ ≤ 0.83 3 3 2 2 3 1 1 2 3 2 2 2 3 1 2 2
0.84 ≤ γ ≤ 1.00 3 3 2 2 3 1 2 2 3 2 2 2 3 1 2 2

Relay R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.50 ≤ γ ≤ 1.00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

and MWAD use lower source coding rates for the nodes of low and medium
amount of motion, compared to the other two criteria. This, in combination
with the fact that video sequences of low amount of motion are more robust
to errors, means that lower transmission power is required for those nodes.

6.2.2. Transmission Power Consumption

The allocated transmission power for the source nodes in a cluster and
their respective relay nodes are plotted in Fig. 4 and Fig. 5, respectively. A
close inspection of the figures reveals that the allocated transmission powers
for each cluster and for each relay are in line with the motion levels of the
recorded scenes. The effect of power control is witnessed intensely in Fig. 4,
where we notice that for γ = 1.00 all source nodes are allocated the maximum
admissible transmission power. Moreover, for γ < 1.00, w.NBS and MWAD
tend to restrict the range of the assigned transmission power for low and
medium motion source nodes and their corresponding relay nodes, compared
to e.NBS and MWAD. This can be explained from the fact that by using
the motion-aware criteria, we intend to favor the clusters in proportion to
the amount of motion. So, in order to enhance the video quality of the
high motion nodes, the motion-aware criteria increase the transmission power
of these nodes and concurrently reduce the transmission power of all other
clusters and relay nodes. This increases the energy-per-bit to MAI and noise
ratio for the high motion nodes and their relay nodes, while at the same time
it reduces it for the other clusters and their corresponding relay nodes.

Network lifetime is one of the most important metrics for the evaluation
of a sensor network, due to the fact that it is energy-constrained and that it
can fulfill its purpose as long as its sensors are “alive”. Several definitions
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for sensor lifetime have been provided in the literature [3, 51, 52]. According
to [51], it is the time until the first sensor is drained of its energy. Figure 4
reveals that the motion-aware criteria use higher transmission power for the
high motion source nodes of C1 for most (γ, δ) pairs. This observation is
more intense for MWAD, which allocates the maximum transmission power
to the source nodes of C1 for γ ≥ 0.50. Regarding the transmission power of
the relay nodes, Fig. 5 indicates that employing EWAD results in the highest
admissible power for R1 (that is committed to C1) for all (γ, δ) pairs. Overall,
according to this sensor lifetime definition, the employment of the NBS-based
criteria enhances the WVSN lifetime compared to EWAD and MWAD for
γ ≥ 0.50.

6.2.3. Video Quality and Power Consumption Tradeoff

Figure 6 illustrates the expected video quality at the receiver versus the
total consumed transmitted power in the network. The different values of
resulting quality and total transmission power derive from different choices
of (γ, δ). To better demonstrate the impact and benefits of power control
on the delivered video quality, we compare the PSNR for γ < 1.00 with the
PSNR for γ = 1.00 (when no power control is applied).

Considering the definition of [52], according to which lifetime is defined as
the time until all nodes have been drained of their energy, the following con-
clusions are drawn. This definition is directly related to the total transmission
power consumption, which is illustrated for all criteria in Fig. 6. Regarding
the WVSN transmission power consumption, the four criteria use different
total transmission power for the different (γ, δ) pairs. A first observation from
this figure is that EWAD consumes the highest total transmission power for
most γ values, i.e. γ ≤ 0.95, while for γ > 0.95 e.NBS uses the highest total
transmission power. On the other hand, it is evident, that w.NBS requires
the lowest total transmission power than all other criteria for all considered
(γ, δ) pairs. For γ ≥ 0.84, the total transmission power of MWAD is less
than 1 W higher compared to w.NBS total transmission power. Considering
all the above observations and the definition of [52], we conclude that w.NBS
prolongs the WVSN lifetime. Finally, as previously observed in Fig. 4, it is
important to point out that in case we do not apply power control, all source
nodes use the highest admissible transmission power. This means that in
this case all source nodes will drain their energy at the same time, according
to both of the aforementioned lifetime definitions.

From the video quality point of view, as anticipated e.NBS and EWAD
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favor the low motion nodes by achieving better quality than w.NBS and
MWAD can provide for all values of γ. However, with e.NBS a degradation
of the quality of videos of the high motion nodes is experienced, when the
total transmitted power is higher than 22 W. A slighter degradation of the
quality of videos of the high motion nodes is also experienced with EWAD.
Particularly, for γ = 0.50 the PSNR value is 0.42 dB higher for the low
motion nodes than it is for γ = 1.00, while 5.38 W less are spent in total.
Moreover, EWAD requires higher total transmission power than e.NBS for
most values of (γ, δ). In contrast, the motion-aware criteria offer considerably
higher PSNR to high motion nodes for all values of γ when compared with
e.NBS and EWAD. Regarding the low and medium motion videos, the per-
formance of w.NBS is inferior to that of e.NBS. However, MWAD enhances
the performance for low and medium motion videos compared to w.NBS,
since PSNR is improved by 0.27-3.52 dB for all values of γ.

Furthermore, we observe that, when we use the proposed QEPC method,
we can achieve similar video quality compared to the case when no power
control is applied (i.e. γ = 1.00), while we consume less transmission power
in total. As an illustration of this remark, consider as an example the case of
γ = 0.99 for w.NBS criterion in Fig. 6(b). In this case, w.NBS achieves almost
the same video quality for all clusters as it would if no power control were
used. Concurrently, 18.25% (namely 4 W) less transmission power is con-
sumed in total. For the same γ, in the case of MWAD criterion (Fig. 6(d)),
the expected video quality at the receiver slightly drops, while the trans-
mission power savings are 17.40%. Considering all these observations, we
conclude that when power control is omitted (γ = 1.00, δ = 0.00), the con-
sumption of the total transmission power is excessive for a rather small video
quality gain. Moreover, the prioritized optimization criteria succeed in en-
hancing the network lifetime in comparison to the other criteria at a rather
small expense on the quality performance. Furthermore, w.NBS provides
acceptable video quality (namely higher than the minimum quality require-
ment threshold PSNRmin) for all source nodes, even when low transmission
power is allocated to both source and relay nodes.

6.2.4. Fairness of the Resulting Video Quality versus Transmission Power

Figure 7 depicts the resulting φ versus the total transmission power for all
optimization criteria for all considered (γ, δ) values. Juxtaposing the φ values
of the proposed QEPC method with the values when no power control is ap-
plied, we observe that fairness is degraded when no power control is applied.
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Another observation is that NBS criteria result in more fair resource allo-
cation for the whole WVSN, while consuming less total transmission power
compared to the other two criteria for most (γ, δ) pairs. We have to note that
for those (γ, δ) pairs that EWAD and MWAD achieve higher φ values, the
transmission power for NBS-based criteria in most cases is lower. Addition-
ally, an interesting observation is that the NBS-based criteria result in the
same or higher φ values compared to the other two criteria (for different (γ, δ)
values) and for much lower total transmission power. For example, w.NBS
achieves φ = 0.76 using 9.20 W, while MWAD achieves the same φ value by
consuming 14.50 W (57.6% more than w.NBS). Moreover, we observe that
the criteria that consider motion-related prioritization have lower levels of
fairness. This is due to the fact that in order to provide higher priority to
the nodes of higher motion and increase their PSNR values, the resources
allocated to those nodes are increased. This results in higher interference to
the other WVSN nodes that degrades their end-to-end video quality. Finally,
it is obvious that e.NBS and w.NBS achieve higher degree of fairness over
the whole WVSN, while consuming less total transmission power compared
to EWAD and MWAD criteria.

6.3. Performance of PSO and PSO-RE

As explained in Section 4.3, the PSO-RE algorithm was introduced in [36],
achieving superior performance than traditional PSO. In our experimental
setting, the dimensions of the underlying optimization problems were D = 16
for Topology I and D = 10 for Topology II. For each problem instance, 30
independent experiments were conducted for both PSO-RE and PSO, in
order to extract sound information regarding their performance. We note
that in case of a real-time process, only a single experiment is conducted.

Besides convergence speed, we tested the validity of PSO-RE also in terms
of solution quality, i.e., the resulting resource allocation. Both PSO and
PSO-RE converged to the same optimal solution F∗ with an accuracy of
12 decimals. For all criteria and (γ, δ) values, both algorithms achieved the
same solutions, although PSO-RE required far less computational resources.
This performance was verified for both Topology I and II.

In Fig. 8, we illustrate an example of convergence speed of the two solvers
to the same solution F∗ for e.NBS and w.NBS, for (γ = 0.85, δ = 0.15). We
only present the first 100 iterations for visibility issues. At each diagram, the
best solution per algorithm iteration is plotted. We can clearly observe that
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using PSO-RE results in faster detection of F∗, despite the fact that it uses
smaller swarm size.

Regarding the swarm size and maximum iterations of the two PSO solvers,
it is common practice in metaheuristics to set parameters after a preprocess-
ing phase. In this phase, preliminary experimentation is performed in order
to identify proper parameter values. In our case, PSO-RE required signif-
icantly lower computational resources than PSO since it is equipped with
the estimation scheme described in Section 4.3.2. Nevertheless, determining
optimal parameter values for stochastic optimization algorithms is still an
open optimization problem itself, while experimental evidence suggests that
it is always dependent on the considered optimization problem.

In Table 5, we report the maximum swarm size (|Q|) and maximum
number of algorithm iterations (Iter) that are required for all (γ, δ) values
for the presented results. As observed, the required |Q| and Iter are not
identical for each topology. This is due to the fact that these parameters
depend on the dimension of the optimization problem. Also, they depend on
the special characteristics of the objective function F , which is not identical
for the different network configurations (e.g., there are different numbers of
hops per source node).

For Topology I, the maximum number of function evaluations required by
PSO-RE (given as the product |Q|·Iter) is 90% lower than the corresponding
number required by traditional PSO. For Topology II, PSO-RE requires 88%
less function evaluations. To further verify the faster convergence of PSO-RE
compared to PSO, as well as the feasibility of the proposed method, we report
in Table 5 the average execution time Texe for an experiment on an Intel Core
i7-4510U CPU @2.00GHz using Cygwin with 2GB of RAM reserved. As we
can see, on average, PSO-RE is 91.91% faster than PSO for Topology I and
89.98% faster for Topology II.

Table 5: Comparison of PSO and PSO-RE for Topology I and II.

Algorithm |Q| Iter Texe(sec)

Topology I
PSO 200 3000 304.56

PSO-RE 80 650 24.65

Topology II
PSO 50 500 12.47

PSO-RE 30 100 1.25
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7. Conclusion

In this paper, we propose an effective methodology for solving the QEPC
problem in cooperative multihop WVSNs by jointly allocating the transmis-
sion powers to all nodes, the source coding rates to the source nodes and the
channel coding rates to all nodes. For this reason, we defined bi-objective
optimization criteria. Both e.NBS and w.NBS, are based on the NBS and
employ a utility function that reflects the benefit in terms of quality along
with the cost in terms of transmission power. We compared the NBS-based
criteria with other two criteria, EWAD and MWAD, that aggregate the dis-
tortion and the transmission powers of all nodes. More specifically, w.NBS
and MWAD are prioritized so as to favor specific WVSN nodes in proportion
to the motion level of the recorded scenes. The evaluation results confirmed
that the proposed QEPC method achieves to effectively balance the QoS in
terms of end-to-end video quality and the total transmission power consump-
tion. Particularly, in many cases, excessive transmission power is used when
power control is omitted for a rather small quality gain for certain nodes.
This important observation is also verified by the overall fairness assessment
results. Concluding, NBS-based criteria that employ the proposed utility
function are the prominent choice to effectively balance the video quality
fairness and WVSN lifetime tradeoff.
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Figure 4: Transmission Power per Cluster node versus different (γ, δ) pairs for all three
criteria.
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Figure 5: Transmission Power per Relay node versus different (γ, δ) pairs for all criteria.40



Total Transmission Power (W)

PS
N

R
 p

er
 c

lu
st

er
 n

od
e 

(d
B

)

8 10 12 14 16 18 20 22 24 26 28

25

30

35

40

C1 - high motion
C2 - low motion
C3 - medium motion
C4 - medium motion

( =1, =0)

(a) Resulting Quality versus Total Transmission Power for e.NBS.

Total Transmission Power (W)

PS
N

R
 p

er
 c

lu
st

er
 n

od
e 

(d
B

)

8 10 12 14 16 18 20 22 24
26

28

30

32

34

36

38
C1 - high motion
C2 - low motion
C3 - medium motion
C4 - medium motion

( =1, =0)( =0.99, =0.01)

(b) Resulting Quality versus Total Transmission Power for w.NBS.

Total Transmission Power (W)

PS
N

R
 p

er
 c

lu
st

er
 n

od
e 

(d
B

)

21 22 23 24 25 26 27
30

32

34

36

38

C1 - high motion
C2 - low motion
C3 - medium motion
C4 - medium motion

( =1, =0)
( =0.5, =0.5)

(c) Resulting Quality versus Total Transmission Power for EWAD.

Total Transmission Power (W)

PS
N

R
 p

er
 c

lu
st

er
 n

od
e 

(d
B

)

81 80 82 84 16 11 10
14

13

C6

C8

C1

CC

C0

- 8 h gi g motion
- 1 h low motion
- C h medium motion
- 0 h medium motion

(=, 8 . , 6)(=, 6933 . , 6968)

(d) Resulting Quality versus Total Transmission Power for MWAD.

Figure 6: Video Quality-Transmission Power tradeoff per cluster using all optimization
criteria.

41



8 10 12 14 16 18 20 22 24 26 28
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Total Transmission Power (W)

Fa
ir

ne
ss

 I
nd

ex

 

 

e.NBS

w.NBS

EWAD

MWAD

Figure 7: Fairness index φ versus the Total Transmission Power for all criteria.

42



0 10 20 30 40 50 60 70 80 90 100

4.5

5

5.5

6

6.5

7

7.5

8

Algorithm Iterations

F
* 

va
lu

e

 

 

e.NBS PSO−RE
e.NBS PSO
F*

(a) Topology I with e.NBS for γ = 0.85.

0 10 20 30 40 50 60 70 80 90 100
4.5

5

5.5

6

6.5

7

7.5

Algorithm Iterations

F
 v

al
ue

s

 

 

w.NBS PSO−RE
w.NBS PSO
F*

(b) Topology I with w.NBS for γ = 0.85.

0 10 20 30 40 50 60 70 80 90 100
9

9.2

9.4

9.6

9.8

10

10.2

Algorithm Iterations

F
 v

al
ue

 

 

e.NBS PSO−RE
e.NBS PSO
F*
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Figure 8: Comparison of the convergence of the optimization algorithms.
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