
ORIGINAL ARTICLE

Particle swarm optimization with neighborhood-based
budget allocation

D. Souravlias • K. E. Parsopoulos

Received: 13 December 2013 / Accepted: 16 October 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract The standard particle swarm optimization

(PSO) algorithm allocates the total available budget of

function evaluations equally and concurrently among the

particles of the swarm. In the present work, we propose a

new variant of PSO where each particle is dynamically

assigned different computational budget based on the

quality of its neighborhood. The main goal is to favor

particles with high-quality neighborhoods by asynchro-

nously providing them with more function evaluations than

the rest. For this purpose, we define quality criteria to

assess a neighborhood with respect to the information it

possesses in terms of solutions’ quality and diversity.

Established stochastic techniques are employed for the

final selection among the particles. Different variants are

proposed by combining various quality criteria in a single-

or multi-objective manner. The proposed approach is

assessed on widely used test suites as well as on a set of

real-world problems. Experimental evidence reveals the

efficiency of the proposed approach and its competitive-

ness against other PSO-based variants as well as different

established algorithms.

Keywords Particle swarm optimization � Computational

budget allocation � Neighborhood quality

1 Introduction

Particle Swarm Optimization (PSO) is a population-based

algorithm that models social behavior to effectively solve

global optimization problems by guiding swarms of particles

towards the most promising regions of the search space. It

was originally introduced by Eberhart and Kennedy [12] in

1995 and, since then, it has gained increasing popularity.

This can be ascribed to its efficiency and effectiveness in

solving hard optimization problems with minor program-

ming effort. Up-to-date, there is a considerable amount of

works on PSO-based applications in various scientific and

technological fields [15, 19, 20, 22, 25, 29].

The standard PSO algorithm considers all particles of the

swarm to be equally important. Thus, it synchronously

allocates the same fraction of function evaluations to each

one. On the other hand, it would be reasonable to promote

the search in the most promising regions of the search space

by favoring the particles that probe such regions. Due to the

inherent collective dynamics of PSO, these particles com-

municate their experience also to their neighbors, thereby

offering them an opportunity to enhance their performance.

For this reason, the idea of using neighborhood character-

istics and qualities to identify and favor some of the particles

in the budget allocation procedure is appealing.

In this framework, we recently introduced PSO with

budget allocation through neighborhood ranking (PSO-

BANR) [23]. This algorithm irregularly allocates the

available computational budget among the particles. Spe-

cifically, a rank-based scoring scheme is used to assess

each particle based on the information carried by its

neighborhood in terms of objective values rather than the

particle’s value solely. The neighborhoods’ scores are used

to assign selection probabilities to the particles. Finally, a

stochastic selection scheme (fitness proportionate
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selection) is used to select the particle that will be awarded

the next function evaluation. Two alternative scoring

schemes were considered in [23] and preliminary experi-

ments revealed the potential of PSO-BANR to be efficient

and effective, triggering further our interest on neighbor-

hood-based budget allocation.

The present work constitutes a radical extension of the

ideas exposed in our previous work. We generalize the

PSO-BANR algorithm to a new approach called particle

swarm optimization with neighborhood-based budget allo-

cation, henceforth denoted as PSO-NBA. The new algo-

rithm employs two essential budget allocation strategies to

assess the quality of neighborhoods. The two strategies are

based on single-objective and multi-objective scoring

modes, respectively. The single-objective approach is

based on the total or, alternatively, on the best information

carried by the neighborhood in terms of objective values.

The multi-objective approach takes into consideration also

another aspect of quality, namely the diversity of the

neighborhood. In this case, each neighborhood is assessed

on the basis of a 2-dimensional scoring vector. The first

component of the vector is identical to the solution quality

criterion of the single-objective approach. The second

component of the vector depends on the diversity of the

best positions of the particles that comprise the neighbor-

hood. Then, a scheme that is based on the concept of Pareto

dominance is used for selection among neighborhoods.

The proposed PSO-NBA approach individually handles

each function evaluation and stochastically assigns it to a

particle according to its selection probability. This proba-

bility is determined through the aforementioned neighbor-

hood scoring schemes. Evidently, this procedure implies an

asynchronous update of the particles. Besides that, particles

that are associated with the most promising neighborhoods

are highly probable to gain more function evaluations than

the rest. However, due to the stochastic nature of the

selection process, also particles that belong to less prom-

ising neighborhoods have the potential of gaining function

evaluations. Intuitively, this property results in deliberate

promotion of the exploitation dynamic of the algorithm, yet

without neglecting its exploration capability.

The concept of budget allocation was previously con-

sidered in PSO although in different frameworks. In [4, 17,

21, 33] PSO was equipped with the optimal computational

budget allocation (OCBA) method in order to cope with

optimization problems contaminated by noise. These works

differ from the present study since we cope with noiseless

problems and propose a more general budget allocation

scheme. Also, we use both solution quality and diversity of

the neighborhood as assessment criteria. There are also

works that propose rank-based PSO variants in the litera-

ture. In [1] the presented algorithm uses only a fraction of

the particles to update velocity. This approach is solely

based on the global (gbest) PSO model, neglecting the

neighborhoods. In [28] the proposed approach uses ranking

to replace low-fitness particles with better ones. A relevant

(although not rank-based) asynchronous PSO variant is

PSO-DLI [27], which employs a special scheme to allocate

function evaluations to some of the particles while the rest

remain idle. Our approach differs also from these approa-

ches, since we use neighborhood ranking schemes to

allocate the available computational budget in a sophisti-

cated manner. To the best of our knowledge, this work is

the first study that uses rank-based criteria to assess the

quality of neighborhoods and dynamically distribute the

available computational budget among the corresponding

particles.

The rest of the paper is organized as follows: Section 2

provides a brief description of the necessary background in

PSO. In Sect. 3, the proposed PSO-NBA algorithm is

presented. Experimental results are reported and discussed

in Sect. 4. The paper concludes in Sect. 5.

2 Background information

In this section, we provide a brief presentation of the ori-

ginal (synchronous) PSO algorithm as well as its asyn-

chronous variant. Without loss of generality, we consider

the continuous bound constrained minimization problem,

min
x2X�Rn

f ðxÞ; ð1Þ

where X is the search space under consideration defined as

an n-dimensional hyperbox.

2.1 Particle swarm optimization

Consider the sets,

I ¼ 1; 2; . . .;Nf g; D ¼ 1; 2; . . .; nf g;

which denote the indices of the search agents and the

indices of the direction components, respectively. PSO

employs a set of search points,

S ¼ fx1; x2; . . .; xNg;

which is called a swarm, to iteratively probe the search

space X. Each search point is an n-dimensional vector,

xi ¼ xi1; xi2; . . .; xinð Þ>2 X; i 2 I;

called a particle. Each particle explores the search space by

moving to new positions (candidate solutions) in X and

adjusts its exploratory behavior according to its own find-

ings as well as the findings of the other particles.

During its quest for better solutions, each particle

records in memory the best position it has encountered. In
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minimization problems, this position has the lowest

objective value among all positions visited by the particle.

If t denotes the iteration counter and xiðtÞ are the sub-

sequent positions of the ith particle, then its best position is

denoted as

pi ¼ pi1; pi2; . . .; pinð Þ>2 X; i 2 I;

and defined as

piðtÞ ¼ arg min
t¼0;1;2;...

f xiðtÞð Þf g:

The particle moves in the search space by using an

adaptable position shift, called velocity,

vi ¼ vi1; vi2; . . .; vinð Þ>; i 2 I;

which is added to its current position to produce a new one.

The velocity of each particle is updated at each iteration

by taking into consideration its own best position as well as

the best position among a set of adjacent particles, which

constitute its neighborhood [11, 24]. The adjacency

between particles is determined according to arbitrary

interconnection schemes that allow groups of particles to

exchange information among them. These schemes are

called neighborhood topologies and they are usually illus-

trated as undirected graphs where nodes denote the parti-

cles and edges denote communication channels. Figure 1

illustrates two common neighborhood topologies.

Various neighborhood topologies have been proposed in

the literature. The most common one is the ring topology,

illustrated in the left part of Fig. 1, where each particle

assumes as neighbors the particles with adjacent indices.

The size of the neighborhood is determined by a parameter

r that is called the neighborhood’s radius. Formally, a ring

neighborhood of radius r of the ith particle is defined by the

set of indices:

NBi;r ¼ fi� r; . . . ; i� 1; i; iþ 1; . . . ; iþ rg: ð2Þ

This means that the best position among the ones with

indices from i� r up to iþ r is used for the ith particle’s

velocity update. The indices are assumed to recycle at their

limits, i.e., the particle with index 1 follows immediately

after the one with index N.

Based on the neighborhood size, two prevailing PSO

models have been established. The first one, called the

global PSO model (denoted as gbest), assumes the whole

swarm as neighborhood of each particle. Thus, the

overall best position of the swarm is used to update all

particles’ velocities. This approach was mainly used in

early PSO variants and exhibited rapid convergence

(exploitation) properties. However, rapid convergence

was habitually accompanied by loss of diversity, leading

to premature convergence in undesirable suboptimal

solutions.

On the other hand, using significantly smaller neigh-

borhoods can enhance the exploration properties of the

swarm. This is attributed to the limited connectivity among

the particles, which restricts the rapid diffusion of the

detected best positions to the rest of the swarm. This

approach defines the local PSO model (denoted as lbest).

Let pgði;tÞ
denote the best position in the neighborhood of

the ith particle at iteration t, i.e.,

gði;tÞ ¼ arg min
j2NBi;r

f pjðtÞ
� �� �

:

Then, based on the definitions above, the update equations

of PSO are given as follows [5]:

viðtþ 1Þ ¼v
h
viðtÞ þ c1R1 �

�
piðtÞ � xiðtÞ

�
þ

c2R2 �
�

pgði;tÞ
ðtÞ � xiðtÞ

�i
;

ð3Þ

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ; ð4Þ

where i 2 I, and � denotes componentwise multiplication

of vectors. The parameter v is called the constriction

coefficient and it is used to clamp the velocities to avoid

the swarm explosion effect [5]. The scalars c1 and c2 are

called the cognitive and social parameter, respectively, and

they are used to bias velocity towards either the particle’s

own best position or the neighborhood’s best position. The

parameters R1 and R2 are random vectors that induce

stochasticity in the algorithm. Their components are drawn

from the uniform distribution Uð½0; 1�Þ.
After updating all particles, their new positions compete

against their best positions. Thus, the best position of each

particle is updated as follows:

piðtþ 1Þ ¼
xiðtþ 1Þ; if f xiðtþ 1Þð Þ\f piðtÞð Þ;
piðtÞ; otherwise;

�

ð5Þ

where i 2 I.

The presented variant of PSO is supported by thorough

stability and convergence analysis [5], which suggested the

general-purpose parameter setting,

v ¼ 0:729; c1 ¼ c2 ¼ 2:05:Fig. 1 Neighborhood topologies: ring (left) and star (right)
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This is considered to be a satisfactory setting that produces

balanced convergence speed for the algorithm. Neverthe-

less, alternative successful settings have also been pro-

posed in the literature [26].

The standard PSO algorithm allocates one function

evaluation per particle per iteration. Hence, at the end of its

execution, all particles have spent equal portions of the

available computational budget. Moreover, the update of

Eqs. (3), (4), and (5), is synchronous, i.e., the new best

positions are determined only after the position update of

all particles. Alternatively, asynchronous PSO variants

have been developed. These approaches are briefly sket-

ched in the following section.

2.2 Asynchronous particle swarm optimization

Asynchronous PSO variants have been developed as

alternatives to the standard (synchronous) approach. Con-

trary to synchronous PSO, in the asynchronous model each

particle updates and communicates at once its new best

position to its neighbors, without waiting for the rest of the

particles to update their memory at a given iteration. This

immediate exposition of the particles to new findings has

significant impact on their convergence speed. Also, it can

radically reduce the algorithm’s runtime in parallel

implementations on inhomogeneous systems or problems

with high diversity of function evaluation time.

On the other hand, rapid convergence of asynchronous

PSO can lead the swarm to deceitful positions more fre-

quently than the synchronous approach. Thus, it increases

the probability of getting trapped in low-quality solutions.

Therefore, special attention is required when selecting

between the synchronous and the asynchronous model.

3 Proposed approach

In this section, we thoroughly describe the essential parts of

the proposed particle swarm optimization with neighbor-

hood-based budget allocation (PSO-NBA) approach. First,

we present the considered neighborhood quality criteria,

followed by the neighborhood selection schemes. Finally,

we present the single- and multi-objective budget alloca-

tion strategies that are integrated in PSO-NBA.

3.1 Neighborhood quality criteria

The two essential properties that define the dynamics of

any population-based optimization algorithm are explora-

tion (diversification) and exploitation (intensification). The

first one is the ability of the algorithm to explore diverse

parts of the search space, while the second one is the ability

to perform more refined search around the discovered good

solutions. Proper balancing between these properties has

been associated with highly competitive optimization

algorithms.

It is easily inferred (and experimentally verified) that

these two properties are intimately related with two per-

formance indices of an algorithm, namely solution quality

and diversity. The most successful approaches are expected

to retain adequate diversity in the swarm such that search

stagnation is eluded, while concurrently improving solution

quality within reasonable time limits.

Transferring these concepts from swarm level to the

neighborhood level, we consider two types of neighborhood

quality criteria. The first type refers to solution quality and

consists of two alternative schemes, while the second type

refers to diversity. Specifically, the first solution quality

criterion, denoted as SumBest (SB), is based on the total

solution information carried by the neighborhood in terms of

objective values. Thus, each neighborhood is assessed

according to the collective achievements of its members.

The second solution quality criterion, denoted as Lo-

calBest (LB), takes into consideration only the best posi-

tion attained by the neighborhood’s members. Thus, it

clearly promotes elitism. Regarding diversity, we consider

a criterion denoted as AvgDev (AD), which assesses each

neighborhood in terms of diversity of the best positions that

comprise it.

The three criteria are summarized in Table 1, and they

are formally defined below.

3.1.1 SumBest (SB)

Let NBi;r be the neighborhood of the ith particle as defined

in Eq. (2). Then, its SB ranking score at iteration t is

defined as

SBRi ¼
X

k2NBi;r

f
�
pkðtÞ

�
; i 2 I: ð6Þ

Thus, the SB score assesses the neighborhood’s quality in

terms of the sum of the objective values of all best posi-

tions that comprise it. In order to facilitate the use of SB

Table 1 Neighborhood quality criteria of PSO-NBA

Type Criterion Abbreviation Description

Solution

quality

SumBest SB Sum of all objective values in

neighborhood

LocalBest LB Best objective value in

neighborhood

Diversity AvgDev AD Average standard deviation

of direction components of

the best positions that

comprise the neighborhood
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scores for the computation of the neighborhoods’ selection

probabilities, a normalization step takes place,

SBR�i ¼
SBRiP

m2I

SBRm

; i 2 I: ð7Þ

Lower values of the SB ranking score correspond to neigh-

borhoods that possess lower cumulative information in terms

of their objective values. These neighborhoods are consid-

ered to be superior to the ones with higher scores and, hence,

their corresponding particles shall be assigned higher

selection probabilities in subsequent steps of the algorithm.

3.1.2 LocalBest (LB)

Let again NBi;r be the neighborhood of the ith particle. Then,

the LB ranking score for this neighborhood is defined as

LBRi ¼ min
k2NBi;r

f
�
pkðtÞ

�
; i 2 I: ð8Þ

The LB score promotes elitism by assessing the neigh-

borhood’s quality only in terms of the best position

involved in it. Normalization takes place also in this case,

LBR�i ¼
LBRiP

m2I

LBRm

; i 2 I: ð9Þ

Similarly to SB, particles with neighborhoods with lower

LB ranking scores shall be assigned higher selection

probabilities.

3.1.3 AvgDev (AD)

This diversity measure is based on the average standard

deviation of the direction components of the best positions

that comprise the neighborhood NBi;r. Thus, if NBi;r ¼
fk1; . . .; k2rþ1g and D ¼ f1; 2; . . .; ng, we first compute the

standard deviation per direction component j 2 D,

r½i�j ¼ standard deviation of vector

pk1jðtÞ

..

.

pk2rþ1jðtÞ;

0

BB@

1

CCA: ð10Þ

where pkj stands for the jth component of the best position

pk, k 2 NBi;r.

Then, the AD ranking score for the neighborhood is

obtained by averaging the standard deviations over all

dimensions,

ADi ¼
1

n

Xn

j¼1

r½i�j ; i 2 I: ð11Þ

The obtained values are normalized as follows:

AD�i ¼
ADiP

m2I

ADm

; i 2 I: ð12Þ

Obviously, neighborhoods with higher AD scores contain

more dispersed best positions. Thus, they are preferable

against neighborhoods with lower scores to promote

exploration.

Also, contrary to the solution quality scores SB and LB,

which are based on objective values, the AD scores are

based on the actual positions of the neighborhood’s

members in the search space.

3.2 Selection probability

After the computation of the neighborhoods’ ranking

scores, each particle is assigned a selection probability

based on the score of its neighborhood. We considered two

alternative selection probability schemes. Let xBR denote

the selected ranking scheme (SB or LB), i.e.,

xBR�i ¼ SBR�i or LBR�i ; 8i 2 I:

Let also

Q ¼ xBR�k1
; xBR�k2

; . . .; xBR�kN

n o
; ki 2 I;

be the ordering of the neighborhoods’ ranking scores,

sorted from the highest to the lowest value, and

qi ¼ position of ith neighborhood0s score ðxBR�i Þ in Q:

Then, the first selection probability scheme is the well-

known linear ranking that is widely used in Genetic

Algorithms (GAs) [3]. This scheme assigns selection

probabilities that are linear with respect to xBR�i as follows:

LPRi ¼ 2� sþ 2ðs� 1Þ qi � 1

ðN � 1Þ ; i 2 I; ð13Þ

where the parameter s 2 ½1; 2� is called the selection pres-

sure, and N is the total number of neighborhoods (equal to

swarm size). Note that intense elitism is promoted when

s ¼ 2, while equal selection probabilities are assigned to all

neighborhoods when it is equal to s ¼ 1.

The corresponding selection probability of the ith par-

ticle becomes

SPi ¼
LPRiP

m2I

LPRm

; i 2 I: ð14Þ

Henceforth, this scheme will be denoted as L (linear).

The second selection probability scheme comes again

from the field of GAs and it is nonlinear, henceforth

denoted as NL:
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NLPRi ¼ xBR�i
� ��q

; i 2 I; ð15Þ

where q is a positive integer. This scheme resembles the

power selection operator in GAs [3]. The corresponding

selection probabilities for this scheme are given as

SPi ¼
NLPRiP

m2I

NLPRm

; i 2 I: ð16Þ

Clearly, higher values of the power weight q favor elitism

since they result in higher selection probabilities for the

neighborhoods with lower ranking scores xBR�i .

The neighborhoods’ selection probabilities, computed

either linearly through Eqs. (13) and (14) or nonlinearly

through Eqs. (15) and (16), are used as input in a stochastic

selection mechanism that determines the particle that will

receive the next function evaluation. This mechanism can

use either the selection probabilities solely or take into

consideration also the AD diversity criterion defined in

Sect. 3.1.3. We refer to the first case as the single-objective

budget allocation strategy (SOBA), and to the second one

as the multi-objective budget allocation Strategy (MOBA).

Both strategies are analyzed in the following sections.

3.3 Single-objective budget allocation (SOBA)

strategy

In the Single-Objective Budget Allocation (SOBA) strat-

egy, the selection probabilities are fed as input in a sto-

chastic selection mechanism, neglecting the AD diversity

criterion. The employed selection mechanism is the fitness

proportionate selection technique from GAs literature, also

known as roulette-wheel [3]. This scheme makes a ran-

domized decision among the competitors based on their

selection probabilities.

Obviously, particles with neighborhoods of higher val-

ues SPi have higher probability of being selected. How-

ever, it is still possible that particles with inferior selection

probabilities are selected due to the stochastic nature of the

selection scheme. A pseudocode for the application of the

SOBA selection strategy is given in Algorithm 1.

3.4 Multi-objective budget allocation (MOBA)

Strategy

The multi-objective budget allocation (MOBA) strategy

takes into consideration both solution quality and diversity

of the neighborhood. In general, there are two alternative

multi-objective approaches to combine the two criteria.

The first one is the weighted aggregation approach, which

uses weighted combinations of the two criteria. The second

one is the Pareto front approach, which is based on the

concept of Pareto dominance. Both approaches are

described in the following sections.

3.4.1 Weighted aggregation

The weighted aggregation is a popular technique for coping

with multiple objectives [10, 18]. Its popularity lies in the

transformation of the multi-objective problem to a single-

objective one, which allows the use of a wide variety of

optimization methods.

In our approach, the two objectives are solution quality,

which is related to the exploitation property of the algo-

rithm, and diversity, which is related to the exploration

property. Nonnegative weights are used to balance their

contribution in the aggregated score, which is defined as

F ¼ w1ðtÞ � qualityþ w2ðtÞ � diversity; ð17Þ

where w2ðtÞ ¼ 1� w1ðtÞ, and t is the counter of function

evaluations. The quality-based component is the selection

probability SPi as computed in Section 3.2. The diversity-

based component is AD�i , as defined in Section 3.1.3.

Therefore, Eq. (17) becomes

Fi ¼ w1ðtÞ SPi þ w2ðtÞAD�i ; i 2 I; ð18Þ

with w2ðtÞ ¼ 1� w1ðtÞ. Notice that both SPi and AD�i are

better when they receive higher values. Thus, higher

aggregated values Fi are better. The values Fi are nor-

malized and fed as probabilities in a roulette-wheel selec-

tion scheme similarly to SOBA.

The weights can either remain fixed or be dynamically

adjusted during the optimization process. In general,
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different phases of the optimization process require dif-

ferent exploration-exploitation trade-off of the algorithm.

Since the case of fixed weights neglect this necessity, we

adopted dynamically changing weights in our approach.

There are two widely used schemes for dynamically

changing weighted aggregation. The first one is the linear

weighted aggregation (henceforth denoted as LWA), where

the weights are defined as follows:

w1ðtÞ ¼
t

FEmax

; w2ðtÞ ¼ 1� w1ðtÞ; ð19Þ

where FEmax is the maximum budget of function evalua-

tions and t is their counter. Note that, at the early stages of

the optimization process the diversity component is

favored in order to promote better exploration of the search

space, whereas the quality component is promoted at later

stages in order to intensify the search near the most

promising candidate solutions.

The second scheme is the dynamic weighted aggrega-

tion (denoted as DWA). The weights are modified as

follows:

w1ðtÞ ¼ j sinð2pt=FRÞj; w2ðtÞ ¼ 1� w1ðtÞ; ð20Þ

where t is the counter of function evaluations and FR is the

weights’ change frequency. The use of the trigonometric

function implies the interchange between exploration and

exploitation, repeatedly.

Pseudocode for the LWA and DWA schemes is given in

Algorithm 1. Note that, the sole difference between the

SOBA and the weighted aggregation approach lies in the

employed neighborhood scoring scheme.

3.4.2 Pareto front approach

In the Pareto front approach (henceforth denoted as PFA),

we maintain the 2-dimensional scoring vector,

ðxBR�i ;AD�i Þ; i 2 I;

for each neighborhood, where the xBR�i is related to solu-

tion quality (see Sect. 3.2), while AD�i is the diversity

criterion (see Sect. 3.1.3). Alternatively, the selection

probability SPi can be used instead of xBR�i with minor

modifications.

The core idea behind PFA is the promotion of the non-

dominated neighborhoods with respect to the two criteria,

in terms of the multi-objective optimization concepts of

domination and Pareto optimality [6]. Thus, a neighbor-

hood with scoring vector ðxBR�i ;AD�i Þ is dominated by

another one with scoring vector ðxBR�j ;AD�j Þ, if,

xBR�j \xBR�i and AD�j > AD�i

or

AD�j [ AD�i and xBR�j 6 xBR�i :

Note that larger values of diversity and lower values of the

solution quality score are preferable.

The non-dominated neighborhoods are candidates for

gaining function evaluations through a tournament selec-

tion scheme. Specifically, at each iteration of the algorithm,

a prespecified number (tournament size) of particles are

selected from the swarm. The particles (among the selec-

ted) whose neighborhoods are non-dominated are awarded

one function evaluation each. Obviously, the allocated

number of function evaluations can differ from one itera-

tion to another. The pseudocode of the PFA appoach is

given in Algorithm 2.

The use of tournament selection instead of all non-

dominated neighborhoods allows to address search stag-

nation. Specifically, we frequently observed that a few

(usually one or two) neighborhoods could dominate all

others at early stages of the algorithm’s execution and,

thus, collect almost all the allocated computational budget.

This was proved to be detrimental for the algorithm’s

exploration ability, leading to search stagnation. The sto-

chasticity of tournament selection provides the option of

assigning function evaluations also to particles with

neighborhoods of low quality and diversity, thereby

amplifying the algorithm’s exploration capability.

4 Experimental results

PSO-NBA was initially assessed over two test suites. The

first one consists of five widely used test functions (TP0-
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TP4), while the second one contains six problems (TP5-

TP10) that come from real-world applications and they are

modeled as systems of nonlinear equations. The descrip-

tions of these test problems are given in ‘‘Appendix A’’,

while their dimensions and ranges in our experimental

setting are reported in Table 2. Further experimentation

was also conducted on the test suite proposed at the special

issue on ‘‘Scalability of Evolutionary Algorithms and Other

Metaheuristics for Large-Scale Optimization Problems’’ of

the Soft Computing journal [14]. This test suite consists of

19 problems that include problems from the CEC 2008

challenge, shifted problems, as well as hybrid composition

functions.

We considered four variants of PSO-NBA, namely the

SOBA strategy and the MOBA strategy with the LWA,

DWA, and PFA schemes. These approaches were com-

bined with the SB and LB scoring schemes under different

parameter settings. The complete set of parameter values

that were used in our experiments is reported in Table 3. In

total, there were 36 individual PSO-NBA variants com-

posed as different combinations of these schemes and

parameter values.

The experimental evaluation consisted of two stages. In

the first stage, we identified the most promising among the

different PSO-NBA variants for all test problems. In the

second stage, the distinguished variants were further

assessed against different algorithms (PSO-based and not).

The obtained results are presented in detail in the following

sections.

4.1 Assessment of SOBA strategy

As described in Sect. 3.3, the SOBA strategy quantifies the

quality of each neighborhood according to a single rank-

based score. The SB and LB scoring schemes of

Sects. 3.1.1 and 3.1.2 were employed for this purpose and

both were combined with the linear (L) and the nonlinear

(NL) approaches described in Sect. 3.2, to compute the

corresponding selection probabilities.

For the linear approach, we considered three different

values of selection pressure, namely s 2 f1:0; 1:5; 2:0g. In

the nonlinear approach, we used two different values for

the power weight, namely q 2 f1:0; 2:0g. These combina-

tions result in ten SOBA variants that are henceforth

denoted as

X=Y=Z

where X 2 fSB;LBg and Y 2 fL;NLg. If Y = L then Z

stands for the selection pressure and, thus,

Z 2 f1:0; 1:5; 2:0g. If Y = NL then Z 2 f1:0; 2:0g (power

weight). For example, LB/NL/2.0 stands for the SOBA

variant with LocalBest neighborhood scoring and nonlinear

probability selection with selection pressure s ¼ 2:0.

We performed 100 independent experiments for each

problem instance and algorithm variant. In all experiments,

the available computational budget was equal to 1; 000� n

function evaluations, where n stands for the problem’s

dimension. For each experiment, we recorded the best

solution found by the algorithm as well as its objective

value.

Table 4 reports the mean, standard deviation, minimum,

and maximum of the 100 solutions’ objective values per

algorithm and problem instance of TP0-TP4. For the sake

of presentation compactness, we report results only for the

variants with the best values of selection pressure in the L

schemes. The same holds also for the power weights in the

NL schemes. Thus, four variants are reported per test

Table 2 Dimensions and ranges of test problems

Problem Dimension Range

TP0 10, 50, 100 �100; 100½ �n

TP1 10, 50, 100 �30; 30½ �n

TP2 10, 50, 100 �5:12; 5:12½ �n

TP3 10, 50, 100 �600; 600½ �n

TP4 10, 50, 100 �20; 30½ �n

TP5 10 �2; 2½ �10

TP6 6 �10; 10½ �6

TP7 5 �10; 10½ �5

TP8 8 �10; 10½ �8

TP9 10 �10; 10½ �10

TP10 20 �10; 10½ �20

Table 3 Parameter values for the considered SOBA and MOBA

strategies

Parameter Value

PSO model lbest

PSO parameters v = 0:729, c1 = c2 = 2:05

Neighborhood topology Ring

Neighborhood radius 1

Quality criteria SumBest(SB), LocalBest(LB)

Diversity criterion AvgDev(AD)

Selection scheme Linear(L), Nonlinear(NL)

Selection pressure s 2 1:0; 1:5; 2:0f g
Nonlinear weight q 2 1:0; 2:0f g
Problem dimensions n ¼ 10; 50; 100f g
Swarm size N ¼ 10� n

Function evaluations FEmax ¼ 1000� n

Tournament size T 2 N=2;N=3;N=5f g
Weight’s change frequency FR ¼ 200

Number of experiments 100 per approach
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Table 4 Results for the SOBA approach for test problems TP0-TP4 (standard test suite)

Problem Dimension Algorithm Mean SD Min Max

TP0 10 SB/L/2.0 3:535e� 02 3:528e� 02 2:919e� 04 1:645e� 01

LB/L/2.0 2:131e� 02 2:303e� 02 1:404e� 03 1:153e� 01

SB/NL/1.0 8:199e� 02 3:127e� 01 4:868e� 06 2:889eþ 00

LB/NL/2.0 9:406e� 26 8:806e� 25 1:523e� 35 8:807e� 24

50 SB/L/2.0 2:092eþ 03 4:243eþ 02 1:305eþ 03 3:343eþ 03

LB/L/2.0 1:980eþ 03 4:118eþ 02 8:238eþ 02 3:322eþ 03

SB/NL/2.0 5:378eþ 00 1:349eþ 01 3:603e� 03 1:003eþ 02

LB/NL/2.0 3:116e� 08 1:332e� 07 1:762e� 012 1:293e� 06

100 SB/L/2.0 1:758eþ 04 2:471eþ 03 1:218eþ 04 2:364eþ 04

LB/L/2.0 1:680eþ 04 2:199eþ 03 1:093eþ 04 2:532eþ 04

SB/NL/2.0 3:055eþ 02 1:728eþ 03 1:835e� 04 1:015eþ 04

LB/NL/2.0 1:025eþ 02 1:021eþ 03 5:849e� 05 1:021eþ 04

TP1 10 SB/L/2.0 2:096eþ 01 2:129eþ 01 3:641eþ 00 1:309eþ 02

LB/L/2.0 1:944eþ 01 2:379eþ 01 2:576eþ 00 1:359eþ 02

SB/NL/1.0 6:709eþ 02 9:798eþ 02 3:819eþ 00 4:183eþ 03

LB/NL/1.0 2:841eþ 03 1:542eþ 04 1:177e� 01 9:001eþ 04

50 SB/L/2.0 7:509eþ 05 2:821eþ 05 2:696eþ 05 1:721eþ 06

LB/L/2.0 6:395eþ 05 2:642eþ 05 1:250eþ 05 1:365eþ 06

SB/NL/1.0 3:279eþ 03 1:538eþ 04 6:913eþ 01 9:015eþ 04

LB/NL/2.0 3:031eþ 03 1:541eþ 04 1:832eþ 01 9:016eþ 04

100 SB/L/2.0 1:411eþ 07 3:222eþ 06 6:315eþ 06 2:110eþ 07

LB/L/2.0 1:311eþ 07 2:922eþ 06 7:330eþ 06 2:147eþ 07

SB/NL/1.0 8:806eþ 04 3:708eþ 05 2:359eþ 02 3:069eþ 06

LB/NL/2.0 1:442eþ 03 9:031eþ 03 1:621eþ 02 9:060eþ 04

TP2 10 SB/L/2.0 1:025eþ 01 3:122eþ 00 2:479eþ 00 1:808eþ 01

LB/L/2.0 9:866eþ 00 3:169eþ 00 4:150eþ 00 1:755eþ 01

SB/NL/2.0 9:233eþ 00 3:253eþ 00 2:985eþ 00 1:845eþ 01

LB/NL/2.0 7:302eþ 00 3:347eþ 00 9:950e� 01 1:792eþ 01

50 SB/L/2.0 2:751eþ 02 2:650eþ 01 1:985eþ 02 3:284eþ 02

LB/L/2.0 2:707eþ 02 2:125eþ 01 2:093eþ 02 3:222eþ 02

SB/NL/2.0 2:934eþ 02 3:642eþ 01 1:588eþ 02 3:530eþ 02

LB/NL/2.0 2:793eþ 02 4:174eþ 01 1:668eþ 02 3:598eþ 02

100 SB/L/2.0 7:746eþ 02 3:730eþ 01 6:324eþ 02 8:545eþ 02

LB/L/2.0 7:758eþ 02 3:902eþ 01 6:610eþ 02 8:473eþ 02

SB/NL/2.0 8:544eþ 02 4:779eþ 01 6:957eþ 02 9:499eþ 02

LB/NL/2.0 8:392eþ 02 5:525eþ 01 6:920eþ 02 9:258eþ 02

TP3 10 SB/L/2.0 3:166e� 01 1:326e� 01 9:189e� 02 6:199e� 01

LB/L/2.0 2:896e� 01 1:180e� 01 7:101e� 02 6:369e� 01

SB/NL/1.0 1:350e� 01 1:060e� 01 7:396e� 03 5:944e� 01

LB/NL/1.0 7:808e� 02 5:022e� 02 0:000eþ 00 2:753e� 01

50 SB/L/2.0 2:008eþ 01 4:572eþ 00 1:052eþ 01 4:020eþ 01

LB/L/2.0 1:853eþ 01 4:383eþ 00 8:683eþ 00 3:427eþ 01

SB/NL/2.0 5:325e� 01 8:326e� 01 3:273e� 05 4:649eþ 00

LB/NL/2.0 1:034e� 02 1:817e� 02 2:463e� 010 8:768e� 02

100 SB/L/2.0 1:575eþ 02 2:284eþ 01 9:160eþ 01 2:192eþ 02

LB/L/2.0 1:566eþ 02 2:039eþ 01 1:150eþ 02 2:062eþ 02

SB/NL/2.0 2:101eþ 00 1:315eþ 01 5:689e� 05 9:397eþ 01

LB/NL/2.0 3:826e� 01 4:391e� 01 2:724e� 03 3:173eþ 00
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problem and dimension. Also, the algorithm with the

smallest mean is boldfaced per problem instance.

A quick inspection of Table 4 verifies that there is no

single variant dominating all the rest. This was anticipated,

since the combination of different schemes and parameter

values can equip the algorithm with significantly different

exploration/exploitation properties. However, we can

clearly identify some variants that habitually exhibit good

performance. Specifically, the best SB/L approach (Sum-

Best with linear ranking) was the one with selection pres-

sure s ¼ 2:0 in all test problems. This value corresponds to

a purely elitist linear ranking (see Sect. 3.2). The same

holds also for the best LB/L approach (LocalBest with

linear ranking), where s ¼ 2:0 was again the dominant

selection pressure value.

Thus, the experimental evidence suggests that the linear

ranking variants of PSO-NBA perform better under high

selection elitism. This is a consequence of the algorithm’s

exploration dynamic, which is increased due to the

neighborhood-based budget allocation scheme. The

increased exploration is counterbalanced with the intense

exploitation imposed through selection elitism.

Elitism was proved to be beneficial also for the non-

linear (NL) selection schemes. Indeed, power weight q ¼
2:0 was shown to be superior to q ¼ 1:0 in 10 out of 15

cases for the SB/NL variants, and in 13 out of 15 cases for

the LB/NL variants, as reported in Table 4. Obviously, the

power selection with q ¼ 2:0 in Eq. (15) provides a sig-

nificant advantage to neighborhoods with better solution

quality by assigning them exponentially higher selection

probabilities. Therefore, selection elitism is promoted also

in this case. Another interesting observation is that the

superiority of q ¼ 1:0 (observed only in NL-based vari-

ants), was restricted in the 10-dimensional instances of the

problems, with the exception of TP1. This exception can be

ascribed to the fact that TP1 becomes easier problem when

its dimension increases [30].

Overall, the LB/NL/2.0 variant was the most successful

one, outperforming the rest in 9 out of 15 cases. Also, the

LB-based variants dominated the SB-based variants in all

cases except one. Finally, the dominant variants were based

on the NL scheme in 10 out of 15 cases.

A similar set of experiments was conducted also for

TP5-TP10. All the ten SOBA-based variants of PSO-NBA

were applied on these problems, using the same experi-

mental setting and analysis with problems TP0-TP4. The

results for this case are reported in Table 5. As we can see,

the LB/NL approaches were dominant in half of the

problems and, specifically, the ones of higher dimension

(TP5, TP9, and TP10). In the rest, the variants that are

based on linear ranking (SB/L and LB/L) exhibited the best

performance. Thus, dimensionality was verified to play a

crucial role on efficiency.

The aforementioned observations identify clear tenden-

cies and indications regarding the superiority of some

schemes. However, further statistical evidence (e.g., the

reported standard deviations in the tables) suggested that

some of the observed differences might be statistically

insignificant. In order to gain more sound insight, we

conducted pairwise statistical significance tests for all

variants. Specifically, we conducted Wilcoxon rank-sum

tests at significance level 99 % for each pair of the studied

variants (including the ones that are not reported in

Tables 4 and 5). Recall that there were 10 algorithmic

variants and 21 different problem instances in total. Thus,

each variant had 9 competitors over 21 problem instances,

which results in 9� 21 ¼ 189 statistical tests in total per

algorithmic variant. For each test where algorithm A was

superior to B with statistical significance, we counted a win

for A and a loss for B. If there was no statistical

Table 4 continued

Problem Dimension Algorithm Mean SD Min Max

TP4 10 SB/L/2.0 1:037e� 01 1:042e� 01 2:589e� 02 9:993e� 01

LB/L/2.0 7:962e� 02 6:811e� 02 6:170e� 03 3:781e� 01

SB/NL/2.0 1:580e� 01 3:890e� 01 2:774e� 04 1:646eþ 00

LB/NL/2.0 1:176e� 02 1:155e� 01 9:948e� 014 1:155eþ 00

50 SB/L/2.0 7:821eþ 00 6:142e� 01 6:135eþ 00 9:182eþ 00

LB/L/2.0 7:675eþ 00 5:482e� 01 6:279eþ 00 8:775eþ 00

SB/NL/2.0 9:738eþ 00 8:693e� 01 7:080eþ 00 1:122eþ 01

LB/NL/2.0 9:513eþ 00 7:807e� 01 7:493eþ 00 1:084eþ 01

100 SB/L/2.0 1:224eþ 01 4:918e� 01 1:089eþ 01 1:353eþ 01

LB/L/2.0 1:214eþ 01 4:772e� 01 1:081eþ 01 1:311eþ 01

SB/NL/2.0 1:416eþ 01 5:042e� 01 1:309eþ 01 1:521eþ 01

LB/NL/2.0 1:416eþ 01 4:283e� 01 1:300eþ 01 1:491eþ 01

Int. J. Mach. Learn. & Cyber.

123



significance between them, we counted a draw for both

algorithms. The results of these tests are illustrated in

Figs. 2, 3, 4.

Figure 2 illustrates the number of wins, losses, and

draws for all studied variants. The superiority of the LB/

NL/2.0 variant is confirmed against the rest. On the other

hand, SB/L/1.0 and LB/L/1.0 are evidently the worst

combinations as they exhibit the highest number of losses.

Besides each variant individually, we collectively consid-

ered the four main categories with respect to the combi-

nation of quality criterion and selection probability, namely

SB/L, LB/L, SB/NL, and LB/NL. For each category, we

computed the number of wins, draws, and losses as the sum

of the corresponding values for all variants that comprise it.

The results are reported in Fig. 3 where we can clearly see

the tendency of LB/NL to produce more efficient variants.

The combinations SB/L and LB/L are the worst (they have

the highest number of losses), exhibiting similar behavior

between them.

In order to further probe the influence of the selection

pressure and the nonlinear weight, we performed Wilcoxon

rank-sum tests between pairs of variants that use the same

neighborhood scoring approach (SB or LB) and probability

selection scheme (L or NL) but different values of selection

pressure. These results are reported in Fig. 4 and denoted

as L/2.0 vs L/1.0, L/2.0 vs L/1.5, and L/1.5 vs L/1.0, where

L/s stands for all approaches with linear ranking (L) and

selection probability s. Similar analysis was conducted also

for the nonlinear approaches (NL) for different values of

the power weight. This case is denoted as NL/2.0 vs NL/1.0

in Fig. 4. There is an apparently monotonic superiority for

the selection pressure values, i.e., s ¼ 2:0 prevails s ¼ 1:5,

which in turn prevails s ¼ 1:0. Again, this verifies the

benefits of increased elitism in the proposed PSO-NBA

variants. The same can be inferred also for the nonlinear

weight, since the elitistic choice q ¼ 2:0 has almost twice

as many wins as q ¼ 1:0.

4.2 Assessment of MOBA strategy

The MOBA strategy assesses each neighborhood using two

criteria instead of one, as described in Sect. 3.4. The first

criterion is solution quality while the second one is diver-

sity of the best positions involved in the neighborhood. We

considered two different ways to cope with the multi-

objective scoring, namely weighted aggregation (LWA and

Table 5 Results for the SOBA

approach for test problems TP5-

TP10 (nonlinear systems)

Problem Dimension Algorithm Mean SD Min Max

TP5 10 SB/L/2.0 6:312e� 03 3:557e� 03 1:035e� 03 1:855e� 02

LB/L/2.0 5:523e� 03 3:189e� 03 1:070e� 03 1:625e� 02

SB/NL/1.0 5:155e� 04 1:912e� 03 3:978e� 07 1:538e� 02

LB/NL/2.0 4:833e� 10 2:108e� 09 6:556e� 015 1:221e� 08

TP6 6 SB/L/2.0 3:751e� 03 5:196e� 03 4:176e� 05 2:578e� 02

LB/L/2.0 4:020e� 03 7:317e� 03 7:693e� 06 4:181e� 02

SB/NL/1.0 1:514e� 01 2:579e� 01 6:463e� 09 9:859e� 01

LB/NL/1.0 9:961e� 02 2:432e� 01 0:000eþ 00 9:363e� 01

TP7 5 SB/L/2.0 1:904e� 01 1:360e� 01 2:017e� 02 6:531e� 01

LB/L/1.5 1:741e� 01 1:066e� 01 1:610e� 02 5:573e� 01

SB/NL/1.0 3:078e� 01 2:387e� 01 3:518e� 02 1:179eþ 00

LB/NL/1.0 2:201e� 01 1:721e� 01 6:671e� 03 7:199e� 01

TP8 8 SB/L/2.0 3:419e� 01 2:033e� 01 2:969e� 02 1:176eþ 00

LB/L/2.0 2:926e� 01 1:552e� 01 7:430e� 02 7:061e� 01

SB/NL/1.0 3:167e� 01 2:444e� 01 1:055e� 02 1:085eþ 00

LB/NL/1.0 3:208e� 01 2:509e� 01 5:308e� 03 9:437e� 01

TP9 10 SB/L/2.0 8:820e� 02 6:530e� 02 8:032e� 04 3:955e� 01

LB/L/2.0 7:770e� 02 5:849e� 02 5:178e� 03 2:526e� 01

SB/NL/1.0 4:683e� 02 4:217e� 02 6:689e� 04 2:013e� 01

LB/NL/2.0 1:648e� 02 1:933e� 02 1:856e� 05 9:591e� 02

TP10 20 SB/L/2.0 2:227e� 04 2:215e� 04 1:107e� 06 8:203e� 04

LB/L/2.0 1:236e� 04 2:127e� 04 2:809e� 07 1:199e� 03

SB/NL/1.0 2:099e� 03 6:839e� 03 1:053e� 278 5:399e� 02

LB/NL/1.0 4:881e� 07 2:167e� 06 2:220e� 262 1:497e� 05

Int. J. Mach. Learn. & Cyber.

123



DWA) and the Pareto front (PFA) approach (Sects. 3.4.1

and 3.4.2). For notation purposes, we extended the for-

malism of Sect. 4.1 as follows:

A = X = Y = Z;

where A takes the values DW (for DWA), LW (for LWA),

and PF (for PFA), while X 2 fSB;LBg and Y 2 fL;NLg.
Experimental results for all MOBA approaches are repor-

ted and analyzed in the following sections.

Fig. 2 Number of wins, draws,

and losses for all SOBA variants

Fig. 3 Aggregate number of

wins, draws, and losses for

different combinations of

quality criteria and selection

probability in SOBA-based

variants

Fig. 4 Aggregate number of

wins, draws, and losses for pairs

of variants with the same

selection probability scheme (L

or NL) but different parameters

in SOBA-based variants
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4.2.1 Results for weighted aggregation approaches

Initially, we studied the weighted aggregation approach,

which is based on the conversion of the multi-objective

scoring to a single-objective one as described in

Sect. 3.4.1. We considered both the linear weighted

aggregation (LWA) and the dynamic weighted aggregation

(DWA) approaches. The neighborhoods’ quality was

determined based on the SB and LB schemes, while

diversity was quantified through the AD scheme (see

Sects. 3.1.1, 3.1.2, and 3.1.3, respectively). The L and NL

selection probability approaches (see Sect. 3.2) were

combined with the aforementioned schemes. The parame-

ter setting of Table 3 was used also here, resulting in ten

LWA and ten DWA variants.

All variants were applied on all instances of test

problems TP0-TP10. The best variants were distin-

guished per problem instance on the basis of the

average best solution value within the prespecified

computational budget over 100 experiments. The results

for TP0-TP4 are reported in Table 6 and for TP5-TP10

in Table 7.

Table 6 offers two interesting observations. First, the

LB-based variants clearly dominate the SB-based variants

in 12 out of 15 cases. Moreover, the NL/2.0 approaches

performed better in 11 out of 15 cases, while L/2.0

approaches were the best in the rest 4 cases. These findings

are aligned with the ones for the SOBA strategy in the

previous section.

However, the picture becomes complicated when DWA

is considered against LWA. In Table 6, there is no clear

tendency for either of the two approaches. In fact, DWA

was superior in 7 out of 15 cases, while LWA appeared as a

better choice for the rest 8 problem instances. Therefore, no

clear conclusion can be derived from these results. Yet, we

ascertain that DWA performs better when combined with

LB/NL approaches. On the other hand, the LWA approa-

ches do not favor a single combination. Indeed, LW/LB/

NL appears 4 times in Table 6, while LW/LB/L and LW/

SB/L appear 2 times each.

The second set of test problems offers similar conclu-

sions. As we can see in Table 7, DWA is distinguished in

half of the cases and LWA in the rest. However, this time

we can see that all variants are based on the LB/NL

combination. Interestingly, DWA dominates in the three

high-dimensional problems (TP5, TP9, and TP10), while

LWA is distinguished in the lower-dimensional cases.

In order to facilitate comparisons between different

variants, we conducted Wilcoxon rank-sum tests among all

LWA and DWA variants at significance level 99 %, sim-

ilarly to the SOBA approach. Figure 5 illustrates the

number of wins, draws, and losses per algorithmic variant.

As we can see, there is an indisputable predominance of the

LB/NL/2.0 variants both for DWA and LWA, with the later

exhibiting the highest number of wins. This is in line with

our observations in Tables 6 and 7.

Similarly to the SOBA approaches, we also considered

the four main categories SB/L, LB/L, SB/NL, and LB/NL,

both for LWA and DWA. For each category, we computed

the aggregate number of wins, draws, and losses. The

results are reported in the net chart of Fig. 6, where we can

clearly verify the previous findings. Finally, L- and NL-

based approaches for both LWA and DWA were compared

with different parameter values. The results are reported in

Fig. 7, where we can verify the monotonic decline of

performance as selection pressure decreases (suppressing

elitism) as well as the superiority of higher power weight

values in NL-based variants.

4.2.2 Results for Pareto front approach

The PFA approach uses a radically different mechanism for

neighborhood scoring than the previous SOBA and MOBA

approaches. Specifically, each neighborhood is assessed

with two distinct criteria, namely solution quality and

diversity. These criteria are not combined as in the

weighted aggregation approaches. Instead, they are used

for vectorial comparisons between neighborhoods in the

sense of Pareto dominance. The comparisons are conducted

through a tournament selection mechanism in order to

avoid search stagnation.

The tournament size is usually an influential factor in

tournament selection. For this reason, three different values

were used, i.e., T ¼ N=2;N=3;N=5, where N is the swarm

size. The combinations of the neighborhood scoring

schemes with the different tournament sizes resulted in six

PFA variants. We denote each combination with the

notation,

PF = X = TS;

where X 2 fSB;LBg and TS 2 f2; 3; 5g. For example, PF/

LB/2 stands for the PFA variant with LB neighborhood

scoring and tournament size T ¼ N=2, whereas PF/SB/5

denotes the PFA variant with SB neighborhood scoring

mode and tournament size T ¼ N=5. The experimental

setting was identical to the previous cases of MOBA and

SOBA strategies. Table 8 reports the best solution values

for each problem instance, averaged over 100 experiments.

For presentation compactness reasons, we report only the

best SB-based and LB-based variants per case.

In the upper part of Table 8 (problems TP0-TP4), the

variant SB/2 is distinguished in 12 out of 15 problem

instances. Also, the TS = 2 (i.e., T ¼ N=2) case appeared

as the most efficient in 10 out of 15 cases. The SB approach

implies reduced elitism than LB. On the other hand,

smaller values of TS correspond to higher tournament sizes
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Table 6 Results for the MOBA weighted aggregation approaches (LWA and DWA) for test problems TP0-TP4 (standard test suite)

Problem Dimension Algorithm Mean SD Min Max

TP0 10 DW/SB/L/2.0 3:630e� 01 2:251e� 01 5:058e� 02 9:873e� 01

LW/LB/L/2.0 3:405e� 01 2:452e� 01 2:447e� 02 1:493eþ 00

DW/SB/NL/1.0 7:666e� 03 1:835e� 02 7:828e� 06 1:430e� 01

DW/LB/NL/2.0 1:992e� 15 1:227e� 14 1:236e� 22 1:171e� 13

50 LW/SB/L/2.0 3:128eþ 03 4:198eþ 02 2:149eþ 03 4:294eþ 03

LW/LB/L/2.0 3:052eþ 03 4:056eþ 02 2:008eþ 03 3:832eþ 03

DW/SB/NL/2.0 6:121eþ 00 2:768eþ 01 7:749e� 03 2:363eþ 02

DW/LB/NL/2.0 1:300eþ 01 1:174eþ 02 1:763e� 05 1:174eþ 03

100 LW/SB/L/2.0 2:163eþ 04 1:731eþ 03 1:725eþ 04 2:582eþ 04

DW/LB/L/2.0 2:136eþ 04 1:947eþ 03 1:598eþ 04 2:582eþ 04

DW/SB/NL/2.0 1:353eþ 04 7:436eþ 03 4:331eþ 01 2:525eþ 04

DW/LB/NL/2.0 1:269eþ 04 7:356eþ 03 1:838eþ 01 2:493eþ 04

TP1 10 LW/SB/L/2.0 3:417eþ 01 2:548eþ 01 6:264eþ 00 1:383eþ 02

LW/LB/L/2.0 3:057eþ 01 2:338eþ 01 4:785eþ 00 1:446eþ 02

LW/SB/NL/1.0 2:332eþ 01 3:548eþ 01 4:790e� 01 2:089eþ 02

LW/LB/NL/1.0 2:156eþ 01 3:934eþ 01 1:631e� 02 2:234eþ 02

50 LW/SB/L/2.0 1:122eþ 06 2:704eþ 05 5:704eþ 05 1:795eþ 06

LW/LB/L/2.0 1:109eþ 06 2:918eþ 05 4:950eþ 05 1:713eþ 06

LW/SB/NL/2.0 7:607eþ 03 1:965eþ 04 1:950eþ 02 9:306eþ 04

DW/LB/NL/2.0 4:047eþ 03 1:770eþ 04 2:238eþ 01 9:027eþ 04

100 LW/SB/L/2.0 1:717eþ 07 2:412eþ 06 1:075eþ 07 2:258eþ 07

LW/LB/L/2.0 1:662eþ 07 2:122eþ 06 1:085eþ 07 2:109eþ 07

DW/SB/NL/2.0 1:686eþ 04 2:952eþ 04 5:324eþ 02 1:459eþ 05

LW/LB/NL/2.0 3:752eþ 03 9:879eþ 03 3:929eþ 02 9:757eþ 04

TP2 10 DW/SB/L/2.0 1:155eþ 01 2:976eþ 00 4:488eþ 00 2:054eþ 01

LW/LB/L/2.0 1:066eþ 01 2:611eþ 00 5:273eþ 00 1:881eþ 01

LW/SB/NL/2.0 1:036eþ 01 3:514eþ 00 3:239eþ 00 2:040eþ 01

LW/LB/NL/2.0 8:997eþ 00 3:495eþ 00 2:252eþ 00 1:813eþ 01

50 LW/SB/L/2.0 2:932eþ 02 1:974eþ 01 2:295eþ 02 3:427eþ 02

LW/LB/L/2.0 2:943eþ 02 1:777eþ 01 2:411eþ 02 3:426eþ 02

LW/SB/NL/2.0 3:129eþ 02 2:673eþ 01 1:966eþ 02 3:572eþ 02

LW/LB/NL/2.0 3:063eþ 02 3:032eþ 01 2:174eþ 02 3:672eþ 02

100 LW/SB/L/2.0 8:127eþ 02 2:755eþ 01 7:487eþ 02 8:725eþ 02

LW/LB/L/2.0 8:124eþ 02 2:738eþ 01 7:312eþ 02 8:610eþ 02

LW/SB/NL/2.0 8:830eþ 02 3:096eþ 01 7:892eþ 02 9:481eþ 02

LW/LB/NL/2.0 8:665eþ 02 3:122eþ 01 7:624eþ 02 9:261eþ 02

TP3 10 LW/SB/L/2.0 4:752e� 01 1:339e� 01 9:608e� 02 8:261e� 01

DW/LB/L/2.0 4:543e� 01 1:362e� 01 1:699e� 01 8:738e� 01

LW/SB/NL/2.0 1:928e� 01 1:322e� 01 2:464e� 02 7:160e� 01

DW/LB/NL/2.0 1:038e� 01 6:630e� 02 7:396e� 03 3:327e� 01

50 LW/SB/L/2.0 2:913eþ 01 4:014eþ 00 1:977eþ 01 3:863eþ 01

DW/LB/L/2.0 2:811eþ 01 3:823eþ 00 1:760eþ 01 3:660eþ 01

DW/SB/NL/2.0 6:145e� 01 2:668eþ 00 1:637e� 03 2:628eþ 01

DW/LB/NL/2.0 3:970e� 01 4:026e� 01 1:424e� 03 1:613eþ 00

100 LW/SB/L/2.0 1:966eþ 02 1:701eþ 01 1:535eþ 02 2:424eþ 02

LW/LB/L/2.0 1:927eþ 02 1:824eþ 01 1:415eþ 02 2:443eþ 02

DW/SB/NL/2.0 1:270eþ 02 6:175eþ 01 8:447e� 01 2:356eþ 02

DW/LB/NL/2.0 1:101eþ 02 6:169eþ 01 3:474eþ 00 2:254eþ 02
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T , which promote elitism since the overall best individual

has higher probability of being selected. Thus, it may be

reasonable to assume that the lower values of TS coun-

terbalance the selection of the SB approach in terms of

elitism.

The picture changes in the lower part of Table 8 (TP5-

TP10). In these cases, the LB-based approaches outperform

the rest in all but one problem. Also, the tournament size

seems to be problem-dependent. This evidence suggests

that elitism plays significant role in TP5-TP10. This is in

Table 6 continued

Problem Dimension Algorithm Mean SD Min Max

TP4 10 LW/SB/L/2.0 4:714e� 01 3:097e� 01 6:339e� 02 1:699eþ 00

DW/LB/L/2.0 4:864e� 01 3:246e� 01 1:117e� 01 1:627eþ 00

LW/SB/NL/2.0 2:485e� 01 4:314e� 01 1:808e� 03 1:597eþ 00

LW/LB/NL/2.0 1:106e� 01 3:406e� 01 1:189e� 06 1:524eþ 00

50 LW/SB/L/2.0 8:918eþ 00 4:258e� 01 7:794eþ 00 9:861eþ 00

LW/LB/L/2.0 8:863eþ 00 3:804e� 01 7:517eþ 00 9:573eþ 00

LW/SB/NL/2.0 1:020eþ 01 4:392e� 01 8:762eþ 00 1:108eþ 01

LW/LB/NL/2.0 1:021eþ 01 4:662e� 01 8:583eþ 00 1:097eþ 01

100 LW/SB/L/2.0 1:306eþ 01 3:285e� 01 1:190eþ 01 1:375eþ 01

LW/LB/L/2.0 1:312eþ 01 3:119e� 01 1:217eþ 01 1:373eþ 01

LW/SB/NL/2.0 1:433eþ 01 3:070e� 01 1:328eþ 01 1:490eþ 01

LW/LB/NL/2.0 1:428eþ 01 2:843e� 01 1:352eþ 01 1:485eþ 01

Table 7 Results for the MOBA

weighted aggregation

approaches (LWA and DWA)

for test problems TP5-TP10

(nonlinear systems)

Problem Dimension Algorithm Mean SD Min Max

TP5 10 LW/SB/L/2.0 2:405e� 02 8:260e� 03 6:498e� 03 5:362e� 02

LW/LB/L/2.0 2:183e� 02 8:869e� 03 5:610e� 03 5:908e� 02

LW/SB/NL/2.0 4:517e� 03 5:577e� 03 2:076e� 04 3:597e� 02

DW/LB/NL/2.0 8:575e� 06 6:669e� 05 1:835e� 10 6:651e� 04

TP6 6 LW/SB/L/2.0 9:637e� 03 8:184e� 03 5:393e� 04 3:941e� 02

LW/LB/L/2.0 7:083e� 03 5:662e� 03 5:466e� 04 2:818e� 02

LW/SB/NL/1.0 4:218e� 03 5:612e� 03 1:146e� 05 2:426e� 02

LW/LB/NL/2.0 1:060e� 03 3:762e� 03 2:321e� 16 2:509e� 02

TP7 5 LW/SB/L/2.0 1:753e� 01 1:029e� 01 2:367e� 02 5:233e� 01

LW/LB/L/2.0 1:780e� 01 9:777e� 02 2:886e� 02 4:870e� 01

LW/SB/NL/1.0 1:947e� 01 1:303e� 01 7:659e� 03 7:236e� 01

LW/LB/NL/1.0 1:411e� 01 1:008e� 01 6:790e� 03 5:604e� 01

TP8 8 LW/SB/L/2.0 4:043e� 01 1:708e� 01 7:351e� 02 9:027e� 01

LW/LB/L/2.0 3:387e� 01 1:687e� 01 5:565e� 02 8:826e� 01

LW/SB/NL/2.0 3:583e� 01 1:632e� 01 5:907e� 02 8:943e� 01

LW/LB/NL/2.0 2:334e� 01 1:864e� 01 7:806e� 03 7:858e� 01

TP9 10 DW/SB/L/2.0 1:566e� 01 8:544e� 02 1:537e� 02 4:686e� 01

LW/LB/L/2.0 1:401e� 01 8:279e� 02 1:056e� 02 4:241e� 01

DW/SB/NL/1.0 8:990e� 02 7:890e� 02 1:983e� 03 5:038e� 01

DW/LB/NL/2.0 3:616e� 02 6:486e� 02 4:262e� 04 5:240e� 01

TP10 20 LW/SB/L/2.0 1:235e� 03 1:196e� 03 1:832e� 05 5:835e� 03

DW/LB/L/2.0 9:602e� 04 1:107e� 03 1:039e� 05 7:384e� 03

LW/SB/NL/1.0 4:581e� 04 1:152e� 03 1:776e� 15 9:323e� 03

DW/LB/NL/1.0 4:877e� 06 1:583e� 05 4:878e� 134 1:100e� 04

Int. J. Mach. Learn. & Cyber.

123



accordance with previous findings for the rest of SOBA and

MOBA variants.

Following the analysis of previous sections, we con-

ducted Wilcoxon rank-sum tests among all PFA variants.

Figure 8 illustrates the number of wins, draws, and losses

per variant. The statistical evidence clearly shows a

monotonic decline of performance as TS increases. Also,

the SB-based variants seem to prevail especially for lower

TS values.

In order to further explore the impact of tournament size,

we conducted Wilcoxon rank-sum tests between variants

that use identical scoring schemes but different tournament

sizes. Then, for each tournament size we summed up the

corresponding number of wins, draws, and losses. The results

are reported in Fig. 9. Clearly, TS = 2 is the best choice,

verifying the monotonic decline as its value increases.

Therefore, smaller tournament sizes produce less efficient

approaches evidently due to reduced elitism.

4.3 Comparative results

In the previous sections, we individually studied each

strategy of the proposed PSO-NBA approach. In this sec-

tion, we offer comparisons among all the presented vari-

ants. This includes the SOBA approaches, as well as all

MOBA approaches (LWA, DWA, and PFA). The com-

parisons were all based on test problems TP0-TP10.

Moreover, we report results from comparisons with other

algorithms.

First, we compared all PSO-NBA approaches among

them for all test problems. Each pairwise comparison was

based on Wilcoxon rank-sum tests at significance level of

99 %. For each algorithm, we recorded its aggregate

number of wins, draws, and losses. These results are

reported in Table 9.

We can make two interesting observations in Table 9.

First, we can easily notice that the LB/NL/2.0 approach

prevails both in SOBA and MOBA strategies (boldfaced

entries in Table 9). This was also pointed out in the previous

Fig. 5 Number of wins, draws,

and losses for the MOBA-based

variants LWA and DWA

Fig. 6 Aggregate number of wins, draws, and losses for different

combinations of quality criteria and selection probability in LWA and

DWA approaches
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Fig. 7 Aggregate number of

wins, draws, and losses for pairs

of LWA and DWA variants

with identical selection

probability scheme (L or NL),

but different parameters

Table 8 Results for the PFA approach of MOBA strategy for test problems TP0-TP10

Problem Dimension Algorithm Mean SD Min Max

TP0 10 PF/SB/2 4:956e� 03 9:674e� 03 3:582e� 05 7:846e� 02

PF/LB/2 7:788e� 03 8:127e� 03 1:266e� 04 4:324e� 02

50 PF/SB/2 1:059eþ 01 5:525eþ 00 1:802eþ 00 2:796eþ 01

PF/LB/2 2:527eþ 01 1:220eþ 01 5:353eþ 00 7:520eþ 01

100 PF/SB/2 1:489eþ 02 6:499eþ 01 5:378eþ 01 3:799eþ 02

PF/LB/2 2:524eþ 02 9:412eþ 01 1:171eþ 02 7:451eþ 02

TP1 10 PF/SB/5 1:346eþ 01 1:532eþ 01 2:117eþ 00 8:625eþ 01

PF/LB/3 1:350eþ 01 2:095eþ 01 2:389e� 01 1:138eþ 02

50 PF/SB/3 4:120eþ 03 1:259eþ 04 2:363eþ 02 9:155eþ 04

PF/LB/3 3:651eþ 03 9:885eþ 03 6:327eþ 02 9:083eþ 04

100 PF/SB/2 3:076eþ 04 2:883eþ 04 4:238eþ 03 1:160eþ 05

PF/LB/2 4:517eþ 04 3:261eþ 04 1:270eþ 04 1:586eþ 05

TP2 10 PF/SB/3 8:552eþ 00 3:468eþ 00 9:954e� 01 1:994eþ 01

PF/LB/5 8:224eþ 00 3:116eþ 00 2:985eþ 00 1:866eþ 01

50 PF/SB/5 1:439eþ 02 2:614eþ 01 9:102eþ 01 2:098eþ 02

PF/LB/5 1:463eþ 02 2:943eþ 01 7:830eþ 01 1:990eþ 02

100 PF/SB/5 3:814eþ 02 4:841eþ 01 2:734eþ 02 5:077eþ 02

PF/LB/5 4:096eþ 02 6:149eþ 01 2:753eþ 02 5:311eþ 02

TP3 10 PF/SB/2 2:142e� 01 1:265e� 01 4:135e� 02 6:241e� 01

PF/LB/3 2:288e� 01 1:266e� 01 3:214e� 02 5:560e� 01

50 PF/SB/2 1:092eþ 00 5:068e� 02 1:011eþ 00 1:296eþ 00

PF/LB/2 1:205eþ 00 7:270e� 02 1:070eþ 00 1:388eþ 00

100 PF/SB/2 2:224eþ 00 6:657e� 01 1:311eþ 00 5:931eþ 00

PF/LB/2 3:280eþ 00 8:334e� 01 1:718eþ 00 6:719eþ 00

TP4 10 PF/SB/2 3:168e� 02 6:641e� 02 1:923e� 03 6:358e� 01

PF/LB/2 3:543e� 02 3:993e� 02 5:304e� 03 3:435e� 01

50 PF/SB/2 2:265eþ 00 5:141e� 01 7:843e� 01 3:532eþ 00

PF/LB/2 2:308eþ 00 4:078e� 01 1:226eþ 00 3:431eþ 00

100 PF/SB/2 3:806eþ 00 5:387e� 01 2:812eþ 00 5:817eþ 00

PF/LB/2 3:761eþ 00 4:558e� 01 2:879eþ 00 5:400eþ 00

TP5 10 PF/SB/2 2:100e� 03 1:444e� 03 5:228e� 05 7:846e� 03

PF/LB/2 3:202e� 03 2:261e� 03 7:199e� 05 1:527e� 02
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sections. Second, we can see that all PFA approaches exhibit

a remarkably high number of wins and small number of

losses. This is a new evidence, which indicates that using

diversity along with solution quality for neighborhood rating

can be beneficial for the algorithm.

According to Table 9, the variants LB/NL/2.0 and PF/

LB/2 exhibited the highest number of wins for the SOBA

and the MOBA strategies, respectively. These two variants

were considered for comparisons with different PSO-based

algorithms under the experimental setting of Table 3. More

Fig. 8 Number of wins, draws,

and losses for the PFA variant

of MOBA strategy

Fig. 9 Aggregate number of

wins, draws, and losses for

different tournament sizes in

PFA variants

Table 8 continued

Problem Dimension Algorithm Mean SD Min Max

TP6 6 PF/SB/5 5:067e� 03 1:053e� 02 3:121e� 06 6:372e� 02

PF/LB/3 1:329e� 03 2:891e� 03 7:233e� 07 1:680e� 02

TP7 5 PF/SB/3 1:698e� 01 1:113e� 01 9:561e� 03 5:112e� 01

PF/LB/5 1:395e� 01 9:246e� 02 9:646e� 03 4:269e� 01

TP8 8 PF/SB/3 3:098e� 01 2:272e� 01 2:095e� 02 1:268eþ 00

PF/LB/2 2:539e� 01 1:872e� 01 1:803e� 02 8:879e� 01

TP9 10 PF/SB/2 4:831e� 02 5:041e� 02 3:136e� 04 2:945e� 01

PF/LB/2 4:070e� 02 3:635e� 02 1:515e� 03 2:136e� 01

TP10 20 PF/SB/5 1:428e� 04 3:736e� 04 5:837e� 15 3:225e� 03

PF/LB/5 1:364e� 04 2:927e� 04 2:037e� 11 1:477e� 03
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specifically, we compared them against the standard sy-

chronous Particle Swarm Optimization (PSO) algorithm as

well as its asychronous version (ASY) presented in [27].

The corresponding results are reported in Tables 10 and 11

for the standard test suite and the nonlinear systems,

respectively.

The reported results reveal an apparent superiority of the

PSO-NBA algorithm (by orders of magnitude) against PSO

and ASY for all problems and dimensions. More specifi-

cally, the SOBA-based variant LB/NL/2.0 surmounts all

Table 9 Aggregate numbers of wins, draws, and losses for all PSO-

NBA variants for all test problems

Strategy Algorithm Wins Draws Losses

SOBA SB/L/1.0 25 80 630

SB/L/1.5 277 110 348

SB/L/2.0 438 97 200

SB/NL/1.0 329 149 257

SB/NL/2.0 301 84 350

LB/L/1.0 26 81 628

LB/L/1.5 299 106 330

LB/L/2.0 450 109 176

LB/NL/1.0 398 128 209

LB/NL/2.0 544 87 104

MOBA LW/SB/L/1.0 43 102 590

LW/SB/L/1.5 189 113 433

LW/SB/L/2.0 327 105 303

LW/SB/NL/1.0 252 148 335

LW/SB/NL/2.0 357 137 241

LW/LB/L/1.0 44 102 589

LW/LB/L/1.5 203 102 430

LW/LB/L/2.0 340 115 280

LW/LB/NL/1.0 306 128 301

LW/LB/NL/2.0 498 105 132

DW/SB/L/1.0 32 90 613

DW/SB/L/1.5 170 94 471

DW/SB/L/2.0 303 106 326

DW/SB/NL/1.0 240 160 335

DW/SB/NL/2.0 307 123 305

DW/LB/L/1.0 30 85 620

DW/LB/L/1.5 171 112 452

DW/LB/L/2.0 325 113 297

DW/LB/NL/1.0 292 152 291

DW/LB/NL/2.0 454 120 161

PF/SB/2 555 114 66

PF/SB/3 542 119 74

PF/SB/5 508 105 122

PF/LB/2 575 88 72

PF/LB/3 566 95 74

PF/LB/5 537 90 108

Table 10 Comparative results of PSO-NBA with PSO-based variants

for test problems TP0-TP4 (standard test suite)

Problem Dimension Algorithm Mean SD

TP0 10 PSO 3:608eþ 00 2:038eþ 00

ASY 2:067eþ 00 1:091eþ 00

PF/LB/2 7:788e� 03 8:127e� 03

LB/NL/2.0 9:406e� 26 8:806e� 25

50 PSO 8:801eþ 03 9:596eþ 02

ASY 7:162eþ 03 7:755eþ 02

PF/LB/2 2:527eþ 01 1:220eþ 01

LB/NL/2.0 3:116e� 08 1:332e� 07

100 PSO 4:808eþ 04 2:913eþ 03

ASY 3:876eþ 04 2:494eþ 03

PF/LB/2 2:524eþ 02 9:412eþ 01

LB/NL/2.0 1:025eþ 02 1:021eþ 03

TP1 10 PSO 2:369eþ 03 1:790eþ 03

ASY 1:270eþ 03 8:705eþ 02

PF/LB/2 2:035eþ 01 3:011eþ 01

LB/NL/2.0 5:330eþ 03 2:072eþ 04

50 PSO 7:382eþ 08 1:569eþ 08

ASY 5:187eþ 08 1:214eþ 08

PF/LB/2 3:685eþ 03 1:269eþ 04

LB/NL/2.0 3:031eþ 03 1:541eþ 04

100 PSO 7:760eþ 09 1:135eþ 09

ASY 5:573eþ 09 7:742eþ 08

PF/LB/2 4:517eþ 04 3:261eþ 04

LB/NL/2.0 1:442eþ 03 9:031eþ 03

TP2 10 PSO 1:587eþ 01 3:773eþ 00

ASY 1:563eþ 01 3:977eþ 00

PF/LB/2 8:306eþ 00 3:390eþ 00

LB/NL/2.0 7:302eþ 00 3:347eþ 00

50 PSO 3:508eþ 02 2:098eþ 01

ASY 3:330eþ 02 1:751eþ 01

PF/LB/2 1:601eþ 02 3:212eþ 01

LB/NL/2.0 2:793eþ 02 4:174eþ 01

100 PSO 9:289eþ 02 3:046eþ 01

ASY 8:877eþ 02 3:119eþ 01

PF/LB/2 4:273eþ 02 6:944eþ 01

LB/NL/2.0 8:392eþ 02 5:525eþ 01

TP3 10 PSO 8:536e� 01 1:173e� 01

ASY 7:369e� 01 1:598e� 01

PF/LB/2 2:375e� 01 1:306e� 01

LB/NL/2.0 8:893e� 02 5:447e� 02

50 PSO 8:095eþ 01 9:016eþ 00

ASY 6:425eþ 01 7:925eþ 00

PF/LB/2 1:205eþ 00 7:270e� 02

LB/NL/2.0 1:034e� 02 1:817e� 02

100 PSO 4:331eþ 02 2:505eþ 01

ASY 3:520eþ 02 2:312eþ 01

PF/LB/2 3:280eþ 00 8:334e� 01

LB/NL/2.0 3:826e� 01 4:391e� 01
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other in 10 out of 15 problem instances of the standard test

suite (Table 10), while the MOBA-based variant PF/L/2 is

superior in the rest 5 cases. In Table 11, similar results for

the nonlinear systems are reported, with the two variants

being distinguished in 3 cases each. Finally, we can infer

that the SOBA strategy dominates in the three high-

dimensional problems (TP5, TP9, and TP10), while the

MOBA one is better in the lower-dimensional cases.

The four distinguished PSO-NBA approaches from

Table 9 were used for further comparisons with different

algorithms on TP5-TP10. For this purpose, we adopted the

results for a steady-state Genetic Algorithm (GA), Differ-

ential Evolution (DE), and the multi-objective MONS

approach that were reported in the recent study [27]. The

experimental setting that was used in [27] assumed higher

computational budgets than the one used in our study.

Thus, we repeated the experiments on TP5-TP10 for the

distinguished PSO-NBA approaches with the new compu-

tational budget, to obtain comparable results. The compu-

tational budgets adopted from [27] are reported in

Table 12. For the PSO-NBA variants, the parameters were

identical to the ones used in previous sections and reported

in Table 3 without any further fine-tuning.

All results are reported in Table 13. The best perfor-

mance among the other algorithms as well as among PSO-

NBA variants is boldfaced. The reported experimental

evidence offers some useful conclusions. First, we can see

that the MOBA approaches of PSO-NBA outperformed the

SOBA one with the exception of TP10. Secondly, the

MOBA approaches performed better (by orders of magni-

tude) than MONS and GA in most of the problems.

Finally, we can see that PSO-NBA could outperform

DE, which was the best algorithm among the rest, in half of

the problems. We shall take into consideration that the

results of PSO-NBA were received with the same param-

eters that were used in our default experimental setting

without any further fine-tuning for the specific problems

and computational budgets, while population sizes for the

rest of the algorithms were fine-tuned per case.

4.4 Further experiments

We further assessed the PSO-NBA algorithm on a test suite

of 19 problems that was proposed as a benchmark at the

special issue on ‘‘Scalability of Evolutionary Algorithms

and Other Metaheuristics for Large-Scale Optimization

Problems’’ of the Soft Computing journal [14]. These

problems will be henceforth denoted as SC-TP0–SC-TP18.

Table 10 continued

Problem Dimension Algorithm Mean SD

TP4 10 PSO 2:059eþ 00 4:495e� 01

ASY 1:706eþ 00 5:198e� 01

PF/LB/2 3:543e� 02 3:993e� 02

LB/NL/2.0 1:176e� 02 1:155e� 01

50 PSO 1:370eþ 01 4:042e� 01

ASY 1:284eþ 01 4:087e� 01

PF/LB/2 2:308eþ 00 4:078e� 01

LB/NL/2.0 9:513eþ 00 7:807e� 01

100 PSO 1:730eþ 01 2:400e� 01

ASY 1:636eþ 01 2:488e� 01

PF/LB/2 3:761eþ 00 4:558e� 01

LB/NL/2.0 1:416eþ 01 4:283e� 01

Table 11 Comparative results of PSO-NBA with PSO-based variants

for test problems TP5-TP10 (nonlinear systems)

Problem Dimension Algorithm Mean SD

TP5 10 PSO 6:921e� 02 1:7539e� 02

ASY 6:214e� 02 1:755e� 02

PF/LB/2 3:202e� 03 2:261e� 03

LB/NL/2.0 4:833e� 10 2:108e� 09

TP6 6 PSO 2:765e� 02 2:482e� 02

ASY 2:081e� 02 1:388e� 02

PF/LB/2 6:827e� 03 2:914e� 02

LB/NL/2.0 1:908e� 01 3:177e� 01

TP7 5 PSO 2:640e� 01 1:273e� 01

ASY 2:192e� 01 1:215e� 01

PF/LB/2 1:402e� 01 1:006e� 01

LB/NL/2.0 2:904e� 01 2:285e� 01

TP8 8 PSO 6:120e� 01 2:050e� 01

ASY 5:396e� 01 1:974e� 01

PF/LB/2 2:539e� 01 1:872e� 01

LB/NL/2.0 3:870e� 01 4:366e� 01

TP9 10 PSO 2:980e� 01 1:565e� 01

ASY 2:391e� 01 1:317e� 01

PF/LB/2 4:070e� 02 3:635e� 02

LB/NL/2.0 1:648e� 02 1:933e� 02

TP10 20 PSO 4:617e� 03 4:544e� 03

ASY 3:377e� 03 2:518e� 03

PF/LB/2 3:482e� 04 1:243e� 03

LB/NL/2.0 1:576e� 06 6:868e� 06

Table 12 Computational bud-

gets for GA, DE, MONS, PSO,

and ASY [27], in test problems

TP5-TP10

Problem Comp. Budget

TP5 15� 104

TP6 6� 104

TP7 25� 104

TP8 50� 104

TP9 15� 104

TP10 15� 104
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The problems SC-TP0–SC-TP5 belong to the CEC 2008

test suite, SC-TP6–SC-TP10 are shifted problems, and SC-

TP11–SC-TP18 are hybrid composition functions. Their

definitions as well as source codes can be obtained through

online sources.1 Comparative results for different algo-

rithms are also publicly available.2

PSO-NBA was applied on the 50- and 100-dimensional

instances of the test problems, adopting the experimental

setting in [14]. In all cases, our algorithm assumed popu-

lation size equal to 2� n, where n stands for the problem’s

dimension. At each experiment, the solution error

jfPSO�NBA � f �j was recorded, where f � denotes the actual

global minimum of the problem and fPSO�NBA is the best

solution value achieved by our approach.

The two best SOBA approaches and the two best

MOBA approaches (in terms of number of wins) from

Table 9 were considered for further experimentation.

These approaches were also compared against six estab-

lished algorithms, namely the CHC Genetic (Cross-gener-

ational elitist selection, Heterogeneous recombination and

Cataclysmic mutation) algorithm [8], the G-CMA-ES

(Restart Covariant Matrix Evolutionary Strategy) algo-

rithm [2], the EvoPROpt (Evolutionary Path Relinking)

algorithm [7], the SPSO2011 (Standard PSO 2011) algo-

rithm [32], the ITHS (Intelligent Tuned Harmony Search)

algorithm [16, 31] and the DBC (Directed Bee Colony)

algorithm [13]. Note that G-CMA-ES was the dominant

algorithm in the CEC 2005 challenge.

In Table 14, the obtained average errors for the two

SOBA variants LB/NL/2.0 and LB/L/2.0 are reported.

MOBA variants had slightly inferior performance, which

was anticipated since in the previous experiments they were

shown to perform better in lower dimensions. For this

reason they are omitted from the current results. Also, in

Table 14 we report the corresponding results for the rest of

the algorithms. The results of the EvoPROpt, G-CMA-ES,

and CHC algorithms are publicly available in the afore-

mentioned online sources, while the results of the

SPSO2011, ITHS, and DBC emerged from our implemen-

tations closely following the instructions, pseudocodes, and

parameter settings provided in the original sources.

A first inspection of the results reveals that PSO-NBA

is highly competitive to the other algorithms. More spe-

cifically, the linear PSO-NBA variant achieved zero or

marginally deviant values in 12 problem instances, while

the nonlinear variant had similar success in 8 out of 38

problem instances. The corresponding successes for Evo-

PROpt, SPSO2011, ITHS, DBC, G-CMA-ES, and CHC

were 0, 2, 0, 0, 7, and 6, respectively, out of 38 problem

instances.

In order to facilitate comparisons and provide further

insight into the algorithm’s effectiveness, we conducted

pairwise comparisons of each algorithm with the rest. At

each comparison, we recorded the number of hits (suc-

cesses) over the accuracy levels,

10�4; 10�3; 10�2; 10�1; 100; 101; 102; 103; 104:

A hit is recorded for an algorithm when it outperforms

another algorithm, i.e., it achieves a lower average error for

the specific problem and dimension, and both their average

errors are smaller than the particular accuracy level.

Figures 10 and 11 depict the distribution of the number

of hits over the predefined accuracy levels for the linear and

the nonlinear case, respectively. Evidently, PSO-NBA

exhibits high numbers of hits for the majority of accuracy

Table 13 Comparative results

of PSO-NBA with different

algorithms. The results of

MONS, GA, DE are adopted

from [27]

TP5 TP6 TP7 TP8 TP9 TP10

MONS Mean 1:80eþ 00 1:00e� 01 6:00e� 01 1:10eþ 00 2:00e� 01 2:00e� 02

SD � � � � � �
GA Mean 1:01e� 01 1:29e� 02 9:57e� 01 1:03eþ 00 4:53e� 01 2:10e� 06

SD 6:21e� 02 2:29e� 02 6:78e� 01 5:50e� 01 4:74e� 01 1:00e� 06

DE Mean 1:44e� 16 1:29e� 03 1:01e� 02 1:29e� 16 5:20e� 04 6:37e� 03

SD 1:90e� 18 2:47e� 03 9:07e� 04 5:87e� 17 1:92e� 04 3:74e� 03

LB/NL/2.0

(SOBA)

Mean 1:44e� 16 5:24e� 02 1:46e� 01 1:85e� 01 2:57e� 02 8:53e� 10

SD 6:74e� 19 1:66e� 01 1:20e� 01 1:97e� 01 2:49e� 01 6:84e� 09

LW/LB/NL/2.0

(MOBA)

Mean 1:44e� 16 1:03e� 05 3:31e� 02 2:09e� 02 4:33e� 03 6:43e� 07

SD 0:00eþ 00 6:96e� 05 1:69e� 02 2:39e� 02 5:13e� 03 2:53e� 06

DW/LB/NL/2.0

(MOBA)

Mean 1:44e� 16 2:80e� 06 3:57e� 02 3:40e� 02 2:82e� 03 7:38e� 09

SD 5:20e� 19 1:90e� 05 1:94e� 02 3:39e� 02 4:25e� 03 3:07e� 08

PF/LB/2

(MOBA)

Mean 1:44e� 16 2:92e� 06 3:79e� 02 6:04e� 02 3:48e� 03 1:32e� 05

SD 0:00eþ 00 1:45e� 05 2:21e� 02 8:25e� 02 5:77e� 03 3:34e� 05

1 http://sci2s.ugr.es/eamhco/testfunctions-SOCO.
2 http://sci2s.ugr.es/eamhco/SOCO-results.xls.
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levels, especially for the smallest ones, which are the most

desirable in practice. EvoPROpt outperformed PSO-NBA

only for the highest accuracy levels. Yet, it did not achieve

any hit in almost half of the (smaller) accuracy levels.

The presented experimental evidence verifies that the

proposed PSO-NBA approach can be very competitive also

to other algorithms. Of course, the best choice among

different PSO-NBA variants is always problem-dependent.

Fig. 10 Cumulative number of

hits for different accuracy levels

(linear case)

Fig. 11 Cumulative number of

hits for different accuracy levels

(nonlinear case)

Fig. 12 Portion of time spent

on algorithmic procedures vs

function evaluations
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However, the observations that were pointed out in the

previous sections can be helpful for the practitioner.

Finally, we considered the time complexity of the

algorithm. Specifically, we investigated the fraction of the

time spent to algorithmic procedures against the time spent

purely for function evaluations per run. Figure 12 illus-

trates the required time for the 100-dimensional instances

of 4 of the most demanding problems from the current test

suite. The measured time is indicative for a single experi-

ment. Despite the high dimensionality of the problems, the

large population size, as well as the lack of any optimi-

zation in the source code of our implementation, we can

clearly see that the function evaluation dominates the time

required by the algorithm. This is an indication that smaller

execution times can be achieved with further optimization

of the algorithm’s procedures and source code.

5 Conclusions

We introduced PSO-NBA, an asynchronous PSO variant

that distributes the available computational budget of

function evaluations in an irregular way among the parti-

cles of the swarm. In order to select the favored particles,

the algorithm assesses their neighborhoods with respect to

solution quality and diversity. Particles that possess highly

ranked neighborhoods have higher probability of receiving

function evaluations than the rest.

We studied two essential budget allocation strategies,

namely a single- and a multi-objective one. For both

strategies, a multitude of PSO-NBA variants were defined.

All variants were tested on a standard suite of benchmark

problems as well as on problems drawn from real-life

applications. The most successful variants were distin-

guished after statistical analysis of the results. Further

experiments were conducted on an established test suite.

Comparisons with various algorithms were provided.

The acquired results suggested that PSO-NBA can be

highly competitive. Overall, elitistic options were shown to

be beneficial on performance. Both single- and multi-

objective strategies exhibited efficiency and robustness.

There are many issues to be considered for future

research. First, the experiments can be further extended in

specific problem categories such as very large-scale prob-

lems, mixed integer optimization, and noisy environments

(among others). Second, scalability and the impact of the

problem’s size on performance can be further investigated

along with different neighborhood quality criteria. Finally,

the budget allocation mechanisms of PSO-NBA can be used

also in different metaheuristics or combined with other

(PSO-based or not) algorithms to formulate hybrid schemes.
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Appendix: Test problems

Standard test suite

The standard test suite consists of the following problems:

Test Problem 0 (TP0—Sphere) [19]. This is a separable

n-dimensional problem, defined as

f ðxÞ ¼
Xn

i¼1

x2
i ; ð21Þ

and it has a single global minimizer, x� ¼ ð0; 0; . . .; 0Þ>,

with f ðx�Þ ¼ 0.

Test Problem 1 (TP1—Generalized Rosen-

brock) [19]. This is a non-separable n-dimensional prob-

lem, defined as

f ðxÞ ¼
Xn�1

i¼1

100 xiþ1 � x2
i

� �2þ xi�1ð Þ2
� �

; ð22Þ

and it has a global minimizer, x� ¼ ð1; 1; . . .; 1Þ>, with

f ðx�Þ ¼ 0.

Test Problem 2 (TP2—Rastrigin) [19]. This is a

separable n-dimensional problem, defined as

f ðxÞ ¼ 10nþ
Xn

i¼1

�
x2

i � 10 cosð2pxiÞ
�
; ð23Þ

and it has a global minimizer, x� ¼ ð0; 0; . . .; 0Þ>, with

f ðx�Þ ¼ 0.

Test Problem 3 (TP3—Griewank) [19]. This is a

non-separable n-dimensional problem, defined as

f ðxÞ ¼
Xn

i¼1

x2
i

4000
�
Yn

i¼1

cos
xiffiffi

i
p

 �

þ 1; ð24Þ

and it has a global minimizer, x� ¼ ð0; 0; . . .; 0Þ>, with

f ðx�Þ ¼ 0.

Test Problem 4 (TP4—Ackley) [19]. This is a non-

separable n-dimensional problem, defined as

f ðxÞ ¼ 20þ expð1Þ � 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

x2
i

s !

� exp
1

n

Xn

i¼1

cosð2pxiÞ
 !

;

ð25Þ

and it has a global minimizer, x� ¼ ð0; 0; . . .; 0Þ>, with

f ðx�Þ ¼ 0.
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Nonlinear systems

This test set consists of six real-application problems, which

are modeled as systems of nonlinear equations. Computing a

solution of a nonlinear system is a very challenging task and

it has received the ongoing attention of the scientific com-

munity. A common methodology for solving such systems is

their transformation to an equivalent global optimization

problem, which allows the use of a wide range of optimi-

zation tools. The transformation produces a single objective

function by aggregating all the system’s equations, such that

the solutions of the original system are exactly the same with

that of the derived optimization problem.

Consider the system of nonlinear

equations:

f1ðxÞ ¼ 0;

f2ðxÞ ¼ 0;

..

.

fmðxÞ ¼ 0;

8
>>>><

>>>>:

with x 2 S � R
n. Then, the objec-

tive function,

f ðxÞ ¼
Xm

i¼1

jfiðxÞj; ð26Þ

defines an equivalent optimization problem. Obviously, if

x� with f ðx�Þ ¼ 0 is a global minimizer of the objective

function, then x� is also a solution of the corresponding

nonlinear system and vice versa.

In our experiments, we considered the following non-

linear systems, previously employed by Grosan and

Abraham [9] to justify the usefulness of evolutionary

approaches as efficient solvers of nonlinear systems:

Test Problem 5 (TP5—Interval Arithmetic Bench-

mark) [9]. This problem consists of the following system:

x1 � 0:25428722� 0:18324757 x4x3x9 ¼ 0;

x2 � 0:37842197� 0:16275449 x1x10x6 ¼ 0;

x3 � 0:27162577� 0:16955071 x1x2x10 ¼ 0;

x4 � 0:19807914� 0:15585316 x7x1x6 ¼ 0;

x5 � 0:44166728� 0:19950920 x7x6x3 ¼ 0;

x6 � 0:14654113� 0:18922793 x8x5x10 ¼ 0;

x7 � 0:42937161� 0:21180486 x2x5x8 ¼ 0;

x8 � 0:07056438� 0:17081208 x1x7x6 ¼ 0;

x9 � 0:34504906� 0:19612740 x10x6x8 ¼ 0;

x10 � 0:42651102� 0:21466544 x4x8x1 ¼ 0:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð27Þ

The resulting objective function defined by Eq. (26), is 10-

dimensional with global minimum f ðx�Þ ¼ 0.

Test Problem 6 (TP6—Neurophysiology Applica-

tion) [9] This problem consists of the following system:

x2
1 þ x2

3 ¼ 1;

x2
2 þ x2

4 ¼ 1;

x5x3
3 þ x6x3

4 ¼ c1;

x5x3
1 þ x6x3

2 ¼ c2;

x5x1x2
3 þ x6x2

4x2 ¼ c3;

x5x2
1x3 þ x6x2

2x4 ¼ c4;

8
>>>>>>>><

>>>>>>>>:

ð28Þ

where the constants, ci ¼ 0, i ¼ 1; 2; 3; 4. The resulting

objective function is 6-dimensional with global minimum

f ðx�Þ ¼ 0.

Test Problem 7 (TP7—Chemical Equilibrium

Application) [9] This problem consists of the following

system:

x1x2 þ x1 � 3x5 ¼ 0;

2x1x2 þ x1 þ x2x2
3 þ R8x2 � Rx5 þ 2R10x2

2 þ R7x2x3þ
R9x2x4 ¼ 0;

2x2x2
3 þ 2R5x2

3 � 8x5 þ R6x3 þ R7x2x3 ¼ 0;

R9x2x4 þ 2x2
4 � 4Rx5 ¼ 0;

x1ðx2 þ 1Þ þ R10x2
2 þ x2x2

3 þ R8x2 þ R5x2
3 þ x2

4 � 1

þR6x3 þ R7x2x3 þ R9x2x4 ¼ 0;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð29Þ

where

R ¼ 10; R5 ¼ 0:193; R6 ¼
0:002597

ffiffiffiffiffi
40
p ; R7 ¼

0:003448
ffiffiffiffiffi
40
p ;

R8 ¼
0:00001799

40
; R9 ¼

0:0002155
ffiffiffiffiffi
40
p ; R10 ¼

0:00003846

40
:

The corresponding objective function is 5-dimensional

with global minimum f ðx�Þ ¼ 0.

Test Problem 8 (TP8—Kinematic Application) [9]

This problem consists of the following system:

x2
i þ x2

iþ1 � 1 ¼ 0;

a1ix1x3 þ a2ix1x4 þ a3ix2x3 þ a4ix2x4 þ a5ix2x7þ
a6ix5x8 þ a7ix6x7 þ a8ix6x8 þ a9ix1 þ a10ix2 þ a11ix3þ
a12ix4 þ a13ix5 þ a14ix6 þ a15ix7 þ a16ix8 þ a17i ¼ 0;

8
>>><

>>>:

ð30Þ

with aki, 1 6 k 6 17, 1 6 i 6 4, is the correspond-

ing element of the k-th row and i-th column of the

matrix:
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A ¼

�0:249150680 0:125016350 � 0:635550077 1:48947730

1:609135400 � 0:686607360 � 0:115719920 0:23062341

0:279423430 � 0:119228120 � 0:666404480 1:32810730

1:434801600 � 0:719940470 0:110362110 � 0:25864503

0:000000000 � 0:432419270 0:290702030 1:16517200

0:400263840 0:000000000 1:258776700 � 0:26908494

�0:800527680 0:000000000 � 0:629388360 0:53816987

0:000000000 � 0:864838550 0:581404060 0:58258598

0:074052388 � 0:037157270 0:195946620 � 0:20816985

�0:083050031 0:035436896 � 1:228034200 2:68683200

�0:386159610 0:085383482 0:000000000 � 0:69910317

�0:755266030 0:000000000 � 0:079034221 0:35744413

0:504201680 � 0:039251967 0:026387877 1:24991170

�1:091628700 0:000000000 � 0:057131430 1:46773600

0:000000000 � 0:432419270 � 1:162808100 1:16517200

0:049207290 0:000000000 1:258776700 1:07633970

0:049207290 0:013873010 2:162575000 � 0:69686809

2

6666666666666666666666666666666666664

3

7777777777777777777777777777777777775

The corresponding objective function is 8-dimensional

with global minimum f ðx�Þ ¼ 0.

Test Problem 9 (TP9—Combustion Application) [9]

This problem consists of the following system:

x2 þ 2x6 þ x9 þ 2x10 ¼ 10�5;

x3 þ x8 ¼ 3� 10�5;

x1 þ x3 þ 2x5 þ 2x8 þ x9 þ x10 ¼ 5� 10�5;

x4 þ 2x7 ¼ 10�5;

0:5140437� 10�7x5 ¼ x2
1;

0:1006932� 10�6x6 ¼ 2x2
2;

0:7816278� 10�15x7 ¼ x2
4;

0:1496236� 10�6x8 ¼ x1x3;

0:6194411� 10�7x9 ¼ x1x2;

0:2089296� 10�14x10 ¼ x1x2
2:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð31Þ

The corresponding objective function is 10-dimensional

with global minimum f ðx�Þ ¼ 0.

Test Problem 10 (TP10—Economics Modeling

Application) [9] This problem consists of the following

system:

xk þ
Xn�k�1

i¼1

xixiþk

 !

xn � ck ¼ 0;

Xn�1

l¼1

xl þ 1 ¼ 0;

8
>>>><

>>>>:

ð32Þ

where 1 6 k 6 n� 1, and ci ¼ 0, i ¼ 1; 2; . . .; n. The

problem was considered in its 20-dimensional instance.

Thus, the corresponding objective function was also 20-

dimensional, with global minimum f ðx�Þ ¼ 0.
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