
Computers & Industrial Engineering 83 (2015) 307–315
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Metaheuristic optimization for the Single-Item Dynamic Lot Sizing
problem with returns and remanufacturing
http://dx.doi.org/10.1016/j.cie.2015.02.014
0360-8352/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: kostasp@cs.uoi.gr (K.E. Parsopoulos), ikonst@uom.gr

(I. Konstantaras), kskouri@uoi.gr (K. Skouri).
K.E. Parsopoulos a, I. Konstantaras b,⇑, K. Skouri c

a Department of Computer Science & Engineering, University of Ioannina, GR-45110 Ioannina, Greece
b Department of Business Administration, University of Macedonia, GR-54636 Thessaloniki, Greece
c Department of Mathematics, University of Ioannina, GR-45110 Ioannina, Greece

a r t i c l e i n f o
Article history:
Received 30 July 2014
Received in revised form 1 December 2014
Accepted 19 February 2015
Available online 9 March 2015

Keywords:
Lot Sizing
Inventory optimization
Remanufacturing
Differential Evolution
Metaheuristics
a b s t r a c t

The use of metaheuristics for solving the Single-Item Dynamic Lot Sizing problem with returns and
remanufacturing has increasingly gained research interest. Recently, preliminary experiments with
Particle Swarm Optimization revealed that population-based algorithms can be competitive with existing
state-of-the-art approaches. In the current work, we thoroughly investigate the performance of a very
popular population-based algorithm, namely Differential Evolution (DE), on the specific problem. The
most promising variant of the algorithm is experimentally identified and properly modified to further
enhance its performance. Also, necessary modifications in the formulation of the corresponding optimiza-
tion problem are introduced. The algorithm is applied on an abundant test suite employed in previous
studies. Its performance is analyzed and compared with a state-of-the-art approach as well as with a pre-
viously investigated metaheuristic algorithm. The results suggest that specific DE variants can be placed
among the most efficient approaches, thereby enriching the available algorithmic artillery for tackling the
specific type of problems.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The field of Reverse Logistics contains all logistics processes
beginning with the take-back of used products from customers
up to the stage of making them reusable products or their disposal.
Reverse Logistics activities have received increasing attention
within Logistics and Operations Management over the last years
both from theoretical and practical point of view. One reason for
this is the more rigid environmental legislation and the growing
environmental concerns.

In most countries environmental regulations are in place, ren-
dering manufacturers responsible for the whole life cycle of their
product. A common example of these regulations is the take-back
obligations after usage (Fleischmann et al., 1997). Another reason
is the economic benefits of reusing products rather than disposing
them. Reverse Logistics can bring direct gains to companies by
dwindling on the use of raw materials, adding value with recovery,
as well as reducing disposal costs, which have significantly
increased in recent years due to depletion of incineration and land
filling capacities. Environmental regulations, ‘‘green image’’
policies due to growing environmental concerns, as well as the
potential economical benefits of product recovery, have pushed
manufacturers to integrate product recovery management with
their manufacturing process. Two very good recent review papers
on Reverse Logistics supply chain management are Govindan,
Soleimani, and Kannan (2015) and Stindt and Sahamie (2014).

Recovery processes are generally classified into the following
five types: repair, refurbishing, remanufacturing, cannibalization,
and recycling. Remanufacturing, which is the topic of the present
work, is the process that brings used products up to quality stan-
dards that are as rigorous as those of new products. A remanufac-
tured product is a returned product that a manufacturer puts
through its manufacturing process (or remanufactures) in order
to restore it to a good-as-new condition. It shall be distinguished
from refurbished products, which are returned products that are
tested and usually have some parts replaced if the manufacturer
deems this necessary to restore the product to working condition.
Remanufacturing is a typical example for economically attractive
reuse activities, since it transforms used products into like-new
products.

After disassembling the returned product, modules and parts are
extensively inspected and problematic parts are repaired or, if not
possible, replaced with new parts. These operations allow a con-
siderable amount of value incorporated in the used product to be

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2015.02.014&domain=pdf
http://dx.doi.org/10.1016/j.cie.2015.02.014
mailto:kostasp@cs.uoi.gr
mailto:ikonst@uom.gr
mailto:kskouri@uoi.gr
http://dx.doi.org/10.1016/j.cie.2015.02.014
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

308 K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315
regained. Remanufactured products have usually the same quality
as the new products and are sold for the same price but they are less
costly. A recent review paper in pricing of new and remanufactured
products and production planning is given in Steeneck and Sarin
(2013). Also, some manufacturers offer the same warranty and ser-
vice options on remanufactured products as they do on new ones.
Typical examples of remanufacturable products include mostly
high-value components such as aircraft or automobile engines,
aviation equipment, medical equipment, office furniture, machine
tools, copiers, computers, electronics equipment, toner cartridges,
cellular telephones, and single-use cameras (Fleischmann et al.,
1997; Guide, Jayaraman, & Srivastava, 1999; Thierry, Salomon,
van Numen, & van Wassenhove, 1995).

Inventory management and control is one of the key decision-
making areas while managing product returns. Dynamic or
Economic Lot Sizing (ELS), i.e., determining production orders over
a number of future periods in which demand is dynamic and deter-
ministic, is one of the most extensively researched topics in inven-
tory control. However, the ELS problem with remanufacturing
options (ELSR), as an alternative for manufacturing, has received
quite a bit of attention in the Reverse Logistics literature. A very
good recent review paper that offers a general overview of the
existing quantitative models for the ELSR problem is Akcali and
Cetinkaya (2011).

In the ELSR problem, known quantities of used products are
returned from customers in each period over a finite planning hori-
zon. There is no demand for these returned products themselves,
but they can be remanufactured such that they become as good
as new. Customer demand can then be fulfilled from two sources,
namely newly manufactured and remanufactured items. Since
both can be used to serve customers, they are referred to as service-
ables and so the retailer maintains separate inventories for service-
ables and returned used product. When ordering a newly
manufactured or remanufactured product, the retailer incurs a
fixed setup cost. In addition, in each period the retailer incurs hold-
ing costs for storing serviceables and returned product in inven-
tory. Thus, in ELSR problem the traditional trade-off between set-
up and holding costs is extended with remanufacturing set-up cost
and holding cost for returns.

Up-to-date, different variants of the ELSR problem have been
studied. In Richter and Sombrutzki (2000), the classical Wagner–
Whitin model (Wagner & Whitin, 1958) is extended by introducing
a remanufacturing process. It was shown that there exists an opti-
mal solution that is a zero-inventory policy. Also, a dynamic pro-
gramming algorithm to determine the periods where products
are manufactured and remanufactured, was proposed. Richter
and Weber (2001) extended the previous models by introducing
variable manufacturing and remanufacturing costs and proved
the optimality of a policy starting with remanufacturing before
switching to manufacturing.

A variant of ELSR with disposal of returned used products at a
cost was considered in Golany, Yang, and Yu (2001), and it was
shown that this problem is NP-complete under general concave
production and holding costs. The same setting was studied in
Yang, Golany, and Yu (2005), where a polynomial-time heuristic
was developed to solve the problem. Pineyro and Viera (2009) pro-
posed and evaluated a set of inventory policies designed for the
ELSR problem, under the assumption that remanufacturing used
items is more suitable than disposing of them and producing
new items. A Tabu Search approach was proposed, aiming at find-
ing a near-optimal solution. Teunter, Bayindir, and Van den Heuvel
(2006) studied ELSR with separate setup and joint setup for
manufacturing and remanufacturing. For the case of joint setup
cost, they provided an exact polynomial-time dynamic program-
ming algorithm. They also studied and compared the com-
putational performance of modified versions of three well-known
heuristics, namely Silver-Meal (SM), Least Unit Cost, and Part
Period Balancing, for the separate and joint setup cost cases.
Helmrich, Jans, Den Heuvel, and Wagelmans (2014) showed that
both models studied in Teunter et al. (2006), with separate and
joint setup costs, are NP-hard problems and also they proposed
and compared several alternative mixed-integer programming for-
mulations of both problems. Ahiska and Kurtul (2014) studied an
inventory control problem for a periodic review stochastic hybrid
manufacturing/remanufacturing system with two products and
substitution.

The multi-product economic lot scheduling problems with
returns, in the case of separate production lines for manufacturing
and remanufacturing, was studied in Teunter, Kaparis, and Tang
(2008). The authors proposed a mixed integer programming model
to solve the problem for a fixed cycle time, which can be combined
with a cycle time search to find an optimal solution. In Teunter,
Tang, and Kaparis (2009) the ELSR problem was considered with
two sources of production: manufacturing of new items and
remanufacturing of returned items. For both cases, a mixed integer
programming formulation was presented for a fixed cycle time,
and simple heuristics were proposed for the determination of the
optimal solution.

In Zanoni, Segerstedt, and Tang (2012) the multi-product ELSR
problem was further analyzed, extending the scheduling policy
from the common cycle to a basic period policy. A simpler schedul-
ing policy was introduced, which can be solved with near-optimal
solutions and has the potential to improve the cost performance in
the system. Schulz (2011) proposed a generalization of the SM-
based heuristic introduced in Teunter et al. (2006) for the separate
setup cost case. The enhanced SM variants exhibited significantly
better performance in terms of the average percentage error from
the optimal solution.

Recently, both trajectory-based and population-based meta-
heuristics were used to tackle the ELSR problem. A Tabu Search
(TS) algorithm was proposed in Li, Baki, Tian, and Chaouch
(2013), while the Particle Swarm Optimization (PSO) algorithm
was investigated in Moustaki, Parsopoulos, Konstantaras,
Skouri, and Ganas (2013). In addition, recent works on the
Wagner–Whitin and relevant inventory optimization problems
(Piperagkas, Voglis, Tatsis, Parsopoulos, & Skouri, 2011;
Piperagkas, Konstantaras, Skouri, & Parsopoulos, 2012) demon-
strated the potential of effectively solving these problems by using
modern population-based optimization algorithms, namely PSO,
Differential Evolution, and Harmony Search. Although most of the
studied algorithms were primarily designed for real-valued
optimization problems, proper modifications in their operation as
well as in formulation of the problem can render them applicable
also on integer and mixed integer problems, such as the one under
consideration. The reported good performance triggered our inter-
est in further studying such algorithms on the ELSR problem.

In the present work, we considered a state-of the-art pop-
ulation-based algorithm, namely Differential Evolution (DE). In the
past, DE has been successfully applied on mixed integer engineer-
ing design problems. Recently, it was shown to be clearly superior
than another popular algorithm of the same type, namely Genetic
Algorithms (GAs), while its solutions were shown to lie also very
close to exact Branch-and-Bound methods (Ponsich & Coello
Coello, 2011). Moreover, the DE operators are based on difference
vectors and they significantly differ from the corresponding GA
binary operators (see also Feoktistov, 2006).

The performance of DE was assessed on the test suite pro-
posed in Schulz (2011). The algorithm was also compared with
the established SM-based variants from Schulz (2011), which
constitute part of the state-of-the-art for this kind of problems.
Our aim was to probe the potential of DE to serve as promising
alternative for tackling the ELSR problem, enriching the available

K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315 309
algorithmic artillery. For this reason, the basic variants of DE
were thoroughly tested and the most promising ones were dis-
tinguished, along with their parameter settings. Additional per-
formance-enhancing techniques such as restarting and 1-step
local search were also considered. To the best of our knowledge,
with the exception of the two very recent papers of TS and PSO
that were mentioned above, there are no other existing meta-
heuristic optimization algorithms for the ELSR in the literature.

The rest of the paper is organized as follows: Section 2 provides
the basic formulation of the problem. In Section 3, the DE
algorithm is described and some of its essential properties are
discussed. Section 4 exposes the necessary modifications in the
formulation of the problem. The experimental setting and
results are reported in Section 5, and the paper concludes with
Section 6.
2. Original model formulation

The original ELSR problem considered in our study, consists of
the Dynamic Lot Sizing model with both remanufacturing and
manufacturing setup costs, as it was introduced in Teunter et al.
(2006) and studied in Schulz (2011). This problem emerged as an
extension of the original Wagner–Whitin problem (Wagner &
Whitin, 1958) and considers a manufacturer that produces a single
product over a finite planning horizon. At each time period, there is
a known demand for the product as well as a number of returned
items that can be completely remanufactured and sold as new. If
the remanufactured items that are stored in inventory are inade-
quate to satisfy the demand, an additional number of items is
manufactured. The aim is to determine the exact number of
remanufactured and manufactured items per time period, in order
to minimize the total holding and setup cost under various opera-
tional constraints.

In order to formally describe the considered model, we will
henceforth use the following notation that closely follows the pre-
sentation of Schulz (2011):

t time period, t ¼ 1;2; . . . ; T
Dt demand for time period t
Rt number of returned items in period t that can be com-

pletely remanufactured and sold as new
hR holding cost for the recoverable items per unit time
hM holding cost for the manufactured items per unit time
zR

t number of items that are eventually remanufactured in
period t

zM
t number of manufactured items in period t

KR remanufacturing setup cost
KM manufacturing setup cost
yR

t inventory level of items that can be remanufactured in per-
iod t

yM
t inventory level of ready-to-ship items in period t

Now we can define the main cost optimization problem as fol-
lows (Schulz, 2011):

min C ¼
XT

t¼1

KR cR
t þ KM cM

t þ hR yR
t þ hM yM

t

� �
; ð1Þ

where

cR
t ¼

1; if zR
t > 0;

0; otherwise;

�
cM

t ¼
1; if zM

t > 0;
0; otherwise;

�
ð2Þ

are binary decision variables denoting the initiation of a remanufac-
turing or manufacturing lot, respectively. Naturally, the model is
accompanied by a number of constraints (Schulz, 2011):
yR
t ¼ yR

t�1þRt�zR
t ; yM

t ¼ yM
t�1þzR

t þzM
t �Dt ; 8t¼1;2; . . . ;T; ð3Þ

zR
t 6Q cR

t ; zM
t 6Q cM

t ; 8t¼1;2; . . . ;T; ð4Þ
yR

0 ¼ yM
0 ¼0; cR

t ;c
M
t 2f0;1g; 8t¼1;2; . . . ;T; ð5Þ

yR
t ; yM

t ; zR
t ; zM

t P 0; 8t¼1;2; . . . ;T: ð6Þ

The constraints defined in (3) guarantee the inventory balance tak-
ing into consideration the incoming and outcoming items. Eq. (4)
guarantees that fixed costs are introduced whenever a new lot is
initiated. The parameter Q is a sufficiently large number; in
Schulz (2011) it is suggested the use of the total demand during
the planning horizon. Finally, (5) and (6) ensure that inventories
are initially empty and all parameters assume only reasonable
values.

Some interesting properties of the considered model were iden-
tified in Teunter et al. (2006). Firstly, there is a possibility of attain-
ing optimal solutions that do not adhere to the zero-inventory
property. Secondly, although theoretically the (mixed integer)
problem can be solved to optimality, there is strong evidence that
it is NP-hard. This conjecture was stated in Teunter et al. (2006)
and verified by the findings in Schulz (2011), offering motivation
for the use of (meta) heuristic algorithms such as the adapted
SM, TS, and PSO. Also, it triggered our interest in further investigat-
ing the problem with the DE algorithm, which is described in the
following section.

3. Differential Evolution

Differential Evolution (DE) is a population-based metaheuristic
algorithm, initially introduced by Storn and Price (1997). It
employs a group, called a population, of search points, called
individuals, to iteratively probe the search space. The search opera-
tors of DE are based on linear combinations of difference vectors
produced from individuals in the population, as well as on
recombination procedures that roughly resemble those of
Evolutionary Algorithms (Spears, 2000). During the past decade,
DE has gained increasing popularity due to its efficiency in a wide
range of applications (Chakraborty, 2008; Neri & Tirronen, 2010;
Qing, 2009).

Consider the n-dimensional global optimization problem,

min
x2X�Rn

CðxÞ:

DE employs a population of N individuals,

S ¼ x1; x2; . . . ; xNf g;

where N is a user-defined population size, and its value depends on
the available computational resources as well as on the problem at
hand. Each individual is an n-dimensional vector in the search space
X � Rn,

xi ¼ ðxi1; xi2; . . . ; xinÞ> 2 X; i 2 I ¼ f1;2; . . . ;Ng:

The population is randomly initialized, usually following a uniform
distribution over the search space.

The positions of the individuals are updated according to three
procedures that sample individuals from the population, combine
them to produce new candidate solutions, and select the best
among the existing and the new ones. These procedures are called
mutation, crossover, and selection, respectively, and they are
described below.

3.1. Basic search procedures and operators

Mutation
A mutation operator produces a new vector vi for each individ-

ual xi; i 2 I, by combining some of the individuals of the

Fig. 1. Number of wins per DE variant and combination ðF;CRÞ.

310 K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315
population. There is a variety of mutation operators reported in the
DE literature. Usually, the following five operators are considered:

ðDE1Þ : viðt þ 1Þ ¼ xgðtÞ þ F xr1 ðtÞ � xr2 ðtÞ
� �

; ð7Þ
ðDE2Þ : viðt þ 1Þ ¼ xr1 ðtÞ þ F xr2 ðtÞ � xr3 ðtÞ

� �
; ð8Þ

ðDE3Þ : viðt þ 1Þ ¼ xiðtÞ þ F xgðtÞ � xiðtÞ þ xr1 ðtÞ � xr2 ðtÞ
� �

; ð9Þ
ðDE4Þ : viðt þ 1Þ ¼ xgðtÞ þ F xr1 ðtÞ � xr2 ðtÞ þ xr3 ðtÞ � xr4 ðtÞ

� �
; ð10Þ

ðDE5Þ : viðt þ 1Þ ¼ xr1 ðtÞ þ F xr2 ðtÞ � xr3 ðtÞ þ xr4 ðtÞ � xr5 ðtÞ
� �

; ð11Þ

where t denotes the iteration counter; F 2 ð0;1� is a (typically) fixed
user-defined parameter; g denotes the index of the best individual
in the population, i.e.,

g ¼ arg min
j2I

CðxjÞ;

and rk 2 I; k ¼ 1;2; . . . ;5, are mutually different, randomly selected
indices that differ also from the index i. Obviously, in order to
enable all mutation operators it must hold that N > 5.

Recombination
After mutation, the recombination operator is applied on the

generated vector vi, producing a trial vector,

ui ¼ ui1;ui2; . . . ;uinð Þ>;

as follows:

uijðt þ 1Þ ¼
v ijðt þ 1Þ; if R 6 CR or j ¼ RIðiÞ;
xijðtÞ; otherwise;

�
ð12Þ

where j ¼ 1;2; . . . ;n; R is a uniformly distributed random variable
in the range ½0;1�; CR 2 ð0;1� is a user-defined crossover constant;
and RIðiÞ is an index randomly selected from the set 1;2; . . . ; nf g.
A different value of R is used for each i and j, while the use of
RIðiÞ guarantees that at least one of the components of the mutated
vector vi is inherited to the trial vector ui.

Selection
Finally, the trial vector ui is compared against the original

individual xi and the best between them is included in the pop-
ulation of the next generation:

xiðt þ 1Þ ¼
uiðt þ 1Þ; if C uiðt þ 1Þð Þ < C xiðtÞð Þ;
xiðtÞ; otherwise:

�
ð13Þ

The new population iteratively undergoes the same procedure as
above, until a user-defined stopping criterion is fulfilled. This is usu-
ally related to the quality of the achieved solutions or the available
computational resources.

3.2. Tackling integer optimization problems

The original DE algorithm was designed for solving continuous
optimization problems. However, numerical evidence indicates
that DE can be successfully applied even on integer or mixed inte-
ger optimization problems (Piperagkas et al., 2012). The simplest
technique to achieve it, is the rounding of the vector components
to their nearest integer after mutation and recombination. Thus,
before the selection phase of (13), the trial vector undergoes
rounding to the nearest integer as follows:

ui ¼ �ui1; �ui2; . . . ; �uinð Þ>;

where

�uij ¼ buij þ 0:5c;

and b�c stands for the floor function. Due to the simplicity
and negligible computational cost of the rounding technique, we
adopted it also in the present work.
3.3. Exploration vs exploitation

Up-to-date, there is no theoretical finding to support a widely
acceptable parameter setting of DE. Various settings have been
used in the literature (Epitropakis, Tasoulis, Pavlidis, Plagianakos,
& Vrahatis, 2011) but their performance appears to be strongly
dependent on the employed mutation operator and the considered
problem. Nevertheless, by their nature, the mutation operators
that involve the best individual of the population are expected to
be more efficient in exploitation, while the ones that use randomly
selected individuals exhibit better exploration properties.

In order to verify these properties, we considered an experi-
mental scenario that resembles the actual one described later in
Section 5. Specifically, we considered a population of N ¼ 60
individuals of dimension n ¼ 24. The population was randomly

generated within the search space X ¼ ½0;1000�24. We considered
five DE variants, one for each mutation operator in (7)–(11). For
each variant, we generated 1000 offspring per individual, and mea-
sured their average distances from the best of the population. This
procedure was repeated for all pairwise combinations of
F; CR 2 f0:3;0:5;0:7g. Then, we compared the different DE variants
with respect to their offspring’s average distances from the best, as
a measure of their potential for exploration.

Specifically, there were 45 triplets ðOP; F;CRÞ with OP 2
fDE1; . . . ;DE5g and F; CR 2 f0:3;0:5;0:7g. Each triplet was com-
pared against all the others. A triplet scored a ‘‘win’’ whenever it
achieved a higher average distance than another one, with sta-
tistical significance 99%. The statistical significance was checked
using the Wilcoxon rank sum test.

Fig. 1 displays the number of wins per variant and combination
of ðF;CRÞ. Clearly, the variants based on DE2 and DE5 exhibit the
highest average offspring distances from the best individual. This
is in line with the intuitive expectation that using randomly
selected individuals in mutation, promotes exploration. Indeed,
DE2 and DE5 are the two operators that use only randomly
selected individuals as we can see in (8) and (11). These two vari-
ants were shown to be more efficient than the rest also in previous
works (Piperagkas et al., 2012) where integer problems were
considered.

Almost identical observations were made when, instead of the
distance from the best, the diversity of the offspring itself was used
as a measure of its potential for exploration. The diversity was
assessed on the basis of the average standard deviation of the off-
spring vectors per direction component.

Besides the choice of mutation operator, the values of F and CR
affect DE’s performance. Although mutation operators have inher-
ent randomization (e.g., random selection of vector indices), the
difference vectors are deterministically produced when F assumes
fixed values. However, better diversity can be achieved if F is taken
randomly. This is illustrated in Fig. 2, where we show the mutated

−1000 0 1000 2000
−1500

−1000

−500

0

500

1000

1500

2000

2500

X1

X
2

FIXED F=0.5

−1000 0 1000 2000
−1500

−1000

−500

0

500

1000

1500

2000

2500

X1

X
2

RANDOM F IN (0,1)

Fig. 2. Vectors produced using mutation operator DE5 for fixed F ¼ 0:5 (left) and random F in the range ð0;1Þ (right).

K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315 311
vectors produced by DE5 for fixed F ¼ 0:5 as well as for random F
uniformly distributed in ð0;1Þ (i.e., with mean value equal to 0.5).
Specifically, we produced 1000 mutated vectors (denoted as cyan
dots) for each one of the 60 individuals (denoted as black stars)
of a randomly generated, 2-dimensional population. It shall be
noted that both the population and the mutated vectors were
rounded to the nearest integer, in order to take into consideration
the effect of rounding in the diversity of the produced offspring.

As we see in Fig. 2, the dispersion of the mutated vectors was
higher for the case of random F. The standard deviation of the vec-
tors produced with random F was increased by almost 10% per
direction component. For this reason, it can be considered as a
good starting point for experimentation. This was also verified in
our experiments, as it will be reported later in Section 5. Since F
is typically taken in the range ð0;1�, it is a reasonable choice to
consider,

F � Uð0;1Þ;

where U stands for the Uniform distribution, and assume a dif-
ferent, random value of F for each vector component in the muta-
tion operators of (7)–(11).
4. Modeling and application issues

In our study, the decision variables of the considered optimiza-
tion problem (see Section 2) are the integer quantities zR

t and zM
t of

the remanufactured and manufactured items, respectively, per
time period. The rest of the problem’s parameters can be derived
from these values, as will be shown below. Thus, for a planning
horizon of T time periods, the corresponding optimization problem
is of dimension n ¼ 2� T . If we consider the general form
x ¼ ðx1; x2; . . . ; xnÞ> of an individual in DE, we can use the following
mapping between its components and the problem’s decision
variables:

x1 x2 x3 x4 � � � x2T�1 x2T

l l l l l l
zR

1 zM
1 zR

2 zM
2 � � � zR

T zM
T

ð14Þ

Thus, each individual constitutes a different setting of the decision
variables.
For a given decision vector, the parameters cR
t and cM

t of (1) were
computed directly from (2), while yR

t and yM
t were computed with

the recursive relations of (3), thereby becoming dependent on the
decision variables. In order to retain the integrity of the original
model and the corresponding constraints defined in (1)–(5), our
modified model consisted of the original minimization problem
in the form of (1), while the constraints were redefined as follows:

0 6 xR
t 6

Xt

s¼1

Rs; 0 6 xM
t 6

XT

s¼t

Ds; 8 t ¼ 1;2; . . . ; T: ð15Þ

These constraints were used to bound the decision variables and,
consequently, the individuals within bounded search ranges.
Additionally, the following constraints were imposed:

XT

t¼1

xR
t þ xM

t

� �
¼
XT

t¼1

Dt; ð16Þ

Xt

s¼1

xR
s þ xM

s
� �

P
XT

s¼1

Ds; 8 t ¼ 1;2; . . . ; T � 1; ð17Þ

Xt

s¼1

Rs P
Xt

s¼1

xR
s ; 8 t ¼ 1;2; . . . ; T; ð18Þ

yR
t ; y

M
t P 0; 8 t ¼ 1;2; . . . ; T: ð19Þ

The original problem of (1) along with the representation of (14)
and the constraints of (15)–(19), constitute the model that was used
in the present study. Notice that the modified model contains a
total of Q ¼ 6� T constraints.

Another crucial issue that required special treatment was the
constraint-handling strategy in order to avoid infeasible solutions.
For this purpose, a simple yet effective penalty function was used
to guide the individuals towards feasible regions of the search
space by penalizing the infeasible ones. The penalty function had
the general form:

eCðxÞ ¼ CðxÞ þ
XQ

i¼1

jPiðxÞj; ð20Þ

where the penalty term PiðxÞwas the amount of violation of the i-th
constraint by the decision vector x. In addition to the penalty func-
tion, we adopted a strategy that was shown to be successful in pre-
vious works (Piperagkas et al., 2011; Piperagkas et al., 2012). It

Table 2
Parameter values for the DE variants.

Parameter description Value(s)

Number of experiments per problem
instance

30

Population size N ¼ 60
Maximum number of function

evaluations
108

DE mutation operator DE1–DE5
Parameter values F; CR 2 f0:3;0:5;0:7g (first round)

F � Uð0;1Þ (for DE5 only)

312 K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315
consists of the following rules that determine the most desirable
one between any two decision vectors:

(a) If both vectors are feasible, the one with the smallest objec-
tive value is selected.

(b) If both vectors are infeasible, the one with the smallest total
penalty is selected.

(c) Between a feasible and an infeasible vector, the feasible one
is always preferable.

These rules were applied whenever an individual was compared
to its trial vector, in order to promote the inclusion of feasible can-
didate solutions against infeasible ones in the population. It shall
be underlined that we did not require the algorithm to be initial-
ized with a feasible population.
5. Experimental assessment

The DE algorithm was applied on the established test suite used
in Schulz (2011), which is an extended version of the one intro-
duced in Teunter et al. (2006). This is the only established test suite
and consists of a full factorial study of various problem instances
with a common planning horizon of T ¼ 12 time periods. The setup

costs KM and KR, as well as the holding costs hR, assumed three dif-
ferent values each. The demands and returns were drawn from
normal distributions with both large and small deviations. The
mean of the returns’ distribution assumed also three different val-
ues (return ratios). The exact configuration of the employed test
suite is reported in Table 1. For each combination of problem
parameters, the test suite contains 20 different problem instances
(Schulz, 2011), resulting in a total number of 6480 different prob-
lem instances.

The optimal value per problem instance is provided in the test
suite. The main optimization goal is to achieve the lowest possible
percentage error from the optimal solution within a prespecified
computational budget (maximum number of function evalua-
tions). The percentage error is computed as follows:

Cbest � C�

C�
� 100; ð21Þ

where Cbest is the best solution value detected by the algorithm and
C� is the global minimum of the problem. This performance mea-
sure was used also in previous works (Schulz, 2011; Moustaki
et al., 2013), and it was adopted here to facilitate comparisons
between algorithms. Similarly to relevant works with stochastic
population-based algorithms (Moustaki et al., 2013), for each prob-
lem instance there were 30 independent experiments conducted
and the achieved percentage errors were statistically analyzed with
respect to their mean, standard deviation, and maximum value.
Table 1
Parameter values for the employed test suite (Schulz, 2011).

Parameter description Value(s)

Setup costs KM ; KR 2 f200;500;2000g
Holding cost for ready-to-ship products hM ¼ 1
Holding cost for recoverable products hR 2 f0:2;0:5;0:8g

Demand for time period t Dt � N lD;r2
D

� �
lD ¼ 100
rD ¼ 10% of lD (small variance)
rD ¼ 20% of lD (large variance)

Returns for time period t Rt � N lR;r2
R

� �
lR ¼ 30%;50%;70% of lD

rR ¼ 10% of lR (small variance)
rR ¼ 20% of lR (large variance)
Our experimentation with DE was initiated with five variants
based on the mutation operators DE1-DE5 of (7)–(11).
Henceforth we will denote these variants simply as DE1-DE5. For
each variant, we considered all 9 parameter combinations of fixed
F; CR 2 f0:3;0:5;0:7g. Therefore, we had a total of 45 algorithmic
instances. For each one, 30 independent experiments were
conducted per problem instance, resulting in a total of
45� 30� 6480 ¼ 8;748;000 independent experiments. In a sec-
ond round of experiments, the case of random F was considered.
All the employed DE parameters are summarized in Table 2. The
same setting as in Moustaki et al. (2013) was adopted to facilitate
comparisons with the PSO approach, as well as with the estab-
lished SM variants reported in Schulz (2011).

The preliminary experiments with fixed parameter values,
revealed that DE5 with F ¼ 0:5 and CR ¼ 0:3 was the most efficient
setting (we omit detailed report of all the preliminary results for
the sake of compact presentation). This was a premature yet clear
indication that successful runs were related to the exploration
properties of the algorithm (recall discussion in Section 3.3).
Also, we observed that sometimes the algorithm was spending a
considerable number of function evaluations to detect a better
solution that was marginally different than its current best. This
deficiency was attributed to the rounding of the vector compo-
nents to the same integer value for some iterations (search
stagnation).

For this reason, we adopted an 1-step local search on the best
individual whenever a new one was found. Specifically, as soon
as a new best was detected, all its component values were per-
turbed by 	1 one-by-one. The new vectors were evaluated and,
if one was better than the best, it was replacing it in the pop-
ulation. The local search adds a computational overhead of 2� n
function evaluations per point of application. For this reason, it
was applied once, only on every new best individual.
Nevertheless, it provided considerable performance gain. On the
other hand, regularly restarting the algorithm did not offer signifi-
cant benefits in our preliminary experiments and, thus, it was
abandoned. The DE5 with the 1-step local search will be hence-
forth denoted as DE5F.

Besides the DE5F variant, we also considered a DE5 variant with
random parameter F, motivated from the observations in
Section 3.3. Specifically, we considered a uniformly distributed
F � Uð0;1Þ in (11), which assumes a different value per vector
component. Also, the better performance of smaller CR values in
our preliminary experiments, offered incentives for further
investigation of even smaller values. Thus, we experimented with
the values CR ¼ 0:2, 0.1, and 0.05. The results revealed that
CR ¼ 0:1 was the most promising value. In practice, CR controls
the number of component values of the trial vector that are inher-
ited to the new one (see (13)). Small values allow only a few of the
components of the trial vector to be included in the new one, while
the rest come from the current point of the population.

Thus, the good performance of DE5 with smaller values of CR
can be attributed to the smaller changes in the components of each
vector. For the case of CR ¼ 0:1, only 2 or 3 out of the 24

K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315 313
components of each new candidate solution are expected to differ
in xiðt þ 1Þ from the original point xiðtÞ after the selection proce-
dure of (13). This is also in line with the 1-step local search proce-
dure described above, where small perturbations of the best
individual could offer performance benefits to the algorithm. The
described DE5 variant with random F � Uð0;1Þ and CR ¼ 0:1, will
be henceforth denoted as DE5R. It shall be noted that the value
CR ¼ 0:1 was also considered with DE5F, but exhibited slightly
inferior performance.

The results of the most promising variants, namely DE5F and
DE5R, are reported in Tables 3–5, for all problem instances and
for the problem parameters of Table 1. Specifically, we report the
mean, standard deviation, and maximum percentage error from
the optimal solution for both approaches. For comparison pur-
poses, the corresponding quantities of the Silver-Meal (SM) vari-
ants that are reported in Schulz (2011), as well as for the Particle
Swarm Optimization (PSO) that are reported in Moustaki et al.
(2013), are also included in the tables. The results for the TS
approach in Li et al. (2013) were not used for comparisons, since
the percentage error from the optimal solution in Li et al. (2013)
Table 3
Percentage cost error of DE5F and DE5R for all problem instances, as well as for different de
and PSO (Moustaki et al., 2013) are also reported. The best values per line are boldfaced.

SM2 (%) SM4 (%) SMþ2

All instances Mean 7.5 6.1 6.9
StD 7.9 7.6 7.9
Max 49.2 47.3 49.2

Demand Mean 7.2 6.0 6.6
(small variance) StD 7.9 7.6 7.9

Max 43.6 47.3 43.5

(large variance) Mean 7.8 6.1 7.2
StD 8.0 7.5 8.0
Max 49.2 43.9 49.2

Returns Mean 7.3 6.1 6.8
(small variance) StD 7.8 7.6 7.8

Max 47.2 47.3 47.2

(large variance) Mean 7.7 6.1 7.1
StD 8.0 7.5 8.0
Max 49.2 46.3 49.2

Table 4
Percentage cost error of DE5F and DE5R for different return ratio and KM values. The corresp
reported. The best values per line are boldfaced.

SM2 (%) SM4 (%)

Return ratio 30% Mean 5.5 3.7
StD 5.5 4.5
Max 31.3 28.5

50% Mean 8.5 7.3
StD 9.4 8.2
Max 40.1 41.8

70% Mean 8.4 7.2
StD 8.0 8.7
Max 49.2 47.3

KM 200 Mean 4.3 3.4

StD 4.5 3.6
Max 20.2 17.6

500 Mean 5.4 3.9
StD 5.2 3.9
Max 25.1 19.3

2000 Mean 12.8 10.9
StD 9.9 10.4
Max 49.2 47.3
is not computed according to (21), but using the formula
ðCbest � C�Þ=Cbest � 100, as reported in Li et al. (2013). Thus, they
are incomparable with the rest of the algorithms. The best value(s)
per row is boldfaced in our tables.

A first evaluation of the results clearly reveals the superiority of
two algorithms, namely SMþ

4 and DE5R. Although the overall mean
value of percentage error from the optimal solution is marginally
better for SMþ

4 (2.2% against 2.3%) as shown in the first line of
Table 3, DE5R follows closely, achieving the smallest maximum
value (22.5% against 24.3%). Also, the standard deviations of the
two algorithms are slightly different (2.9% against 3.1%). The
reported values suggest that the observed performance differences
are within the limit of statistical error and may be negligible.

A closer examination of the tables, also shows the potential of
DE5R to outperform or closely follow SMþ

4 , especially for higher val-
ues of the problem parameters. Indicatively, we can refer to the
case of large variance for demand and returns in Table 3, as well
as the cases of higher values of return ratio, KM , and KR, in Tables

4 and 5. In most of these cases, SMþ
4 seemed to have declining
mand and returns variance. The corresponding results for SM variants (Schulz, 2011)

(%) SMþ4 (%) PSO (%) DEF (%) DE5R (%)

2.2 4.3 3.4 2.3
2.9 4.5 5.0 3.1

24.3 49.8 39.2 22.5

2.1 4.4 3.4 2.5
2.8 4.6 4.9 3.2

18.9 49.8 33.3 22.4

2.4 4.1 3.3 2.4
3.0 4.5 5.1 2.9

24.3 48.3 39.2 23.9

2.2 4.3 3.4 2.5
2.9 4.6 4.9 3.3

21.1 46.7 39.2 22.4

2.3 4.2 3.4 2.3
2.9 4.5 5.0 2.8

24.3 49.8 33.3 24.5

onding results for SM variants (Schulz, 2011) and PSO (Moustaki et al., 2013) are also

SMþ2 (%) SMþ4 (%) PSO (%) DEF (%) DE5R (%)

4.9 1.2 3.5 3.3 2.2
5.4 1.8 3.1 5.0 3.0

31.3 12.1 45.5 28.2 25.5

8.0 2.3 4.1 3.5 2.4
9.3 2.7 4.0 5.2 2.9

39.8 16.2 34.0 32.5 18.3

8.0 3.3 5.1 3.3 2.9
8.0 3.5 5.9 4.7 3.4

49.2 24.3 49.8 39.2 22.1

3.5 2.3 4.0 3.3 2.9

4.0 2.6 3.1 3.9 3.1
20.2 13.5 45.5 24.4 17.5

4.8 2.1 4.5 2.4 2.7
4.9 2.5 4.1 2.5 2.9

23.7 12.8 27.5 16.0 14.9

12.6 2.3 4.4 4.4 1.8
9.9 3.4 5.9 7.1 3.2

49.2 24.3 49.8 39.2 23.5

Table 5
Percentage cost error of DE5F and DE5R for different KR and hR values. The
corresponding results for SM variants (Schulz, 2011) and PSO (Moustaki et al.,
2013) are also reported. The best values per line are boldfaced.

SM2 (%) SM4 (%) SMþ
2 (%) SMþ

4 (%) PSO (%) DEF (%) DE5R (%)

KR 200 Mean 10.9 6.6 10.0 1.9 5.7 3.8 2.8

StD 9.1 7.8 9.4 2.1 5.5 4.0 3.2
Max 49.2 40.2 49.2 11.8 49.8 24.4 19.3

500 Mean 7.9 8.1 7.3 3.4 3.8 1.9 1.7
StD 6.6 8.2 6.6 3.2 4.1 2.0 2.0
Max 34.7 47.3 34.7 19.1 37.4 12.6 11.6

2000 Mean 3.7 3.5 3.6 1.4 3.3 4.4 1.6
StD 6.0 5.7 5.9 2.9 3.5 7.1 2.7
Max 29.4 25.7 29.4 24.3 45.5 39.2 22.1

hR 0.2 Mean 5.9 5.3 5.8 1.7 4.5 3.0 1.8

StD 8.0 8.0 8.0 2.5 5.2 5.3 2.5
Max 42.9 47.3 42.9 21.1 49.8 35.6 21.7

0.5 Mean 7.5 6.5 7.0 2.3 4.3 3.3 2.3
StD 7.7 7.6 7.7 3.0 4.5 5.0 2.9
Max 49.2 42.4 49.2 24.3 45.5 39.2 23.6

0.8 Mean 9.1 6.3 8.1 2.8 4.0 3.7 3.0
StD 7.7 7.0 7.8 3.0 3.9 4.5 3.3
Max 44.4 40.3 44.4 20.6 42.9 32.5 19.5

314 K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315
performance, with DE5R exhibiting complementary behavior. The
mean and standard deviation of the percentage error for both algo-
rithms is graphically illustrated also in Fig. 3 to facilitate optical
interpretation. Based on our model formulation presented in
Section 4, larger values of the parameters correspond to larger
search ranges for the DE. Taking into consideration that the
individuals in DE’s population are produced such that the con-
straints of (15) are de facto satisfied, we can infer that DE’s good
performance related to higher search ranges is intuitively sound,
because higher search ranges result in smaller number of infeasible
vectors (that are eventually restricted on the boundary of the
search space) per iteration of the algorithm.
Fig. 3. Mean and standard deviation of the percentage error from optimal solution for SM
SCM: setup cost manufacturing, SCR: setup cost remanufacturing, and HCR: holding cos
Regarding the time complexity of the DE variants, it ranged
from a few seconds (in the cases where the optimal solution was
attained) up to 2.5 min for the cases where the number of function
evaluations was exceeded. The reported times are indicative, since
they heavily depend on the implementation, the hardware, and the
machine’s load at the time of execution. All times refer to execu-
tion on Ubuntu Linux servers with Intel� Core™ i7 processors,
8 GB RAM, occupying all the available cores, while the source code
was written in C++ (compiler GCC ver. 4.6.3). In our case, no effort
was paid to further optimize the running time of the algorithms by
using special optimization flags or software for the compilation of
our source code. It shall be noted that, besides its efficiency, DE
requires only minor implementation effort due to its simplicity
and the lack of complicated procedures.

Our final concern was the scaling property of the DE5R

approach. The established test suite that was used in the previous
experiments contains only problems of T ¼ 12 periods. However,
following the practice in similar studies (e.g., Li et al., 2013) we
produced a set of problem instances for three different time peri-
ods, namely T ¼ 24, 48, and 52. Each problem instance was pro-
duced by properly extending the corresponding problem of
Schulz’s test suite. The extended parameter vectors (for demand,
returns, return ratio, etc.) were produced by using the same proba-
bility distributions as in Schulz’s test suite. The distinguished DE5R

approach was applied on the new test problems according to the
experimental framework of the main investigation for T ¼ 12.

In the new experiments, we were interested in probing the rela-
tive performance scaling of our approach with respect to that of
CPLEX. For this reason, a fixed execution time of 500 s was consid-
ered, and both CPLEX and DE5R were run on all test problems.
Finally, the percentage error between DE’s solution and the one
obtained by CPLEX, averaged over all problem instances, were
derived. The results are graphically illustrated in Fig. 4. As we
can see, there is a clear logarithmic trend in the corresponding
curves both for the mean and standard deviation of the percentage
error between the solutions of CPLEX and DE5R. This implies a
smooth scaling capability for DE5R.
þ
4 and DE5R, for all problem cases. Labels are D: demand, R: returns, RR: return ratio,
t remanufacturing.

12 24 48 52
2

2.5

3

3.5

4

4.5

5

5.5

2.3

2.94

3.46 3.53

3.1

4.21

5.13 5.22

TIME PERIODS

P
E

R
C

E
N

T
A

G
E

 E
R

R
O

R

 MEAN
 St.D.

Fig. 4. Performance scaling for the DE5R algorithm.

K.E. Parsopoulos et al. / Computers & Industrial Engineering 83 (2015) 307–315 315
6. Conclusions and future research

In the current work, we thoroughly investigate the performance
of a very popular population-based algorithm, namely Differential
Evolution (DE), on the Single-Item Dynamic Lot Sizing problem
with returns and remanufacturing. The most promising variant of
the algorithm was identified and properly modified to further
enhance its performance. Also, necessary modifications in the for-
mulation of the corresponding optimization problem were intro-
duced. The algorithm was applied on an established test suite
employed in previous studies. Its performance was analyzed and
compared with state-of-the-art approaches, as well as with pre-
viously investigated (meta) heuristics.

The results suggest that DE is very competitive to the most effi-
cient approaches, and it can be considered as a promising alterna-
tive for solving the considered problems. The distinguished DE
variants were compared against established variants of the
adapted SM algorithm and its enhanced versions, as well as against
recently proposed PSO variants. The results are aligned (in terms of
cost performance) with results from previous studies (Piperagkas
et al., 2011, 2012), supporting the use of modern population-based
optimization algorithms to tackle Dynamic Lot Sizing problems
under various modifications.

Future work will contribute towards the direction of developing
more refined versions in order to further enhance their perfor-
mance on the specific problem type. Specialized operators as well
as parallel implementations can offer the desirable performance
boost. Also since the quality of return items plays an important role
in Reverse Logistics, it would be interesting to study the DLSR
problem assuming quality considerations of returned items.
Another topic for further research would be the study of DLSR
problem under stochastic demand and returns and to develop
and test appropriate nature inspired or heuristics algorithms for
its solution. Finally the present model can be extended to the case
of two kinds of finished goods (one from fresh raw materials and
the other one from returned items) with different selling prices
in the market.

References

Ahiska, S. S., & Kurtul, E. (2014). Modeling and analysis of a product substitution
strategy for a stochastic manufacturing/remanufacturing system. Computers &
Industrial Engineering, 72(1), 1–11.

Akcali, E., & Cetinkaya, S. (2011). Quantitative models for inventory and production
planning in closed-loop supply chains. International Journal of Production
Research, 49(8), 2373–2407.

Chakraborty, U. K. (Ed.). (2008). Advances in differential evolution. Studies in
computational intelligence (Vol. 143). Springer.
Epitropakis, M. G., Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., & Vrahatis, M. N.
(2011). Enhancing differential evolution utilizing proximity-based mutation
operators. IEEE Transactions on Evolutionary Computation, 15(1), 99–119.

Feoktistov, V. (2006). Differential evolution: In search of solutions. Springer.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E. A., van

Numen, J. A. E. E., & van Wassenhove, L. N. (1997). Quantitative models for
reverse logistics: A review. European Journal of Operational Research, 103(1),
1–17.

Golany, B., Yang, J., & Yu, G. (2001). Economic lot-sizing with remanufacturing
options. IIE Transactions, 33(11), 995–1003.

Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop
supply chain: A comprehensive review to explore the future. European Journal of
Operational Research, 240(3), 603–626.

Guide, V. D. R., Jr., Jayaraman, V., & Srivastava, R. (1999). Production planning and
control for remanufacturing: a state-of-the-art survey. Robotics and Computer
Integrated Manufacturing, 15(3), 221–230.

Helmrich, M. J. R., Jans, R., Den Heuvel, W., & Wagelmans, A. P. M. (2014). Economic
lot-sizing with remanufacturing: Complexity and efficient formulations. IIE
Transactions, 46(1), 67–86.

Li, X., Baki, F., Tian, P., & Chaouch, B. A. (2013). A robust bock-chain based tabu
search algorithm for the dynamic lot sizing problem with product returns and
remanufacturing. Omega, The International Journal of Management Science, 42(1),
75–87.

Moustaki, E., Parsopoulos, K. E., Konstantaras, I., Skouri, K., & Ganas, I. (2013). A first
study of particle swarm optimization on the dynamic lot sizing problem with
product returns. In XI Balkan conference on operational research (BALCOR 2013)
(pp. 348–356). Belgrade, Serbia.

Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: A survey
and experimental analysis. Artificial Intelligence Review, 33(1–2), 61–106.

Pineyro, P., & Viera, O. (2009). Inventory policies for the economic lot-sizing
problem with remanufacturing and final disposal options. Journal of Industrial
and Management Optimization, 5(2), 217–238.

Piperagkas, G. S., Voglis, C., Tatsis, V. A., Parsopoulos, K. E., & Skouri, K. (2011).
Applying PSO and DE on multi-item inventory problem with supplier selection.
In The 9th metaheuristics international conference (MIC 2011) (pp. 359–368),
Udine, Italy.

Piperagkas, G. S., Konstantaras, I., Skouri, K., & Parsopoulos, K. E. (2012). Solving the
stochastic dynamic lot-sizing problem through nature-inspired heuristics.
Computers & Operations Research, 39(7), 1555–1565.

Ponsich, A., & Coello Coello, C. A. (2011). Differential evolution performances for the
solution of mixed-integer constrained process engineering problems. Applied
Soft Computing, 11(1), 399–409.

Qing, A. (2009). Differential evolution: Fundamentals and applications in electrical
engineering. Wiley-IEEE Press.

Richter, K., & Sombrutzki, M. (2000). Remanufacturing planning for the reverse
Wagner/Whitin models. European Journal of Operational Research, 121(2),
304–315.

Richter, K., & Weber, J. (2001). The reverse Wagner/Whitin model with variable
manufacturing and remanufacturing cost. International Journal of Production
Economics, 71(1–3), 447–456.

Schulz, T. (2011). A new silver-meal based heuristic for the single-item dynamic lot
sizing problem with returns and remanufacturing. International Journal of
Production Research, 49(9), 2519–2533.

Spears, W. M. (2000). Evolutionary algorithms: The role of mutation and
recombination. Springer.

Steeneck, D. W., & Sarin, S. C. (2013). Pricing and production planning for reverse
supply chain: a review. International Journal of Production Research, 51(23–24),
6972–6989.

Stindt, D., & Sahamie, R. (2014). Review of research on closed loop supply chain
management in the process industry. Flexible Services and Manufacturing Journal,
26(1–2), 268–293.

Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11, 341–359.

Teunter, R. H., Bayindir, Z. P., & Van den Heuvel, W. (2006). Dynamic lot sizing with
product returns and remanufacturing. International Journal of Production
Research, 44(20), 4377–4400.

Teunter, R., Kaparis, K., & Tang, O. (2008). Multi-product economic lot scheduling
problem with separate production lines for manufacturing and
remanufacturing. European Journal of Operational Research, 191(4), 1241–1253.

Teunter, R., Tang, O., & Kaparis, K. (2009). Heuristics for the economic lot scheduling
problem with returns. International Journal of Production Economics, 118(1),
323–330.

Thierry, M. C., Salomon, M., van Numen, J., & van Wassenhove, L. N. (1995). Strategic
issues in product recovery management. California Management Review, 37(2),
114–135.

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size
model. Management Science, 5(1), 88–96.

Yang, J., Golany, B., & Yu, G. (2005). A concave-cost production planning problem
with remanufacturing options. Naval Research Logistics, 52(5), 443–458.

Zanoni, S., Segerstedt, A., & Tang, O. (2012). Multi-product economic lot scheduling
problem with manufacturing and remanufacturing using a basic period policy.
Computers & Industrial Engineering, 62(4), 1025–1033.

http://refhub.elsevier.com/S0360-8352(15)00071-6/h0005
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0005
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0005
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0010
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0010
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0010
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0015
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0015
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0020
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0020
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0020
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0025
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0030
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0030
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0030
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0030
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0035
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0035
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0040
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0040
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0040
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0045
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0045
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0045
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0050
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0050
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0050
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0055
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0055
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0055
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0055
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0065
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0065
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0070
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0070
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0070
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0080
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0080
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0080
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0085
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0085
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0085
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0090
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0090
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0095
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0095
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0095
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0100
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0100
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0100
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0105
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0105
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0105
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0110
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0110
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0115
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0115
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0115
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0120
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0120
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0120
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0125
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0125
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0125
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0130
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0130
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0130
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0135
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0135
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0135
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0140
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0140
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0140
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0145
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0145
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0145
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0150
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0150
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0155
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0155
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0160
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0160
http://refhub.elsevier.com/S0360-8352(15)00071-6/h0160

	Metaheuristic optimization for the Single-Item Dynamic Lot Sizing problem with returns and remanufacturing
	1 Introduction
	2 Original model formulation
	3 Differential Evolution
	3.1 Basic search procedures and operators
	Mutation
	Recombination
	Selection

	3.2 Tackling integer optimization problems
	3.3 Exploration vs exploitation

	4 Modeling and application issues
	5 Experimental assessment
	6 Conclusions and future research
	References

