
P

K
D

a

A
R
R
A
A

K
P
P
C
M
M

1

c
t
v
b
[
m
i
P
f

a
d
a
c
a
s
m

t
a
g

1
h

Applied Soft Computing 12 (2012) 3552–3579

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

arallel cooperative micro-particle swarm optimization: A master–slave model

onstantinos E. Parsopoulos ∗

epartment of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

 r t i c l e i n f o

rticle history:
eceived 29 December 2011
eceived in revised form 11 May 2012
ccepted 2 July 2012
vailable online 31 July 2012

eywords:
article swarm optimization

a b s t r a c t

A parallel master–slave model of the recently proposed cooperative micro-particle swarm optimization
approach is introduced. The algorithm is based on the decomposition of the original search space in
subspaces of smaller dimension. Each subspace is probed by a subswarm of small size that identifies
suboptimal partial solution components. A context vector that serves as repository for the best attained
partial solutions of all subswarms is used for the evaluation of the particles. The required modifications to
fit the original algorithm within a parallel computation framework are discussed along with their impact
on performance. Also, both linear and random allocation of direction components to subswarms are
arallel algorithms
ooperative algorithms
aster–slave model
icro-evolutionary algorithms

considered to render the algorithm capable of capturing possible correlations among decision variables.
The proposed approach is evaluated on two types of computer systems, namely an academic cluster
and a desktop multicore system, using a popular test suite. Statistical analysis of the obtained results
reveals that, besides the expected run-time superiority of the parallel model, significant improvements
in solution quality can also be achieved. Different factors that may affect performance are pointed out,
offering intuition on the expected behavior of the parallel model.
. Introduction

Particle swarm optimization (PSO) has been shown to be an effi-
ient optimization algorithm in a plethora of global optimization
asks. Its efficiency and easy implementation has rendered PSO a
ery popular approach. Today, its applicability spans a large num-
er of scientific and technological fields, including power systems
1], electromagnetics [2], circuit design [3], antenna design [4],

achine learning [5], scheduling [6], bioinformatics and medical
nformatics [7,8], and astrophysics [9]. Numerous applications of
SO are reported in relevant surveys [10–12] and its most crucial
eatures are analyzed in specialized books [13–15].

However, as it holds true for most metaheuristic optimization
lgorithms, the efficiency of PSO deteriorates proportionally to the
imensionality of the problem. This property is usually referred to
s the curse of dimensionality, adopting the corresponding nomen-
lature from dynamic programming [16]. Unfortunately, modern
pplications often involve optimization problems of high dimen-
ionality and complexity. In such problems, standard variants of
etaheuristics usually exhibit inferior performance.
This deficiency is often attributed to the algorithms’ inability
o tackle complex, high-dimensional, nonlinear objective functions
nd vast search spaces by using a single search module, i.e., a sin-
le population. The problem has been addressed by exploiting the

∗ Tel.: +30 2651008839; fax: +30 2651008890.
E-mail address: kostasp@cs.uoi.gr

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.07.013
© 2012 Elsevier B.V. All rights reserved.

inherent parallelization properties of most metaheuristics. New
variants that employ multiple search modules have been devel-
oped. Typically, the search modules are designed to concurrently
acquire and share information in a cooperative manner. These
developments gave rise to the class of cooperative algorithms [17].

Up-to-date, various established optimization approaches have
been extended within a cooperative framework, including simu-
lated annealing [18], tabu search [19], genetic algorithms [20], ant
colony optimization [21], evolution strategies [22] and PSO [23]. A
comprehensive survey of the most promising PSO-based coopera-
tive models can be found in [24]. Experimental evidence suggests
that, in many cases, the cooperative models can achieve superior
performance than the corresponding original algorithms under the
same computational budget limitations.

This property has triggered research towards the development
of cooperative variants that can achieve similar performance lev-
els with the original algorithms, although requiring only a fraction
of the available computational resources. Such approaches could
extend the applicability of evolutionary algorithms in low-end
computer systems where demanding applications are prohibitive.
The first step towards this direction was the development of rudi-
mentary instances of the standard evolutionary algorithms, called
micro-evolutionary algorithms (micro-EAs), which are characterized
by small population sizes and simple operators.
Although micro-EAs were primarily considered for educational
purposes, recent studies revealed their potential as promising
light-weight optimizers even for demanding applications such as
image processing [25]. In this context, a micro-PSO approach was

dx.doi.org/10.1016/j.asoc.2012.07.013
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:kostasp@cs.uoi.gr
dx.doi.org/10.1016/j.asoc.2012.07.013

t Com

i
l
m
s
a
t

d
c
p
t
d
c

m
r
s
a
u
s
l
o
d
u
i

a
p
o
p
a
a
t
s
w
v
t
w
s

C
a
a
s
T
i
p
o
t
f

t
c
p
m
o
c
p
t
s
i

K.E. Parsopoulos / Applied Sof

ntroduced [26] and shown to be a viable alternative for tack-
ing high-dimensional problems. The most common deficiency of

icro-EAs was the rapid loss of diversity due the small population
izes, which often resulted in search stagnation. This problem was
ddressed by incorporating proper diversity-preserving techniques
o enhance the exploration capability of the algorithms.

Recently, the efficiency of cooperative algorithms on high-
imensional problems was combined with the flexibility and low
omputational requirements of micro-PSO in the cooperative micro-
article swarm optimization (COMPSO) algorithm [27]. In COMPSO,
he search space is linearly decomposed in subspaces of lower
imension. Then, each subspace is assigned to a subswarm and
oncurrently probed with the rest in a cooperative manner.

The particles of each subswarm carry only partial solution infor-
ation. Hence, the construction of a complete solution vector

equires cooperation and information sharing among the sub-
warms. This is achieved by using a common context vector, where
ll subswarms deposit their best findings. The context vector is
sed for the evaluation of the particles of all subswarms. Thus, the
earch of each subswarm is indirectly influenced by the rest. Pre-
iminary experiments indicated that COMPSO could significantly
utperform standard PSO in widely used benchmark problems of
imension up to 1200 [27]. The same cooperative model was also
sed with the differential evolution algorithm, exhibiting promis-

ng results [28].
Besides the increased efficiency, cooperative algorithms possess

n additional desirable feature: they can easily fit a high-
erformance computing (HPC) environment. HPC systems have
ffered the ground for the study of previously intractable complex
roblems by tremendously increasing the computational power
nd storage resources. Also, they offered the technical background
nd experience for the development of more efficient processors
hat incorporate inherent parallelization properties. Such proces-
ors are available in modern multicore personal computers (PCs),
hich can efficiently tackle demanding computational tasks, pro-

iding small-scale, shared-memory, parallel-computing solutions
o the user. The parallelization capabilities can be exploited by using
idely used software such as the message passing interface1 (MPI)

tandard and the parallel virtual machine2 (PVM).
The present paper introduces a parallel master–slave model of

OMPSO (henceforth denoted as PCOMPSO). To the best of the
uthor’s knowledge, this is the first parallel implementation of

 cooperative approach based on micro-PSO. For this reason, the
imple yet efficient master–slave parallelization model was used.
he algorithm was implemented following the MPI standard and
t was assessed on a widely used test suite. Since parallelization is
rimarily recommended for the optimization of time-consuming
bjective functions, random time-delay was added to each func-
ion evaluation to simulate computationally demanding objective
unctions.

In addition to the linear decomposition scheme that is used in
he original COMPSO [27], a random decomposition scheme was
onsidered in PCOMPSO to tackle possible correlations among the
roblem’s decision variables. The proposed approach was imple-
ented and validated on two different computer systems. The first

ne was the Saw facility of the shared hierarchical academic research
omputing network3 (SHARCNET), which is an academic cluster for
arallel computations. The second one was a shared-memory mul-
icore PC. The results were statistically analyzed with respect to

olution quality and time-performance. The present study primar-
ly aimed at:

1 http://www.mcs.anl.gov/research/projects/mpi/
2 http://www.csm.ornl.gov/pvm/
3 http://www.sharcnet.ca/
puting 12 (2012) 3552–3579 3553

(a) revealing possible superiority of PCOMPSO against COMPSO,
(b) investigating the impact of modifications in the original

COMPSO imposed by the parallelization,
(c) assessing the random decomposition scheme against the linear

one, and
(d) gaining intuition regarding PCOMPSO’s performance on differ-

ent parallel computation environments.

The rest of the paper is organized as follows: Section 2 pro-
vides the necessary background information, while the proposed
master–slave model of PCOMPSO is analyzed in Section 3.
The experimentation environments and parameter settings are
reported in Section 4, followed by the experimental results and
discussion in Section 5. Finally, the paper concludes in Section 6.

2. Background information

In the following paragraphs, the necessary background infor-
mation is briefly described. This includes descriptions of PSO,
micro-PSO, their cooperative extensions as well as a presentation
of the COMPSO algorithm.

2.1. Particle swarm optimization

PSO is a stochastic population-based optimization algorithm. It
was introduced in 1995 as a new approach for solving continu-
ous optimization problems, inspired by the collective behavior and
emergent phenomena in decentralized systems [29]. Today, PSO is
an exceptional representative of swarm intelligence algorithms [30].

Putting it formally, let the minimization problem:

min
x∈X

f (x),

where f : X ⊂ R
n → R is an n-dimensional objective function. PSO

probes the search space X with a set of search agents. This set is
called a swarm while the search agents are called the particles. Thus,
if the swarm consists of N particles, it can be defined as:

S = {x1, x2, . . . , xN},

where the ith particle is an n-dimensional vector:

xi = (xi1, xi2, . . . , xin)� ∈ X, i ∈ I = {1, 2, . . . , N}.

The particles move in the search space by assuming an adaptable
position shift, called velocity:

vi = (vi1, vi2, . . . , vin)�, i ∈ I,

while retaining in memory the best position they have ever attained
in X:

pi = (pi1, pi2, . . . , pin)� ∈ X, i ∈ I.

Moreover, each particle assumes a neighborhood of other particles
with which it shares its findings. The best position achieved by all
the members of a neighborhood is used for their velocity update.
Neighborhoods are defined according to neighborhood topologies,
which define the communication channels among the particles
[31].

The ring is probably the most popular neighborhood topology.
According to it, if r is the neighborhood radius, then the ith particle

shares information with the particles with indices belonging in the
set:

NBi,r = {i − r, i − r + 1, . . . , i, . . . , i + r − 1, i + r},

http://www.mcs.anl.gov/research/projects/mpi/
http://www.csm.ornl.gov/pvm/
http://www.sharcnet.ca/

3 t Com

w
L
i

g

a
b

v

x

w
c
t
[
i
f

p

T
l
m
w
[

�

a
a

2

d
i
N
s
t
A
p

r

D

E
b
t
p

c
p
s
c
i
s
a
m
t
r
s

554 K.E. Parsopoulos / Applied Sof

here the index 1 is considered as the immediate neighbor after N.
et gi be the index of the particle with the best position among all
n NBi,r, i.e.:

i = arg min
k∈NBi,r

{f (pk)},

nd let t be the iteration counter. Then, the swarm is manipulated
y the following equations [32]:

ij(t + 1) = �[vij(t) + c1R1(pij(t) − xij(t)) + c2R2(pgi,j
(t) − xij(t))],

(1)

ij(t + 1) = xij(t) + vij(t + 1), (2)

here i ∈ I, j = 1, 2, . . ., n; � is a parameter called the constriction
oefficient; c1 and c2 are the cognitive and social parameters, respec-
ively; and R1, R2, are random variables uniformly distributed in
0,1]. Notice that a different value of R1 and R2 is sampled for each

 and j in Eq. (1). The best positions are updated at each iteration as
ollows:

i(t + 1) =
{

xi(t + 1), if f (xi(t + 1)) < f (pi(t)),

pi(t), otherwise.
(3)

he constriction coefficient � in Eq. (1) is a mechanism for control-
ing the magnitude of velocities. It was added to the original PSO

odel as a means of addressing the problem of swarm explosion,
hile its properties were studied in the stability analysis of PSO

32,33]. Stemming from this study, the parameter values:

 = 0.729, c1 = c2 = 2.05, (4)

re considered as the default parameter setting in many PSO
pproaches.

.2. Micro-particle swarm optimization

Micro-PSO has the same structure with standard PSO. The only
ifference lies in the considered swarm size, N, which shall be small

n the case of micro–PSO. Typically, it is required that N ≤ 10, with
 = 5 being a popular choice. An identified drawback of selecting
mall swarm size is the premature convergence of the particles to
he best detected solutions within a few iterations of the algorithm.
s expected, this effect becomes more severe in highly nonlinear
roblems as the dimension, n, increases.

Attempting to quantify the difficulty of a problem, the following
atio can be defined:

 = n

N
. (5)

mpirical evidence for EAs suggest that, in most cases, the problem
ecomes harder as D increases. Based on this finding, it is expected
hat micro-PSO may raise performance issues in high-dimensional
roblems.

In general, the weakness of search stagnation and premature
onvergence of micro-EAs has been addressed by restarting the
opulation as soon as there is no further progress in search. Also,
pecialized techniques were introduced to alleviate the repetitive
onvergence of the algorithm to previous solutions after restart-
ng. For instance, in [26] �PSO was equipped with a repelling
cheme that keeps the swarm away from any point belonging in

 black-list of detected solutions. This technique has many in com-

on with tabu search approaches as well as with the repulsion

echnique introduced in [34]. Nevertheless, the small amount of
eported results for micro-PSO, mostly for test problems of dimen-
ion n ≤ 500, has proved to be inadequate to establish it as a
puting 12 (2012) 3552–3579

promising alternative for solving difficult high-dimensional prob-
lems.

2.3. Cooperative particle swarm optimization

Cooperative PSO (CPSO) variants [35,36] have been proposed
as efficient approaches for solving high-dimensional problems by
decomposing the original n-dimensional search space X into low-
dimensional subspaces:

X = X1 × X2 × · · · × XK ,

each one probed by a different subswarm. More specifically, let n1,
n2, . . ., nK, be K positive integers indicating the dimensions of the
subspaces, i.e.:

n =
K∑

k=1

nk, nk ≥ 1, k = 1, 2, . . . , K,

where n is the dimension of the original problem. Then, instead
of using a single n-dimensional swarm as in standard PSO, CPSO
employs K subswarms, S1, S2, . . . , SK , of sizes N1, N2, . . ., NK,
respectively. Each subswarm Sk undertakes the search of the cor-
responding nk-dimensional subspace Xk. For proper choices of nk
and Nk, the corresponding ratio Dk = nk/Nk as defined in Eq. (5)
can become significantly smaller than the original one, implying
an easier optimization task in the corresponding nk-dimensional
subspace.

The update of each subswarm in CPSO is identical to the update
of standard PSO described in Section 2.1. However, a significant
issue arises with the evaluation of the particles. More specifically,
since each subswarm operates in a subspace of smaller dimension
than the original search space, its particles carry only partial solu-
tion information. Thus, they cannot be directly evaluated with the
objective function due to the missing components.

This problem is addressed by combining the best information
of each subswarm in a shared buffer vector, also called context
vector [36]. This vector is used as a host of the best findings of
all subswarms, providing to each particle the missing information
required for its evaluation. This kind of indirect cooperation among
the subswarms offers the opportunity to eventually move closer
to the best positions of the original search space by combining
information gathered from its low-dimensional subspaces.

More specifically, let B be the n-dimensional buffer vector where
each subswarm deposits its contribution. Then, if:

b[k] = (b[k]
1 , b[k]

2 , . . . , b[k]
nk

)�,

is a contributed nk-dimensional vector by the kth subswarm Sk, the
buffer vector is defined as:

B = (b[1]
1 , . . . , b[1]

n1︸ ︷︷ ︸
contribution of S1

, b[2]
1 , . . . , b[2]

n2︸ ︷︷ ︸
contribution of S2

, . . . , b[K]
1 , . . . , b[K]

nK︸ ︷︷ ︸
contribution of SK

)�.

The ith particle of the jth subswarm, denoted as:

x[j]
i
= (x[j]

i1 , x[j]
i2 , . . . , x[j]

i,nj
)� ∈ Xj,

is evaluated by using the buffer vector to complement the missing
components. This is achieved by substituting the buffer’s compo-
nents that correspond to the contribution of the jth swarm, with the

[j]
components of x
i

while retaining the rest of the buffer unchanged.

Hence, the objective value assigned to x[j]
i

is:

f [j]
i
= f (B[j]

i
), (6)

t Computing 12 (2012) 3552–3579 3555

w

B

w

s

b

f
t

B

B
b
g

i
i
t
c
h
m
o
f
a

2

i
P
o
d
s
t
s
t

t
D
r
s
i
r
s
m
d
t
r

i
t
b
o
p
s

e
o
a

Table 1
Pseudocode of the COMPSO algorithm [27].

Input K (number of subswarms), Nk , nk (subswarm’s size and
dimension), k = 1, 2, . . ., K,
B (buffer vector), �min (diversity threshold), f(.) (objective
function)

Step 1. Initialize randomly all subswarms in their search spaces
(subspaces of the original one).

Step 2. Initialize buffer vector B using a randomly selected
particle from each subswarm.

Step 3. Evaluate all particles using B and set their best positions.
Step 4. While (termination condition not met)
Step 5. Do (k = 1, 2, . . ., K)
Step 6. Do (i = 1, 2, . . ., Nk)
Step 7. Update the particle x[k]

i
using Eqs. (1) and (2).

Step 8. Evaluate x[k]
i

using Eq. (6) and the buffer B.
Step 9. Update the best position, p[k]

i
, using Eq. (3), and the

buffer B using Eq. (7).
Step 10. If (f (x[k]

i
) < f (B)) Then

Step 11. Copy x[k]
i

in the proper position of the buffer B.
Step 12. End If
Step 13. End Do
Step 14. Compute standard deviations, � j , j = 1, 2, . . ., nk , for all

direction components.
Step 15. If (min

j
{�j} < �min) Then

Step 16. Re-initialize the kth subswarm randomly, retaining
its best positions.

Step 17. End If
Step 18. End Do
Step 19. End While
K.E. Parsopoulos / Applied Sof

here,

[j]
i
= (b[1]

1 , . . . , b[1]
n1︸ ︷︷ ︸

unchanged

, . . . , x[j]
i1 , . . . , x[j]

i,nj︸ ︷︷ ︸
considered particle

, . . . , b[K]
1 , . . . , b[K]

nK︸ ︷︷ ︸
unchanged

)�,

ith i = 1, 2, . . ., Nj, and j = 1, 2, . . ., K.
A reasonable choice for the contributed information of each sub-

warm is its overall best position, i.e.:

[k] = p[k]
g =

(
p[k]

g1 , p[k]
g2 , . . . , p[k]

g,nk

)�
,

or the kth subswarm. This choice produces a buffer that contains
he overall best positions of all subswarms:

 = (p[1]
g1 , . . . , p[1]

g,n1︸ ︷︷ ︸
overall best of S1

, p[2]
g1 , . . . , p[2]

g,n2︸ ︷︷ ︸
overall best of S2

, . . . , p[K]
g1 , . . . , p[K]

g,nK︸ ︷︷ ︸
overall best of SK

)�. (7)

y definition, this buffer constitutes the best position ever attained
y the algorithm, i.e., it is the best obtained approximation of the
lobal minimizer of f(x).

Different approaches for building the buffer vector may result
n different convergence properties of the algorithm. For example,
nstead of the overall best position, a randomly selected best posi-
ion from each subswarm can be contributed to the buffer. Such a
ooperative scheme is expected to exhibit slower convergence but
igher diversity than the one described above. Thus, the user shall
ake a decision taking into consideration the desirable dynamics

f the algorithm as well as possible information on the objective
unction, such as estimations of the number of local minima or their
pproximate distribution in the search space.

.4. Cooperative micro-particle swarm optimization

Recently, a cooperative micro-PSO (COMPSO) algorithm was
ntroduced [27]. This approach combines the flexibility of micro-
SO with the efficiency of cooperative approaches. The algorithm’s
peration is based on the same concepts as for the CPSO approach
escribed in the previous section, i.e., it decomposes the original
earch space into low-dimensional subspaces, which are allocated
o micro-PSO subswarms. The subswarms promote cooperation by
haring their findings, while their sizes are selected to be higher
han the dimensions of the corresponding subspaces [27].

The subswarms shall assume very small size in micro-PSO. Thus,
he dimension of the subspaces shall be selected such that the ratios
k = nk/Nk, k = 1, 2, . . ., K, lie as close to zero as possible. In practice, a

atio value around 0.5 provides satisfactory results. For example, for
ubswarm size Nk = 5, a decomposition of the original search space
nto subspaces of dimension nk = 3 for all k is a reasonable configu-
ation, allocating a subswarm of 5 particles to each 3-dimensional
ubspace. Moreover, in order to avoid search stagnation and pre-
ature convergence, a lower bound of the standard deviation per

irection component can be determined for each subswarm. If this
hreshold is violated then the corresponding subswarm is randomly
estarted, although retaining its best positions [27].

A pseudocode of the COMPSO algorithm is provided in Table 1. It
s worth noting that the buffer vector is updated immediately after
he detection of a better position (steps 10–12 of the pseudocode)
y copying the corresponding particle (which also becomes the
verall best position for the corresponding subswarm) to the proper
osition in B. Thus, the subsequent particles even of the same sub-
warm will be evaluated by using the updated buffer.
This is an asynchronous buffer update scheme that immediately
xploits the discovered information, thereby producing higher
verall convergence speed to the COMPSO algorithm. Alternatively,

 synchronous scheme can be used where the buffer is updated after
Step 20. Print buffer B and f (B).

the evaluation of all particles and subswarms. Slower convergence
speed shall be expected in this case.

In [27] the performance of COMPSO was investigated on a set of
widely used test problems for dimensions up to 1200. The results
suggested that COMPSO can significantly outperform the standard
PSO. In these experiments, the search space was linearly decom-
posed, i.e., the first 3 direction components were allocated to the
first subswarm, the next 3 directions to the second subswarm, etc.
Thus, the kth subswarm Sk, k = 1, 2, . . ., K, was operating on the
coordinate directions, 3k − 2, 3k − 1, and 3k, of the original objec-
tive function, occupying the corresponding positions in the buffer
vector.

In the next section, the established master–slave model for par-
allel computing is briefly described.

2.5. Parallel master–slave model

The master–slave (MS) model is among the most popular
approaches for parallel computing. Its popularity can be attributed
to the straightforward exploitation of the parallelization capa-
bilities of modern computer systems as well as to its easy
implementation. The development of parallel MS variants of estab-
lished algorithms usually requires minor programming effort and
essential knowledge of the corresponding computer system. Also,
usually it requires only minor alterations in the algorithm’s struc-
ture. For these reasons, the MS model is considered as the first
step in the transition of an algorithm from its serial to parallel
implementation. Nevertheless, the MS model suffers disadvan-
tages such as the sequential generation of slave processes and the
heavy communication overheads imposed on the master processor
[37,38].

In general, the MS model consists of one master process and M

slave processes. Usually, the master is responsible for performing
the main operations of the implemented algorithm, while the slaves
are evoked whenever required to perform intermediate operations,
in parallel. For instance, an MS model of an evolutionary algorithm

3556 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

Table 2
Pseudocode for the synchronous (left) and asynchronous (right) evaluation procedure of N particles using M < N slave processes.

Input N (number of swarms), M (number of slave processes).

Synchronous evaluation Asynchronous evaluation

Step 1. Set n ← 0. Set n ← M.
Step 2. While (n < N) Send M particles to slaves.
Step 3. Set k = min {M, N −n}. While (n < N)
Step 4. Send k particles to slaves. Wait until a slave, si , finishes.
Step 5. Receive the k objective values. Receive the objective value.
Step 6. Update algorithm parameters. Update algorithm parameters.
Step 7. Set n ← n + k. Set n ← n + 1.
Step 8. End While If (n < N) Then
Step 9. Send a new particle to slave si .

w
p
b
c
m

r
I
a
t
g
t
h
o
o
t
t

i
p
a
P
i
r
i

p

3
m

w
i
p
i
c
c
m
t
i

M

(

Step 10.
Step 11.

ould consist of a master process that retains the population and
erforms the main evolutionary operations, while the slaves would
e evoked to concurrently evaluate the individuals. As can be easily
omprehended, such a model would require only minor (if any)
odifications to the algorithm’s structure.
The expected gain of an MS parallel model is the significant

eduction of the total wall-clock time required by the algorithm.
n an environment of M slave processes the concurrent evalu-
tion of M individuals is possible, reducing the total evaluation
ime of the population. Naturally, it is expected that the total
ain of the parallel implementation with respect to the required
ime will be more significant in hard problem instances (e.g., in
igh-dimensional and time-consuming objective functions). On the
ther hand, it can be unaffected or even worsen in trivial problems
f low-dimensionality and instantaneous function evaluations. In
he latter case, it is usually better to stick to the serial implemen-
ation.

Parallel evolutionary algorithms (PEAs) have been frequently
mplemented within an MS framework. There are several com-
rehensive reference works that offer thorough analyses as well
s current and future trends in PEAs research [39,40]. Regarding
SO, there is a number of existing parallel implementations [41],
ncluding significant applications such as nuclear engineering [42],
eactive power dispatch [43], geotechnical analysis [44], data min-
ng [45] as well as hardware implementations [46].

In the next section, the proposed master–slave model for the
arallel COMPSO (PCOMPSO) approach is analyzed.

. Master–slave model for parallel cooperative
icro-particle swarm optimization

The COMPSO algorithm described in Section 2.4 is straightfor-
ardly transferred in the context of a parallel MS model, resulting

n the proposed Parallel COMPSO (PCOMPSO) approach. The master
rocess is the main algorithmic module of the algorithm, retain-

ng and updating all subswarms. On the other hand, the slaves are
omputational units evoked only for the evaluation of the parti-
les. Thus, intense communication activity is expected between the
aster and the slave processes. The data that needs to be transmit-

ed to a slave process for the evaluation of a particle is the particle
tself and the buffer vector.

There are two possibilities for the evaluation of N particles in an
S environment with M slave processes:

(a) M ≥ N, i.e., the number of available slave processes is larger

than the number of particles. In this case, all particles can be
concurrently evaluated.

b) M < N, i.e., only M out of N particles can be concurrently evalu-
ated.
End If
End While

In practice, the case (b) is met more frequently than (a) and the
evaluation of the particles can be conducted in two alternative
ways.

The first one assumes that a group of M particles are sent for
evaluation from the master process to the slaves. After the evalu-
ation of the whole group, the M objective values are returned to
the master and another group of M particles is sent to the slaves.
This is a type of partially synchronous evaluation, since a group of
particles is sent for evaluation only after the whole previous group
has finished. Alternatively, M particles can be initially sent for eval-
uation and wait until one objective value is returned to the master.
Then, the master immediately sends another particle for evalua-
tion to the idle slave process, regardless of the state of the rest.
This is a type of asynchronous evaluation since each particle is indi-
vidually set for evaluation as soon as there is a free slave process
available. Pseudocode of the two evaluation schemes is given in
Table 2.

The time efficiency of the synchronous or asynchronous evalua-
tion scheme depends on the objective function. If the time required
for a single function evaluation is almost identical for all points
in the search space, then the synchronous evaluation model is
expected to have minor (if any) differences with the asynchronous
one with respect to the total evaluation time. On the other hand,
if the time required for a single function evaluation varies signif-
icantly within the search space, the asynchronous model may be
competitive to the synchronous one.

Besides the time cost of function evaluations, in parallel MS
implementations there is an additional factor that affects the total
wall-clock time of the algorithm. This is the communication over-
head between the master and the slave processes. The synchronous
and asynchronous evaluation schemes differ also in this feature.
The synchronous model communicates new information (particles
and buffer vector) from the master to the slave processes once per
group of M particles.

On the other hand, the asynchronous model updates the buffer
information after the receipt of each objective value from the slaves.
Thus, during the evaluation of M particles the buffer can be updated
up to M times. If this information is communicated immediately to
all slaves, there is up to M times higher communication burden
than in the synchronous model. Clearly, if the time required for a
communication message is competitive to the average time spent
for a single function evaluation then the asynchronous model may
exhibit inferior time efficiency.

The serial COMPSO approach described in Table 1 is based on an
asynchronous update scheme. The buffer and the best positions of
each subswarm are allowed to update after each particle evalua-

tion. This can accelerate the algorithm’s convergence speed, since
the new buffer (with the lowest function value attained so far)
is immediately used for the evaluation of subsequent particles as
derived from step 9 in Table 1.

K.E. Parsopoulos / Applied Soft Com

Table 3
Pseudocode of the PCOMPSO approach. Operations performed by the slave processes
appear in italics.

Input K (number of subswarms), B (buffer vector), �min (diversity
threshold),
f(.) (objective function), M (number of slave processes).

Step 1. Initialize randomly all subswarms in their search spaces
(subspaces of the original one).

Step 2. Initialize buffer vector B using a randomly selected
particle from each subswarm.

Step 3. Evaluate all particles using B and set their best positions.
Step 4. While (termination condition not met)
Step 5. While (there are unevaluated particles)
Step 6. Build buffer B using Eq. (7).
Step 7. Send at most M particles and the buffer to the slaves.
Step 8. Evaluate particles and return the M objective values to

the master process.
Step 9. Update indices of best positions in the corresponding

subswarms.
Step 10. End While
Step 11. Do (k = 1, 2, . . ., K)
Step 12. Compute the standard deviation, � i , for each direction

component of the kth subswarm.
Step 13. Set �k ← min

i
{�i}.

Step 14. If (�k < �min) Then
Step 15. Re-initialize the kth subswarm, retaining its best

positions.
Step 16. End If
Step 17. End Do
Step 18. If (re-allocation is needed) Then
Step 19. Allocate new direction components to subswarms and

re-initialize them.
Step 20. End If

r
t
r
a
t
p
d

T
b
T
t
S
b
d

a
t
t

�

m
t
s
p
m
s
a

i
d
p
(

Step 21. End While
Step 22. Print buffer B and f (B).

However, in the parallel implementation such an update would
equire an excessive number of communication messages between
he master and the slave processes, as explained above. For this
eason, the partially synchronous model was adopted in PCOMPSO
s exposed in the pseudocode of Table 3. Evidently, in PCOMPSO
he buffer B is updated after the evaluation of the whole group of M
articles, regardless of possibly better positions that may be found
uring the evaluation of the group.

Two points are worth noting in the pseudocode of PCOMPSO.
he first one consists of the steps 14–16 in Table 3, which resem-
le the restarting procedure of COMPSO (see steps 15–17 in
able 1). These steps constitute an essential feature of micro–EAs
o address the problem of premature convergence as mentioned in
ection 2.4. The re-initialization is triggered as soon as a lower
ound of the minimum standard deviation of the particles per
irection is violated.

More specifically, if Sk is the kth subswarm with dimension nk
nd size Nk, and �k,i, i = 1, 2, . . ., nk, are the standard deviations for
he corresponding nk direction components with �k,min denoting
he smallest among them, then the condition:

min ≤ �k,min, (8)

ust hold, where �min is a user-defined parameter for the iden-
ification of search stagnation. If this condition is violated, the
ubswarm Sk is re-initialized within its subspace. However, its best
ositions are retained in order to exploit all the available infor-
ation produced by the subswarm so far. The determination of a

atisfactory value for �min depends on the problem at hand as well
s on the desirable solution accuracy.

The second critical point of PCOMPSO consists of the steps 18–20

n Table 3. As previously mentioned, COMPSO employs a linear
ecomposition of the search space [27]. This scheme is the sim-
lest straightforward approach for allocating direction components
subspaces) of the original problem to subswarms. However, it
puting 12 (2012) 3552–3579 3557

suffers a crucial drawback: it does not take into account the pos-
sibility of correlations among variables. Thus, if highly correlated
variables are assigned to different subswarms, the algorithm’s effi-
ciency is expected to decline in terms of solution quality given
a prespecified budget of function evaluations. This effect can be
attributed to the algorithm’s inability for rapid identification of
patterns that dominate the variables’ interactions and it has been
observed also in single-swarm approaches. Nevertheless, it is inten-
sified in multi-swarm variants such as the proposed one.

The aforementioned deficiency can be tackled through various
techniques. Popular preprocessing approaches such as the applica-
tion of principal components analysis may be well-analyzed and
theoretically supported [47], but can also dramatically increase the
computational burden of the algorithm due to demand for laborious
linear algebra operations.

An alternative and computationally economic approach is
the periodic randomized re-allocation of direction components to
subswarms during the algorithm’s execution. According to this
approach, the subswarms are initialized based on linear decom-
position but, after every tmap iterations, they are re-allocated
to randomly selected direction components. Each re-mapping is
accompanied by the re-initialization of the subswarms in the new
subspaces.

This idea has been introduced as random grouping [48] and it has
been applied on a CPSO model in [49]. If Sk is the kth subswarm,
after every tmap iterations it is assigned to different direction com-
ponents, nr1 , nr2 , . . . , nrnk

, where the indices, r1, r2, . . . , rnk
, are

randomly selected without replacement from the set {1, 2, . . .,
n}. Hence, a possibly unsuccessful assignment of direction compo-
nents that would split highly correlated variables, will negatively
affect the subswarms only for a limited number of iterations (con-
trolled by tmap). This approach is implemented in steps 18–20 of
the pseudocode in Table 3.

Finally, a comment of technical nature shall be made for
step 7 in Table 3. The slave processes typically execute the following
sequence of operations:

(1) Receive a particle and the buffer vector.
(2) Compute the objective value of the particle.
(3) Send the result to the master process.

If new data are sent to the slave processes during the second step
(computation of the objective value), they are put in a waiting
queue until the next “Receive” action of the slave. Thus, one may
argue that the use of the phrase “at most” in step 7 of Table 3 can
be replaced as follows:

Step 7. Send all particles and the buffer to the slaves.

However, this approach would produce two undesirable effects.
The first one is that all N particles would be accompanied by the
same buffer to the slaves. Thus, if a new buffer was produced dur-
ing their evaluation, it would be unavailable to the forthcoming
particles. The second effect stems from the fact that many paral-
lel systems support waiting queues of rather limited size per slave
process. Such systems may fail to retain in memory a large amount
of messages for all particles. This can result in unpredictable behav-
ior of the system, ranging from completely ignoring the redundant
messages to hanging of the slave processes. For these reasons, it is

recommended to use the original form of step 7 in Table 3.

In the next section, the experimentation environments for the
assessment of PCOMPSO are described and results are reported for
a widely used test suite.

3 t Computing 12 (2012) 3552–3579

4

r
t
i
s
s

i
d
g

4

T
c
o
C
s
F
i
n
s
l
r

e
m
p
i
s
f
a
6
H
b

t
s

4

w
c
i
e
S
t
a
R
f
e
o
s

p
s
f
s
p

d
T

Table 4
Total number of particles and subswarms per problem dimension.

Dimension Subswarms Particles per
subswarm

Total
particles

The performance was assessed with three measures. The
first measure was the quality of solution, i.e., the value of the
best detected solution within the allowed number of function

Table 5
Parameter values for PCOMPSO.

Parameter Description Value

�min Diversity threshold 10−20

Fmax Maximum function evaluations k × 103 (k: number
of particles)
558 K.E. Parsopoulos / Applied Sof

. Experimentation environments and parameter setup

PCOMPSO was applied on the widely used test problems
eported in the Appendix of the present paper. The popularity of
hese problems is attributed to their different features, includ-
ng unimodal, multimodal, separable and non-separable functions,
traightforward generalization in arbitrary dimensions, as well as
trongly and loosely correlated variables.

The algorithm was assessed over two different parallel comput-
ng hardware platforms, under different parameter settings. The
etails of their configuration are described in the following para-
raphs.

.1. Employed parallel computing systems

PCOMPSO was assessed over two parallel computing systems.
he first system was one of the facilities of SHARCNET, which is a
onsortium of Canadian academic institutions that share a network
f high-performance computers, operating under the umbrella of
ompute/Calcul Canada. It consists of several core and specialized
ystems, supporting a plethora of tools for different applications.
or the experiments conducted in the present paper, the Saw facil-
ty of SHARCNET was used. Saw consists of 336 Xeon 2.83 GHz
odes, each one offering 8 cores on 2 sockets and 16 GB of memory,
umming to a total of 2688 CPUs. The system is devoted to paral-
el applications and supports InfiniBand host connections, while it
uns under the XC 4.0 operating system.

Unfortunately, such systems are not frequently available,
specially in non-academic environments. Hopefully, as already
entioned in Section 1, modern desktop computers with multicore

rocessors can offer small-scale, shared-memory, parallel comput-
ng solutions to the user. Most important, such systems are widely
pread since their cost is relatively low. This was the motivation
or selecting as the second computer experimentation platform,

 desktop PC consisting of an Intel® I7 2.66 GHz processor with
 GB memory. The I7 processor has 4 cores and supports the Intel®

yper-Threading technology. Running under the Ubuntu 9.10 64-
it Linux distribution, this machine offers 8 processing threads.

In both computer platforms, PCOMPSO was implemented in
he C++programming language (GCC 4.4.1 compiler) using the MPI
tandard.

.2. The parameter setup

For comparison purposes, the experimental setup used in [27]
as mostly adopted in the present paper. The test problems were

onsidered for dimensions n = 300, 600 and 1200. In both exper-
mentation environments, the time required for a single function
valuation was measured to be of order O(10−6) second (i.e., 1 �s).
ince parallel implementations have merit only in demanding
ime-consuming objective functions, a random time-delay was
dded to each function evaluation. The delay was defined as d =

 × dmax seconds, where R∼U([0, 1]) is a random variable uni-
ormly distributed in the range [0,1], and d differs for each function
valuation. The constant dmax was used to impose an upper bound
n the time-delay. Two different levels of this parameter were con-
idered, namely dmax1 = 10−4 and dmax2 = 10−3.

For each test problem, the original search space was decom-
osed in 3-dimensional subspaces undertaken by individual
ubswarms. As mentioned in Section 2.4, this setting is reasonable
or micro-PSO approaches because it allows the use of small sub-
warms. The corresponding numbers of subswarms and particles

er problem instance are reported in Table 4.

Both the linear and the random decomposition approach
escribed in Section 3, were considered in the experiments.
he lower bound of the diversity for the restarting condition in
300 100 5 500
600 200 5 1000
1200 400 5 2000

Eq. (8) was fixed to the value �min = 10−20. This is a reasonable
value because allowing smaller diversities can rarely offer adequate
local fine-tuning of the obtained solutions. Each experiment was
terminated as soon as the algorithm reached a maximum number
of Fmax = k ×103 function evaluations, where k is the total number
of particles per problem instance (given in last column of Table 4).

In the case of random problem decomposition, the frequency of
re-allocation was set to the fixed value tmap = 30. For this choice, it
was taken into consideration that as tmap approaches the value 103,
the impact of the random scheme on the algorithm’s performance
approaches that of the linear scheme. Hence, a remarkably small
value was expected to reveal the differences of the two schemes
with more clarity. Besides that, preliminary experiments suggested
that small deviations from this value were not producing signifi-
cantly different results.

Regarding the PSO parameters, the default set defined in
Eq. (4) for the constriction coefficient PSO variant was adopted in all
subswarms. All the aforementioned parameters are summarized in
Table 5. Moreover, the PCOMPSO algorithm was tested using differ-
ent numbers of CPUs. For the Saw cluster of the SHARCNET network,
there were used:

N(SH)
cpu = 1, 3, 9, 17, 25, 33,

CPUs, with the value 1 corresponding to the serial variant, i.e., the
standard COMPSO. For the I7 system, less CPUs were available:

N(I7)
cpu = 1, 5, 8.

It must be underlined that these values refer to the total number
of CPUs, i.e., including the master. The number of slave processes is
obtained simply by subtracting 1 from the aforementioned values
(except from the serial variant).

For each algorithm and problem instance 30 independent exper-
iments were performed. The average performance of the algorithms
was derived through statistical analysis of the results. For the serial
COMPSO approach, the same total number of function evalua-
tions with the PCOMPSO approaches was assumed in all problem
instances. Also, its swarm size was equal to the total number of par-
ticles used in the corresponding PCOMPSO approaches. Hence, all
compared approaches were given the same computational budget
as anticipated in a fair comparison framework.

4.3. Performance measures
� Constriction coefficient 0.729
c1, c2 Cognitive and social parameter 2.05
NT Neighborhood topology Ring
r Neighborhood radius 1

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3559

Table 6
Results for TP0 on the academic cluster.

Dim. Number of CPUs

1 (COMPSO) 3 9 17 25 33

300 �f 8.93e−26 2.09e−25 4.61e−25 4.58e−25 1.97e−24 4.88e−24
(Lin) �f 2.44e−25 1.06e−24 1.70e−24 1.38e−24 7.02e−24 1.71e−23

dmax1 26.80 (0.20) 18.67 (0.03) 7.22 (0.01) 4.53 (0.01) 3.58 (0.02) 3.18 (0.03)
dmax2 252.61 (0.37) 169.24 (0.13) 58.06 (0.03) 31.70 (0.02) 21.83 (0.03) 17.20 (0.07)
cssd 25, 33 17, 25, 33 25, 33 3 1, 3, 9 1, 3, 9

�f 8.93e−26 4.34e−30 1.18e−29 2.74e−29 3.72e−29 1.09e−28
(Rand) �f 2.44e−25 2.72e−30 7.38e−30 1.87e−29 2.18e−29 7.16e−29

dmax1 26.80 (0.20) 18.70 (0.04) 7.23 (0.05) 4.52 (0.01) 3.57 (0.02) 3.15 (0.04)
dmax2 252.61 (0.37) 169.19 (0.13) 58.06 (0.04) 31.70 (0.02) 21.80 (0.05) 17.23 (0.06)
cssd All All All All All All

600 �f 9.52e−22 7.17e−23 1.34e−19 4.23e−22 5.02e−20 7.69e−22
(Lin) �f 4.88e−21 1.93e−22 7.33e−19 1.33e−21 1.85e−19 2.36e−21

dmax1 54.26 (0.04) 39.18 (0.06) 15.47 (0.03) 10.36 (0.03) 8.59 (0.04) 7.85 (0.04)
dmax2 506.63 (0.30) 340.26 (0.18) 114.92 (0.05) 63.78 (0.07) 44.83 (0.06) 35.57 (0.07)
cssd 17, 25, 33 9, 17, 25, 33 3, 25, 33 1, 3 1, 3, 9 1, 3, 9

�f 9.52e−22 1.29e−26 2.36e−26 3.78e−26 5.32e−26 8.48e−26
(Rand) �f 4.88e−21 7.80e−27 8.17e−27 1.42e−26 2.62e−26 4.10e−26

dmax1 54.26 (0.04) 38.86 (0.07) 15.44 (0.04) 10.35 (0.03) 8.61 (0.03) 7.85 (0.05)
dmax2 506.63 (0.30) 340.00 (0.17) 114.83 (0.06) 63.85 (0.03) 44.89 (0.06) 35.51 (0.08)
cssd All All All All All All

1200 �f 1.44e−19 1.48e−19 1.71e−20 9.50e−18 4.73e−19 4.46e−16
(Lin) �f 7.16e−19 5.55e−19 2.17e−20 5.18e−17 1.98e−18 2.44e−15

dmax1 116.89 (0.38) 85.58 (0.20) 37.49 (0.10) 27.28 (0.05) 23.98 (0.08) 22.85 (0.12)
dmax2 1018.74 (2.04) 686.95 (0.27) 234.87 (0.08) 130.24 (0.07) 94.96 (0.10) 76.31 (0.13)
cssd 25, 33 9, 17, 25, 33 3, 33 3 1, 3 1, 3, 9

�f 1.44e−19 2.52e−24 5.42e−24 7.30e−24 7.14e−24 1.03e−23
(Rand) �f 7.16e−19 1.05e−24 1.92e−24 2.77e−24 2.11e−24 3.85e−24

37
23
A

e
r
a
t
a
s
w
t
m

t
f
s
S
T
b
s

a
o
o
m
t

s

a

e

w
e

dmax1 116.89 (0.38) 84.91 (0.18)

dmax2 1018.74 (2.04) 687.04 (0.33)

cssd All All

valuations. This measure does not take into consideration the
equired wall-clock time, i.e., it is not explicitly affected by the par-
llel implementation. However, it may be implicitly affected, since
he parallel model presents a new buffer vector to the slaves only
fter the evaluation of M particles instead of every particle in the
erial model. The quality of solutions per algorithm is measured
ith the mean and standard deviation, �f and �f, respectively, of

he obtained solution values averaged over the number of experi-
ents.
In order to confirm statistically significant differences between

he considered variants, Wilcoxon rank sum tests were conducted
or each pair (i, j) of approaches, where i and j denote the corre-
ponding numbers of CPUs, namely i, j ∈ {1, 3, 9, 17, 25, 33} (for the
aw system) or i, j ∈ {1, 5, 8} (for the desktop system) with i /= j.
he null hypothesis of the rank sum tests was equality of medians
etween the compared samples and its validity was tested at a 95%
ignificance level.

In addition to solution quality, the wall-clock time was recorded
t each experiment and its mean and standard deviation, averaged
ver all experiments, were computed. Using these values, the sec-
nd and the third performance measures were computed. These
easures are related to the parallel implementation and they are

he speedup, defined as:

M =
E(T1)
E(TM)

,

nd the time efficiency, defined as:
M =
sM

M
,

here M denotes the number of the employed CPUs; E(T1) is the
xpected required time of the algorithm when executed on a single
.32 (0.07) 27.22 (0.05) 24.33 (0.12) 22.70 (0.09)
4.68 (0.09) 130.32 (0.12) 94.86 (0.09) 76.32 (0.11)

ll 1, 3, 9, 33 1, 3, 9, 33 All

CPU; and E(TM) is the expected required time when M CPUs are
used. The expectations are approximated by the mean values of
the corresponding wall-clock time averaged over all experiments
(recall that 30 experiments were performed per case).

5. Experimental results

For better presentation, the obtained results for the two experi-
mentation environments are reported in separate sections, starting
with the case of the Saw (SHARCNET) academic cluster.

5.1. Results for the academic cluster

The PCOMPSO approach was tested using 1 (serial COMPSO), 3,
9, 17, 25 and 33 CPUs on the Saw facility of the SHARCNET academic
cluster grid. As previously mentioned, this is the total number of
CPUs, i.e., including the master process. The results are reported
in Tables 6–10 and graphically illustrated in Figs. 1–5. The linear
decomposition scheme is denoted as “Lin”, while the random one
is denoted as “Rand”.

Each table reports for each dimension and decomposition
scheme, the mean �f and the standard deviation �f of the best solu-
tion values, averaged over the 30 experiments. Also, it reports the
mean and the standard deviation (in parenthesis) of the required
wall-clock time for the two time-delay levels, dmax1 and dmax2 .
Finally, it reports the comparisons with the rest cases where statis-

tical significant differences in solution quality were detected (this
is denoted as “cssd” in the tables). The best solution (in terms of
function value) per problem instance and decomposition scheme
is boldfaced.

3560 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

Table 7
Results for TP1 on the academic cluster.

Dim. Number of CPUs

1 (COMPSO) 3 9 17 25 33

300 �f 3.51e+02 3.52e+02 3.60e+02 3.66e+02 3.71e+02 4.18e+02
(Lin) �f 5.83e+01 4.73e+01 3.94e+01 6.25e+01 6.79e+01 1.27e+02

dmax1 27.04 (0.10) 18.75 (0.03) 7.25 (0.02) 4.53 (0.01) 3.59 (0.02) 3.16 (0.03)
dmax2 253.18 (0.47) 169.25 (0.14) 58.03 (0.03) 31.70 (0.02) 21.83 (0.04) 17.23 (0.07)
cssd 33 33 33 33 none none

�f 3.51e+02 9.64e+02 9.88e+02 1.04e+03 1.09e+03 9.36e+02
(Rand) �f 5.83e+01 6.68e+02 7.66e+02 8.66e+02 7.72e+02 4.94e+02

dmax1 27.04 (0.10) 18.74 (0.03) 7.23 (0.02) 4.52 (0.01) 3.58 (0.02) 3.15 (0.02)
dmax2 253.18 (0.47) 169.25 (0.15) 58.01 (0.03) 31.70 (0.03) 21.81 (0.04) 17.21 (0.05)
cssd all 1 1 1 1 1

600 �f 7.34e+02 7.27e+02 7.54e+02 7.78e+02 7.66e+02 7.84e+02
(Lin) �f 6.38e+01 7.17e+01 9.58e+01 9.00e+01 7.09e+01 8.70e+01

dmax1 55.61 (0.26) 39.46 (0.07) 15.52 (0.03) 10.42 (0.02) 8.59 (0.03) 7.95 (0.05)
dmax2 508.37 (1.70) 340.45 (0.17) 114.86 (0.06) 63.82 (0.03) 44.85 (0.07) 35.58 (0.09)
cssd 17, 33 17, 25, 33 None 1, 3 3 1, 3

�f 7.34e+02 1.63e+03 1.67e+03 1.77e+03 1.70e+03 1.60e+03
(Rand) �f 6.38e+01 6.82e+02 5.60e+02 7.32e+02 4.35e+02 2.51e+02

dmax1 55.61 (0.26) 39.18 (0.07) 15.52 (0.04) 10.38 (0.03) 8.62 (0.04) 7.84 (0.04)
dmax2 508.37 (1.70) 340.12 (0.17) 114.82 (0.05) 63.81 (0.03) 44.86 (0.08) 35.61 (0.08)
cssd All 1, 17, 33 1 1 1 1

1200 �f 1.52e+03 1.54e+03 1.52e+03 1.58e+03 1.57e+03 1.57e+03
(Lin) �f 1.06e+02 1.27e+02 9.90e+01 1.32e+02 1.05e+02 1.05e+02

dmax1 119.48 (0.87) 86.35 (0.18) 37.83 (0.10) 27.40 (0.06) 24.24 (0.09) 22.87 (0.07)
dmax2 1023.38 (1.18) 688.59 (0.27) 234.99 (0.08) 130.33 (0.06) 95.04 (0.07) 76.54 (0.10)
cssd None None 25 None 9 None

�f 1.52e+03 3.00e+03 2.96e+03 3.04e+03 3.20e+03 3.33e+03
(Rand) �f 1.06e+02 3.98e+02 5.19e+02 4.74e+02 7.95e+02 1.32e+03

dmax1 119.48 (0.87) 85.92 (0.16) 37.59 (0.06) 27.37 (0.06) 23.97 (0.02) 22.78 (0.07)
dmax2 1023.38 (1.18) 688.05 (0.30) 234.89 (0.18) 130.33 (0.13) 95.01 (0.08) 76.40 (0.17)
cssd All 1 1 1 1 1

T
a
w
a
t
c
t
d

o
t
e
g
i
b
g

t
c
t
u
b
d
t

I
C
q

For example, in Table 6, for the 300-dimensional instance of
P0 and for the linear decomposition scheme, the serial COMPSO
pproach (1 CPU) achieved average solution value �f = 8.93e − 26
ith standard deviation �f = 2.44e − 25 in the 30 experiments. Its

verage wall-clock time for the time-delay level dmax1 was equal
o 26.80 seconds with standard deviation 0.20, while for dmax2 the
orresponding quantities were equal to 252.61 and 0.37, respec-
ively. Finally, its solution quality exhibited statistically significant
ifferences only with the cases of 25 and 33 CPUs.

It shall be noted that the single-CPU case corresponds to the
riginal COMPSO approach, which does not use re-allocation of
he problem’s direction components. Thus, the “Lin” and “Rand”
ntries for 1 CPU are identical in the tables. The random number
enerator was initialized with the same seed for each algorithm,
n order to avoid possible performance biasing due to differences
etween pseudo–random number sequences or instabilities of the
enerator.

The figures consist of an upper part (line plots) that illustrates
he speedup and a lower part (bar graphs) that illustrates time effi-
iency of PCOMPSO. Also, the figures on the left column correspond
o the time-delay level dmax1 = 10−4, while figures on the right col-
mn correspond to dmax2 = 10−3. For each graph type (line plot or
ar graph), the first two figures (first row) correspond to the “Lin”
ecomposition scheme, while the rest (second row) correspond to
he “Rand” decomposition scheme.
The results for the unimodal problem TP0 are reported in Table 6.
n the 300-dimensional case with linear decomposition, the serial
OMPSO outperforms all parallel approaches in terms of solution
uality. However, this superiority is statistically significant only in
the cases of 25 and 33 CPUs. For the rest of the cases, the perfor-
mance of COMPSO is statistically equivalent with that of PCOMPSO.

The nice performance of COMPSO should be anticipated in TP0, if
we take into consideration two factors: the unimodality of the spe-
cific problem and the asynchronous update scheme for the particles
in COMPSO, contrary to the partially synchronous update scheme of
PCOMPSO. As described in Section 3, the asynchronous update can
produce faster convergence although it fosters the danger of rapid
loss of diversity and search stagnation. Nevertheless, this weak-
ness can be negligible in unimodal cases due to the lack of multiple
stationary points.

The partially synchronous update of PCOMPSO explains also its
declining performance in TP0 as the number of CPUs increases.
Indeed, a parallel approach with 3 CPUs may update its buffer after
every 2 function evaluations, while an approach with 33 CPUs may
update the buffer after every 32 function evaluations. For this rea-
son, we observe in Table 6 that the parallel approaches with less
CPUs exhibit superior performance with respect to solution quality.

For the 600- and 1200-dimensional instances of TP0 with linear
decomposition, the parallel approaches with small number of CPUs
outperform COMPSO. However, similarly to the 300-dimensional
case, this is not accompanied by statistical significance. The picture
is different when the random decomposition scheme is used. In all
experiments with this scheme, the solutions of PCOMPSO were 4
to 5 orders of magnitude better than these of the serial COMPSO,

regardless of the problem’s dimension.

This may seem odd, since TP0 consists of a separable objec-
tive function; therefore re-allocation of the direction components
should not substantially affect the algorithm’s output. This is

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3561

Table 8
Results for TP2 on the academic cluster.

Dim. Number of CPUs

1 (COMPSO) 3 9 17 25 33

300 �f 3.38e+02 3.43e+02 3.53e+02 3.43e+02 3.30e+02 3.39e+02
(Lin) �f 2.85e+01 3.22e+01 3.60e+01 3.65e+01 3.16e+01 2.73e+01

dmax1 33.29 (0.30) 19.33 (0.03) 7.41 (0.01) 4.61 (0.01) 3.61 (0.02) 3.18 (0.04)
dmax2 260.41 (4.92) 169.85 (0.14) 58.18 (0.03) 31.77 (0.03) 21.87 (0.03) 17.30 (0.05)
cssd None None 25 None 9 None

�f 3.38e+02 1.45e+01 1.32e+01 1.28e+01 1.55e+01 1.57e+01
(Rand) �f 2.85e+01 8.63e+00 9.79e+00 6.01e+00 8.06e+00 9.66e+00

dmax1 33.29 (0.30) 19.34 (0.04) 7.38 (0.02) 4.60 (0.01) 3.64 (0.03) 3.20 (0.05)
dmax2 260.41 (4.92) 169.86 (0.14) 58.21 (0.03) 31.76 (0.04) 21.80 (0.06) 17.29 (0.06)
cssd All 1 1 1 1 1

600 �f 6.59e+02 6.61e+02 6.68e+02 6.65e+02 6.68e+02 6.80e+02
(Lin) �f 3.65e+01 4.17e+01 3.77e+01 4.60e+01 3.61e+01 4.34e+01

dmax1 79.67 (0.40) 41.76 (0.07) 16.51 (0.03) 10.68 (0.02) 8.80 (0.04) 8.02 (0.04)
dmax2 532.07 (0.51) 342.76 (0.17) 115.58 (0.05) 64.08 (0.06) 45.00 (0.06) 35.81 (0.06)
cssd None None None None None None

�f 6.59e+02 3.54e+01 3.03e+01 3.58e+01 2.99e+01 3.47e+01
(Rand) �f 3.65e+01 1.02e+01 1.14e+01 1.16e+01 1.27e+01 1.11e+01

dmax1 79.67 (0.40) 41.54 (0.06) 16.07 (0.03) 10.68 (0.02) 8.80 (0.01) 8.02 (0.07)
dmax2 532.07 (0.51) 342.56 (0.18) 115.45 (0.05) 64.15 (0.04) 45.04 (0.08) 35.76 (0.05)
cssd All 1, 25 1 1, 25 1, 3, 17, 33 25

1200 �f 1.25e + 03 1.23e+03 1.25e+03 1.25e+03 1.27e+03 1.24e+03
(Lin) �f 4.04e+01 4.74e+01 7.05e+01 4.55e+01 5.38e+01 6.10e+01

dmax1 219.09 (0.95) 95.89 (0.19) 39.96 (0.09) 28.59 (0.05) 24.98 (0.04) 23.41 (0.09)
dmax2 1124.17 (1.69) 698.11 (0.27) 237.13 (0.11) 131.63 (0.11) 96.02 (0.16) 77.08 (0.13)
cssd None 25 None None 3, 33 25

�f 1.25e+03 7.84e+01 7.73e+01 7.67e+01 7.90e+01 7.56e+01
(Rand) �f 4.04e+01 1.55e+01 1.52e+01 2.08e+01 1.77e+01 2.07e+01

dmax1 219.09 (0.95) 95.42 (0.17) 40.00 (0.06) 31.18 (14.12) 25.00 (0.04) 23.38 (0.10)
dmax2 1124.17 (1.69) 697.28 (0.30) 237.09 (0.08) 131.53 (0.06) 95.77 (0.13) 76.93 (0.09)

1

t
t
t
e
b
p
s

s
T
a
t
c
S
i
e
a
l
b
s
d

w
n
t
n
t
t
t
d

cssd All 1

rue, however it does not take into consideration a detail of
he re-allocation procedure: all subswarms are restarted after
heir assignment to new direction components. The restarting
nhances the exploration capability of the subswarms, while the
est detected solutions are retained in the buffer. This produces a
erformance boost for the parallel approaches, in contrast to the
tandard COMPSO that uses only linear decomposition.

In almost all experiments with the random decomposition
cheme, the results were statistically significant as reported in
able 6. Also, the performance of the parallel approaches is reduced
s the number of CPUs increases. This effect can be attributed to
he same reasons mentioned above for the linear decomposition
ase, i.e., the partially synchronous update scheme of PCOMPSO.
ummarizing the results for TP0 with respect to solution qual-
ty, we can infer that it is a quite trivial problem easily tackled
ither with the serial COMPSO or the PCOMPSO approach. The serial
pproach can offer satisfactory solutions in low–dimensional prob-
em instances. On the other hand, the parallel approaches can attain
etter solutions in higher dimensions, especially when a relatively
mall number of CPUs is used in combination with the random
ecomposition scheme.

Regarding the required wall–clock time of the algorithms in TP0,
e can make some interesting observations in Table 6. First, we
otice that the two decomposition schemes require almost iden-
ical execution time. This was expected since exactly the same
umber of function evaluations was allowed for both decomposi-

ion schemes. The minor time differences can be mostly attributed
o fluctuations of the system’s load as well as to the slight additional
ime-requirements of the re-allocation procedure of the random
ecomposition scheme.
1 1 1

Fig. 1 illustrates the obtained speedup and time efficiency
for TP0. Clearly, the gain for both time-performance measures
is considerably higher when the time-delay level is high. Also,
increasing the problem’s dimension reduces the speedup. This
was anticipated, since the manipulation and transmission of
higher-dimensional vectors imposes heavier computation and
communication burden on the parallel algorithms. Concluding, the
experimental evidence indicate that in simple (convex) problems
such as TP0, there is no need to employ a high number of CPUs in
PCOMPSO unless significant time-delays are expected in the func-
tion evaluations.

The next considered test problem, TP1, is the generalized Rosen-
brock function. Its 2-dimensional instance is considered to be a
rather simple problem for swarm intelligence algorithms. However,
its high-dimensional instances are considered to be significantly
harder problems with numerous stationary points, while there are
also correlations between adjacent variables.

The results for TP1 are reported in Table 7 and the
time–performance measures are illustrated in Fig. 2. In general,
we observe that the linear decomposition scheme offers better
results than the random one for both COMPSO and PCOMPSO.
Its superiority can be ascribed to the aforementioned correla-
tions between adjacent variables. Indeed, linear decomposition
allocates a group of subsequent direction components to each
subswarm. Therefore, for each subswarm, correlations mostly
exist between its allocated direction components. This allows the

efficient capturing of the problem’s dynamics per group of sub-
sequent direction components, as well as the easier coordination
of the subswarms towards the global minimizer. Additionally,
we observe that in most cases the performance of COMPSO was

3562 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

Table 9
Results for TP3 on the academic cluster.

Dim. Number of CPUs

1 (COMPSO) 3 9 17 25 33

300 �f 6.32e−02 8.89e−02 8.44e−02 1.36e−01 4.75e−02 4.96e−02
(Lin) �f 1.31e−01 1.73e−01 1.40e−01 2.23e−01 9.61e−02 1.02e−01

dmax1 31.92 (0.12) 19.84 (0.03) 7.51 (0.02) 4.67 (0.01) 3.68 (0.02) 3.23 (0.03)
dmax2 257.78 (0.32) 170.36 (0.13) 58.36 (0.03) 31.82 (0.03) 21.89 (0.04) 17.34 (0.06)
cssd None None 25 25, 33 9, 17 17

�f 6.32e−02 1.18e−02 6.23e−03 6.19e−03 1.55e−03 7.73e−03
(Rand) �f 1.31e−01 4.18e−02 1.42e−02 1.50e−02 5.11e − 03 1.78e−02

dmax1 31.92 (0.12) 19.85 (0.04) 7.50 (0.01) 4.67 (0.01) 3.69 (0.02) 3.23 (0.03)
dmax2 257.78 (0.32) 170.34 (0.13) 58.34 (0.02) 33.03 (1.53) 21.87 (0.03) 17.32 (0.05)
cssd all 1 1 1 1 1

600 �f 6.61e−02 9.30e−02 7.90e−02 1.38e−01 8.15e−02 5.56e−02
(Lin) �f 1.45e−01 2.39e−01 1.71e−01 2.52e−01 1.30e−01 1.95e−01

dmax1 75.73 (0.33) 43.81 (0.06) 16.67 (0.03) 10.95 (0.02) 9.00 (0.03) 8.15 (0.08)
dmax2 527.01 (0.63) 344.74 (0.21) 116.09 (0.06) 64.37 (0.03) 45.13 (0.07) 35.91 (0.08)
cssd None None None None None None

�f 6.61e−02 3.04e−03 6.03e−03 2.39e−03 2.07e−03 6.82e−03
(Rand) �f 1.45e−01 7.71e−03 1.51e−02 4.59e−03 6.14e−03 1.58e−02

dmax1 75.73 (0.33) 43.56 (0.05) 16.58 (0.04) 10.94 (0.02) 9.04 (0.03) 8.15 (0.06)
dmax2 527.01 (0.63) 344.59 (0.17) 116.02 (0.05) 67.74 (2.01) 45.10 (0.08) 35.90 (0.08)
cssd All 1 1 1 1, 33 1, 25

1200 �f 4.06e−02 7.75e−02 9.91e−02 7.27e−02 7.41e−02 1.36e−01
(Lin) �f 5.97e−02 2.06e−01 2.05e−01 2.07e−01 1.39e−01 3.06e−01

dmax1 197.40 (0.84) 103.87 (0.19) 42.14 (0.04) 29.57 (0.05) 25.83 (0.08) 23.93 (0.08)
dmax2 1100.65 (1.13) 705.92 (0.33) 337.12 (342.66) 132.56 (0.09) 96.52 (0.12) 77.64 (0.14)
cssd None None None None None None

�f 4.06e−02 3.61e−03 1.49e−02 6.90e−03 6.84e−03 1.18e−02
(Rand) �f 5.97e−02 9.78e−03 6.61e−02 1.14e−02 1.05e−02 5.01e−02

42.
239
1

s
T

m
i
i
s
d
t
P
r

m
r
F
r
v
n
b
c
c
t
t
w
i

t
a
C
s
T

dmax1 197.40 (0.84) 103.66 (0.14)

dmax2 1100.65 (1.13) 707.34 (0.28)

cssd All 1

tatistically equivalent with that of PCOMPSO as reported in
able 7.

Regarding the wall-clock time required by PCOMPSO, we can
ake similar observations with TP0. The time-performance gain

s increased for the highest level of time-delay, while increas-
ng the problem’s dimension results in inferior values for the
peedup. As a conclusion for TP1 we can state that, under the linear
ecomposition scheme, PCOMPSO and COMPSO can produce statis-
ically equivalent results with respect to solution quality; although,
COMPSO can achieve this performance significantly faster with
espect to the required wall-clock time.

The next problem, TP2, has a plethora of local and a single global
inimizer within the search space. The results for this problem are

eported in Table 8 and time-related performance is illustrated in
ig. 3. As a first observation, we notice that the wall-clock time
equired by the serial COMPSO is increased compared to the pre-
ious test problems. This increase may seem odd since the total
umber of function evaluations was unchanged. However, it can
e explained by the defining function of TP2, which involves the
os(x) trigonometric function. Such functions are approximately
omputed in the algorithm, requiring some additional time than
he squared sums of the previous test problems. Therefore, besides
he random time-delay imposed on each function evaluation, TP2
as inherently more time-consuming than TP0 and TP1 especially

n its high-dimensional instances.
Regarding the quality of solutions, there is a clear superiority of

he PCOMPSO approaches with the random decomposition scheme,
gainst all approaches with the linear decomposition scheme.

omparing only approaches of same decomposition, there is no
tatistically significant difference in most cases as we can see in
able 8. Regarding the time-performance in TP2, we can notice a
05 (0.07) 29.68 (0.05) 25.63 (0.10) 23.98 (0.08)
.14 (0.14) 132.53 (0.15) 96.61 (0.14) 77.42 (0.11)

1 1 1

different pattern than in previous problems. As illustrated in Fig. 3,
the speedup and time efficiency for the 1200-dimensional instances
of TP2 is superior to that of lower-dimensional instances when a
small number of CPUs is used. However, this superiority vanishes
as the numbers of CPUs increases obviously due to the heavier com-
munication overhead between the master and the slave processes.
This indicates that in cases of complex high-dimensional problems,
PCOMPSO can produce superior results than COMPSO, especially
under the random decomposition scheme. Besides that, it can attain
a significant gain in wall-clock time when a relatively small number
of CPUs is used, similarly to TP0.

The results for the test problems TP3 and TP4 confirm the afore-
mentioned observations. TP3 was proved to be an easier problem
than TP2, as implied by the average quality of the obtained solu-
tions reported in Table 9. A common property of TP2 and TP3 is
the existence of terms that are approximately computed in their
defining objective functions. This explains the similar wall-clock
time reported in Tables 8 and 9. Also, PCOMPSO with the random
decomposition scheme achieves increasingly better performance
as the problem’s dimension increases, when a small number of CPUs
is used. This is illustrated also in Fig. 4. Moreover, we can observe
that this effect becomes more intense for the lower time-delay level
(dmax1). This is a consequence of the magnitude of the induced
time-delay, which becomes comparable to the time required for
the evaluation of the objective function.

Similar observations can be made for TP4. The results are
reported in Table 10 and time–performance is illustrated in Fig. 5. In
addition, the quality of the obtained solutions for TP4 implies that

the steep funnels of the objective function around the global mini-
mizer promote the detection of better solutions than in the previous
test problems, regardless of the huge number of local minima.

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3563

Table 10
Results for TP4 on the academic cluster.

Dim. Number of CPUs

1 (COMPSO) 3 9 17 25 33

300 �f 4.00e−13 4.11e−13 4.17e−02 3.99e−13 3.84e−13 4.54e−02
(Lin) �f 4.65e−14 8.69e−14 2.28e−01 6.18e−14 4.15e−14 2.48e−01

dmax1 29.35 (1.18) 19.30 (0.03) 7.38 (0.02) 4.63 (0.01) 3.63 (0.02) 3.20 (0.03)
dmax2 255.33 (0.49) 169.81 (0.12) 58.23 (0.03) 31.78 (0.02) 21.90 (0.05) 17.29 (0.05)
cssd None None None None 33 25

�f 4.00e−13 2.62e−13 2.59e−13 2.61e−13 2.68e−13 2.70e−13
(Rand) �f 4.65e−14 1.85e−14 1.76e−14 1.68e−14 1.74e−14 1.89e−14

dmax1 29.35 (1.18) 19.33 (0.03) 7.39 (0.01) 4.64 (0.01) 3.64 (0.02) 3.20 (0.04)
dmax2 255.33 (0.49) 169.79 (0.14) 58.17 (0.05) 31.76 (0.02) 21.88 (0.05) 17.29 (0.07)
cssd all 1 1, 33 1 1 1, 9

600 �f 4.26e−02 1.74e−12 1.43e−12 1.11e−12 8.07e−12 1.68e−12
(Lin) �f 2.33e−01 3.96e−12 9.61e−13 3.92e−13 3.46e−11 9.85e−13

dmax1 65.39 (1.14) 41.55 (0.05) 16.08 (0.03) 10.67 (0.03) 8.73 (0.01) 8.05 (0.03)
dmax2 517.79 (1.11) 343.62 (0.18) 115.55 (0.05) 64.10 (0.03) 45.10 (0.06) 36.83 (1.77)
cssd 25, 33 33 None 33 1 1, 3, 17

�f 4.26e−02 5.60e−13 5.68e−13 5.63e−13 5.81e−13 5.71e−13
(Rand) �f 2.33e−01 2.52e−14 2.95e−14 3.16e−14 3.23e−14 3.18e−14

dmax1 65.39 (1.14) 41.62 (0.05) 16.03 (0.04) 10.71 (0.02) 8.78 (0.02) 8.06 (0.06)
dmax2 517.79 (1.11) 342.39 (0.17) 115.61 (0.04) 64.12 (0.03) 45.00 (0.06) 35.80 (0.06)
cssd all 1, 25 1 1 1, 3 1

1200 �f 1.15e−11 1.22e−11 1.50e−11 8.62e−12 1.93e−11 1.47e−11
(Lin) �f 1.58e−11 1.29e−11 1.81e−11 4.14e−12 3.90e−11 1.44e−11

dmax1 163.84 (3.55) 95.38 (0.15) 39.92 (0.06) 28.52 (0.05) 24.88 (0.06) 23.47 (0.09)
dmax2 1068.61 (4.32) 697.33 (0.27) 237.10 (0.08) 131.49 (0.06) 95.43 (0.11) 76.99 (0.10)
cssd 25, 33 none none 25, 33 1, 17 1, 17

�f 1.15e−11 1.18e−12 1.23e−12 1.22e−12 1.26e−12 1.25e−12
(Rand) �f 1.58e−11 3.98e−14 4.03e−14 4.18e−14 4.85e−14 4.84e−14

dmax1 163.84 (3.55) 95.81 (0.15) 39.84 (0.05) 28.58 (0.07) 24.91 (0.05) 23.42 (0.13)
23
1,

m
g

(

(

N
a
t
t
o
i
w
a

dmax2 1068.61 (4.32) 696.90 (0.30)

cssd All All

Summarizing the gained experience from the application of the
aster–slave PCOMPSO model on the Saw facility of the SHARCNET

rid, we can state the following remarks:

(a) Overall, the PCOMPSO approach with the random decomposi-
tion scheme, exhibited superior performance than the standard
COMPSO in multimodal problems.

b) The proposed PCOMPSO model can be highly beneficial when
the expected time-delay per function evaluation is relatively
high.

(c) The total number of slave processes can have impact on the per-
formance of PCOMPSO. If this number exceeds a relatively low
threshold then the communication overhead increases signif-
icantly. This additional load was shown to reduce PCOMPSO’s
performance with respect to the required wall-clock time. In
the experiments, it was shown that using up to 16 slave pro-
cesses can produce satisfactory results for low time-delay level
and dimension up to 1200.

d) In complex problems, the time efficiency of PCOMPSO can
increase with the problem’s dimension when a relatively small
number of slave processes is used.

aturally, academic facilities typically serve a large number of users
nd they are characterized by heavy workload and communica-
ion overhead among the processors. Thus, it shall be underlined
hat the presented results are subject to mild variations depending

n the status of the corresponding machine at the time of exper-
mentation. This remark will become clearer in the next section,

here the experimental results for a multicore desktop machine
re presented.
7.22 (0.08) 131.53 (0.09) 95.60 (0.12) 77.08 (0.11)
 3, 25 1, 3, 25, 33 1, 3, 9, 17 1, 3, 17

5.2. Results for the desktop multicore system

The PCOMPSO approach was tested also on the desktop multi-
core system described in Section 4.1. In the experiments, 1, 5, and
8 CPUs were used. In the latter case, all the available processing
threads of the system were occupied, while the typical processes
of the operating system were concurrently running. This setting
aimed at probing the time-performance of the algorithm under
excessive system load.

Indeed, the obtained results revealed an interesting feature of
multicore systems. More specifically, it was observed that, when a
set of 30 experiments was assigned to 8 CPUs, the system did not
provide all its processing threads immediately to the algorithm.
Instead, it initially preserved one or more threads for performing
operating system procedures, allocating the rest to the algorithm.
Thus, for some of the initial experiments, some of the slave pro-
cesses were running on same threads. As a consequence, higher
wall-clock time was recorded for these experiments. After a few
experiments, the system let the algorithm share all its processing
threads. Thus, latter experiments required less time. These fluctu-
ations of the required time per experiment are illustrated in Fig. 6
for a typical set of 30 experiments.

The rest of the experimental setting for the multicore system
was identical to the academic cluster. All results are reported in
Tables 11–15 and the time-performance is illustrated in Figs. 7–11,
following the presentation motif of the previous section.

The results for the unimodal problem TP0 are similar to the

corresponding results for the academic cluster. For the linear
decomposition scheme, there are mostly statistically insignificant
differences between the algorithms with respect to solution
quality as reported in Table 11. On the other hand, the random

3564 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.0001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.001, RAND

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.0001, RAND

1
3
9
17
25
33

Fig. 1. Graphical illustrations for TP0 on the academic cluster.

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3565

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.0001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.001, RAND

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.0001, RAND

1
3
9
17
25
33

Fig. 2. Graphical illustrations for TP1 on the academic cluster.

3566 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.001, LIN

1
3
9
17
25
33

300 600 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.0001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.001, RAND

1
3
9
17
25
33

300 600 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.0001, RAND

1
3
9
17
25
33

Fig. 3. Graphical illustrations for TP2 on the academic cluster.

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3567

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.0001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.001, RAND

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.0001, RAND

1
3
9
17
25
33

Fig. 4. Graphical illustrations for TP3 on the academic cluster.

3568 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 3 9 17 25 33
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.0001, LIN

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.001, RAND

1
3
9
17
25
33

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.0001, RAND

1
3
9
17
25
33

Fig. 5. Graphical illustrations for TP4 on the academic cluster.

K.E. Parsopoulos / Applied Soft Com

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

100

NUMBER OF EXPERIMENT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

se
c)

0.0001
0.001

F
f

d
P
t
d
h

t
r
r
r
C
p
w

T
R

ig. 6. The required wall-clock time per experiment in the desktop multicore system
or the two time-delay levels.

ecomposition scheme offered a significant advantage to the
COMPSO approaches, which achieved considerably better solu-
ions than the standard COMPSO regardless of the problem’s
imension. Also, we can observe in Table 11 that the case of 5 CPUs
abitually exhibits the most promising results.

The most interesting part of the analysis for the desktop sys-
em pertains to the required wall-clock time. In contrast to the
esults illustrated in Fig. 1 for TP0 on the academic cluster, Fig. 7
eveals that higher-dimensional instances of the problem are
elated to better or competitive speedup values as the number of

PUs increases. Also, the time efficiency for the 1200-dimensional
roblem instance is increasingly improved when 8 CPUs are used,
hile it deteriorates for 5 CPUs.

able 11
esults for TP0 on the desktop multicore system.

Dim. Number of CPUs

1 (COMPSO) 5 8

300 �f 8.93e−26 1.70e−24 7.35e−25
(Lin) �f 2.44e−25 6.68e−24 2.57e−24

dmax1 26.80 (0.20) 10.78 (0.01) 20.00 (4.52)
dmax2 252.61 (0.37) 100.78 (0.15) 85.93 (8.00)
cssd None None None

�f 8.93e−26 7.08e−30 9.78e−30
(Rand) �f 2.44e−25 5.34e−30 7.30e−30

dmax1 26.80 (0.20) 10.78 (0.01) 14.14 (0.10)
dmax2 252.61 (0.37) 100.53 (0.23) 71.10 (8.54)
cssd All All All

600 �f 9.52e−22 3.61e−23 1.77e−22
(Lin) �f 4.88e−21 3.99e−23 4.88e−22

dmax1 54.26 (0.04) 23.70 (0.44) 24.11 (0.55)
dmax2 506.63 (0.30) 203.20 (0.94) 149.64 (16.83)
cssd None None None

�f 9.52e−22 1.83e−26 2.55e−26
(Rand) �f 4.88e−21 8.37e−27 1.44e−26

dmax1 54.26 (0.04) 22.44 (0.01) 23.79 (0.02)
dmax2 506.63 (0.30) 201.95 (0.55) 146.34 (18.93)
cssd All All All

1200 �f 1.44e−19 3.43e−20 1.08e−18
(Lin) �f 7.16e−19 7.59e−20 4.20e−18

dmax1 116.89 (0.38) 53.17 (0.23) 37.59 (3.43)
dmax2 1018.74 (2.04) 410.53 (2.14) 278.79 (28.10)
cssd 8 None 1

�f 1.44e−19 3.11e−24 5.22e−24
(Rand) �f 7.16e−19 9.01e−25 2.17e−24

dmax1 116.89 (0.38) 53.34 (0.07) 52.57 (0.03)
dmax2 1018.74 (2.04) 406.97 (0.12) 284.24 (38.64)
cssd All All All
puting 12 (2012) 3552–3579 3569

This performance deviation of PCOMPSO between the aca-
demic cluster and the desktop system can be attributed to their
different architecture. The desktop system is a shared memory sys-
tem, i.e., all slave processes have access to the same memory with
the master process. Thus, there is no time-delay related to commu-
nication among different nodes for the transmission of data. On the
other hand, in the case of the academic cluster the master process
shall transmit all data mostly to different nodes (slave processes)
through one or more hardware switches. Obviously, the latter pro-
cedure requires additional time that increases with the volume of
the transmitted data. This is the main reason for the aforemen-
tioned performance differences. Additionally, it shall be highlighted
that the observed performance trends appear to be independent of
time-delay level and decomposition scheme.

Similar observations can be stated for test problem TP1, whose
results are reported in Table 12 and illustrated in Fig. 8. Almost
the same solution quality with the case of the academic cluster is
observed in most experiments. Also, the time efficiency of the par-
allel approaches with 8 CPUs has an increasing trend, although with
more fluctuations than in TP0. These fluctuations can be attributed
to the specific time instance of the algorithm’s execution, i.e., they
are caused by the operating system. Also, there is no apparent rela-
tion of this effect with the decomposition scheme or the time-delay
level.

The same pattern is repeated for the rest of the test problems.
Fluctuations appear in the time efficiency of PCOMPSO as the num-
ber of CPUs reaches its maximal value. However, there is a clear
trend of improvement with respect to the time-performance of
PCOMPSO when a higher number of CPUs is used in higher problem
dimensions, contrary to the corresponding behavior of the algo-
rithm on the academic cluster.

Summarizing the experience gained from the application of the
master–slave model of PCOMPSO on the desktop multicore system,
we can state the following remarks:

(a) The performance of PCOMPSO is similar to that for the academic
cluster with respect to solution quality.

(b) There is a significant wall-clock time gain when the proposed
PCOMPSO model is used, especially under relatively high time-
delay levels.

(c) The time-performance of PCOMPSO marginally differs than that
for the academic cluster when a small number of CPUs is used.

(d) In contrast to the academic cluster, the time-performance of
the algorithm can be improved in higher-dimensional problem
instances when all the available CPUs are used. This improve-
ment can be attributed to the different memory access and data
transmission procedures between the two systems. However,
in the case of the desktop system it is most likely that time-
performance is affected by the operating system procedures
when all the available CPU resources are used.

As a final remark, it can be stated that PCOMPSO exhibited notable
consistency when less than the maximum number of CPUs of the
multicore system were used. Thus, such systems can be considered
as very useful and accessible hardware platforms for experimenta-
tion when a modest number of slave processes is required.

5.3. Further experimentation

The experimental results presented in the previous sections
are based on a standard established test suite. However, in the
past few years new sets of test problems have been developed

to fulfill the necessity for more thorough investigations on prob-
lems of special type. Dynamic, multi-objective and constrained
optimization are some of the research fields that have welcome
such new challenging test suites. The new test problems have been

3570 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP0, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.0001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.001, RAND

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP0, MAX. DELAY = 0.0001, RAND

1
5
8

Fig. 7. Graphical illustrations for TP0 on the desktop multicore system.

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3571

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP1, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.0001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.001, RAND

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP1, MAX. DELAY = 0.0001, RAND

1
5
8

Fig. 8. Graphical illustrations for TP1 on the desktop multicore system.

3572 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP2, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.0001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.001, RAND

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP2, MAX. DELAY = 0.0001, RAND

1
5
8

Fig. 9. Graphical illustrations for TP2 on the desktop multicore system.

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3573

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP3, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.0001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.001, RAND

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP3, MAX. DELAY = 0.0001, RAND

1
5
8

Fig. 10. Graphical illustrations for TP3 on the desktop multicore system.

3574 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.0001, LIN

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.001, RAND

DIM=300
DIM=600
DIM=1200

1 5 8
0

1

2

3

4

5

6

7

8

NUMBER OF CPUs

S
P

E
E

D
U

P

TP4, MAX. DELAY = 0.0001, RAND

DIM=300
DIM=600
DIM=1200

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.0001, LIN

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.001, RAND

1
5
8

300 600 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DIMENSION

E
F

F
IC

IE
N

C
Y

TP4, MAX. DELAY = 0.0001, RAND

1
5
8

Fig. 11. Graphical illustrations for TP4 on the desktop multicore system.

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3575

Table 12
Results for TP1 on the desktop multicore system.

Dim. Number of CPUs

1 (COMPSO) 5 8

300 �f 3.51e + 02 3.68e+02 3.93e+02
(Lin) �f 5.83e+01 5.10e+01 1.50e+02

dmax1 27.04 (0.10) 10.86 (0.01) 14.44 (0.09)
dmax2 253.18 (0.47) 100.67 (0.20) 67.74 (7.93)
cssd None None None

�f 3.51e+02 1.13e+03 9.60e+02
(Rand) �f 5.83e+01 9.79e+02 5.56e+02

dmax1 27.04 (0.10) 11.25 (0.01) 12.88 (2.12)
dmax2 253.18 (0.47) 100.77 (0.18) 86.44 (0.42)
cssd 5, 8 1 1

600 �f 7.34e+02 7.35e+02 7.57e+02
(Lin) �f 6.38e+01 6.75e+01 7.21e+01

dmax1 55.61 (0.26) 24.09 (0.14) 21.42 (0.05)
dmax2 508.37 (1.70) 202.08 (0.48) 147.93 (16.68)
cssd None None None
�f 7.34e+02 1.74e+03 1.81e+03

(Rand) �f 6.38e+01 7.32e+02 9.43e+02
dmax1 55.61 (0.26) 23.66 (0.56) 24.19 (0.02)
dmax2 508.37 (1.70) 203.19 (0.09) 170.76 (10.27)
cssd 5, 8 1 1

1200 �f 1.52e+03 1.50e+03 1.50e+03
(Lin) �f 1.06e+02 1.04e+02 1.07e+02

dmax1 119.48 (0.87) 49.47 (0.13) 54.08 (0.71)
dmax2 1023.38 (1.18) 408.02 (0.14) 266.83 (15.89)

cssd None None None
�f 1.52e+03 2.99e+03 2.97e+03

(Rand) �f 1.06e+02 6.17e+02 3.48e+02
dmax1 119.48 (0.87) 53.99 (0.04) 59.15 (0.02)
d 1023.38 (1.18) 412.49 (1.40) 329.50 (0.23)

e
m

r
r
I
s
w
m
s
t

n
v
t
a
c
a
a
“
u

P
l
p
o
i
p

Table 13
Results for TP2 on the desktop multicore system.

Dim. Number of CPUs

1 (COMPSO) 5 8

300 �f 3.38e+02 3.39e+02 3.48e+02
(Lin) �f 2.85e+01 3.01e+01 3.58e+01

dmax1 33.29 (0.30) 12.49 (0.03) 13.49 (0.03)
dmax2 260.41 (4.92) 102.17 (0.09) 74.73 (10.97)
cssd None None None
�f 3.38e+02 1.48e+01 1.46e+01

(Rand) �f 2.85e+01 9.25e+00 7.02e+00
dmax1 33.29 (0.30) 12.66 (0.06) 13.63 (0.68)
dmax2 260.41 (4.92) 101.71 (0.08) 87.75 (0.18)
cssd 5, 8 1 1

600 �f 6.59e+02 6.54e+02 6.58e+02
(Lin) �f 3.65e+01 3.72e+01 5.69e+01

dmax1 79.67 (0.40) 29.48 (0.17) 32.28 (0.09)
dmax2 532.07 (0.51) 209.20 (0.14) 149.49 (22.63)
cssd None None None
�f 6.59e+02 3.34e+01 3.61e+01

(Rand) �f 3.65e+01 1.09e+01 1.16e+01
dmax1 79.67 (0.40) 28.66 (0.10) 33.29 (0.21)
dmax2 532.07 (0.51) 208.89 (0.15) 168.55 (0.22)
cssd 5, 8 1 1

1200 �f 1.25e+03 1.24e+03 1.26e+03
(Lin) �f 4.04e+01 4.00e+01 6.97e+01

dmax1 219.09 (0.95) 83.72 (0.32) 73.36 (1.36)
dmax2 1124.17 (1.69) 436.00 (1.19) 359.09 (6.25)
cssd None None None

�f 1.25e+03 7.11e+01 7.86e+01
(Rand) �f 4.04e+01 2.05e+01 2.24e+01

dmax1 219.09 (0.95) 73.47 (1.04) 80.92 (0.36)

utilization strategy for particle swarm optimizer (EPUS-PSO) [51],
the dynamic multi-swarm particle swarm optimizer with local search
max2

cssd 5, 8 1 1

ither developed from scratch or derived through proper mathe-
atical manipulations of the existing test problems.
In the field of large-scale optimization, there has been intense

esearch activity towards the production of new test suites. A
emarkable effort has been paid by researchers at the Nature
nspired Computation and Applications Laboratory at the Univer-
ity of Science and Technology of China4. The outcome of this effort
as a test suite for large-scale optimization, which served as the
ain benchmarking and competition ground at the corresponding

pecial session of the IEEE 2008 Congress on Evolutionary Compu-
ation (IEEE CEC’08) [50].

The test suite consists of unimodal, multimodal, separable and
on-separable problems. More specifically, it consists of modified
ersions of the test problems TP0–TP4 that were considered in
he previous sections. In their new versions, the test problems
re rotated and shifted producing landscapes that constitute hard
hallenges for nature-inspired optimization algorithms. Besides the
forementioned five test problems, two additional problems were
lso included in the test suite, namely Schwefel and FastFractal
DoubleDip”, with all problems being fully scalable for dimension
p to 1000.

This test suite was used for further experimentation with
COMPSO, in order to assess its capability on tackling harder,
arge-scale optimization problems than the ones reported in the
revious sections. In this set of experiments, attention was focused
n the PCOMPSO’s efficiency in terms of the obtained solution qual-

ty. Thus, its time-performance was neglected although the same
arallel version as in the previous sections was used. The

4 http://nical.ustc.edu.cn/
dmax2 1124.17 (1.69) 430.41 (1.60) 351.39 (0.52)
cssd 5, 8 1 1

experiments were conducted on the same multicore machine
considered in Section 5.2, using the test suite’s C++source code5.

The developers of the test suite denote the test problems as
follows [50]: F1 for the Shifted Sphere problem; F2 for Shifted
Schwefel; F3 for Shifted Rosenbrock; F4 for Shifted Rastrigin; F5
for Shifted Griewank; and F6 for Shifted Ackley. This notation is
adopted in the present analysis6. The complete definitions of the
test problems are omitted due to space limitations and the reader
is referred to the original source [50].

PCOMPSO was applied on the 1000-dimensional instances of
the test problems F1–F6, using the experimental configuration that
was used for the IEEE CEC’08 competition [50]. More specifically,
25 independent experiments were conducted for each test prob-
lem, allowing the algorithm to perform a total of 5 × 106 function
evaluations. PCOMPSO’s most promising scheme, i.e., the one with
the random decomposition, was used with 500 subswarms, each
one consisting of five 2-dimensional particles. It shall be reminded
that the subswarms must have small sizes and, hence, assume
low-dimensional particles to avoid efficiency issues as discussed
in Section 2.2.

The average performance of PCOMPSO was compared to that
of two PSO-based and one DE-based approaches specialized on
large-scale optimization problems, which contested in the IEEE
CEC’08 competition. These approaches are the efficient population
5 http://nical.ustc.edu.cn/conferences/cec2008/lsgo/LSGO.CEC08.Benchmark.zip
6 The compilation of the FastFractal “DoubleDip” test problem was not stable in

the experimentation machine due to its Java modules, therefore experiments were
omitted for this problem.

http://nical.ustc.edu.cn/
http://nical.ustc.edu.cn/conferences/cec2008/lsgo/LSGO.CEC08.Benchmark.zip

3576 K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579

Table 14
Results for TP3 on the desktop multicore system.

Dim. Number of CPUs

1 (COMPSO) 5 8

300 �f 6.32e−02 4.28e−02 1.06e−01
(Lin) �f 1.31e−01 6.55e−02 3.13e−01

dmax1 31.92 (0.12) 13.19 (0.25) 13.51 (0.06)
dmax2 257.78 (0.32) 102.44 (0.15) 68.42 (7.76)
cssd None None None

�f 6.32e−02 1.11e−02 6.74e−03
(Rand) �f 1.31e−01 2.65e−02 1.74e−02

dmax1 31.92 (0.12) 12.87 (0.16) 15.23 (0.02)
dmax2 257.78 (0.32) 102.44 (0.13) 65.35 (0.04)
cssd 5, 8 1 1

600 �f 6.61e−02 6.33e−02 7.74e−02
(Lin) �f 1.45e−01 1.25e−01 1.87e−01

dmax1 75.73 (0.33) 30.58 (0.26) 32.02 (0.13)
dmax2 527.01 (0.63) 209.60 (0.39) 132.80 (0.09)
cssd None None None

�f 6.61e−02 4.94e−03 6.57e−03
(Rand) �f 1.45e−01 1.15e−02 1.24e−02

dmax1 75.73 (0.33) 29.97 (0.12) 35.39 (0.07)
dmax2 527.01 (0.63) 209.16 (0.11) 180.43 (0.18)
cssd 5, 8 1 1

1200 �f 4.06e−02 9.96e−02 4.62e−02
(Lin) �f 5.97e−02 2.46e−01 6.02e−02

dmax1 197.40 (0.84) 81.07 (1.37) 84.66 (0.31)
dmax2 1100.65 (1.13) 437.02 (0.79) 380.38 (0.32)
cssd None None None

�f 4.06e−02 6.39e−03 6.03e−03
(Rand) �f 5.97e−02 9.77e−03 1.06e−02

dmax1 197.40 (0.84) 78.67 (0.17) 85.95 (0.20)
dmax2 1100.65 (1.13) 439.05 (1.15) 300.14 (39.87)
cssd 5, 8 1 1

Table 15
Results for TP4 on the desktop multicore system.

Dim. Number of CPUs

1 (COMPSO) 5 8

300 �f 4.00e−13 4.38e−13 4.82e−13
(Lin) �f 4.65e−14 1.99e−13 4.18e−13

dmax1 29.35 (1.18) 11.66 (0.02) 12.47 (0.03)
dmax2 255.33 (0.49) 101.60 (0.06) 82.65 (0.13)
cssd None None None

�f 4.00e−13 2.69e−13 2.63e−13
(Rand) �f 4.65e−14 2.18e−14 2.20e−14

dmax1 29.35 (1.18) 11.98 (0.20) 12.41 (0.01)
dmax2 255.33 (0.49) 101.55 (0.06) 87.18 (0.11)
cssd 5, 8 1 1

600 �f 4.26e−02 1.19e−12 1.21e−12
(Lin) �f 2.33e−01 1.28e−12 7.63e−13

dmax1 65.39 (1.14) 27.82 (0.15) 29.84 (0.04)
dmax2 517.79 (1.11) 206.17 (0.48) 142.64 (19.75)
cssd None None None

�f 4.26e−02 5.63e−13 5.65e−13
(Rand) �f 2.33e−01 3.31e−14 3.51e−14

dmax1 65.39 (1.14) 27.84 (0.03) 31.95 (0.03)
dmax2 517.79 (1.11) 205.31 (0.11) 173.07 (12.63)
cssd 5, 8 1 1

1200 �f 1.15e−11 1.44e−11 9.58e−12
(Lin) �f 1.58e−11 2.75e−11 5.30e−12

dmax1 163.84 (3.55) 65.08 (0.22) 60.35 (4.54)
dmax2 1068.61 (4.32) 426.18 (0.65) 293.90 (39.65)
cssd None None None

�f 1.15e−11 1.22e−12 1.23e−12
(Rand) �f 1.58e−11 4.70e−14 3.84e−14

dmax1 163.84 (3.55) 67.18 (0.17) 51.55 (7.86)
dmax2 1068.61 (4.32) 425.18 (0.81) 293.20 (39.40)
cssd 5, 8 1 1

K.E. Parsopoulos / Applied Soft Computing 12 (2012) 3552–3579 3577

Table 16
Average performance of PCOMPSO, EPUS-PSO, DMS-PSO and DEwSAcc on the 1000-dimensional instance of the test suite used in the IEEE CEC’08 competition on large scale
global optimization.

Algorithm Stat. F1 F2 F3 F4 F5 F6

PCOMPSO Mean 1.76e+03 4.66e+01 2.46e+07 7.59e+02 1.66e+01 2.45e+00
St.D. 6.05e+02 1.15e+00 1.82e+07 3.60e+01 4.91e+00 2.01e−01

EPUS-PSO Mean 5.53e+02 4.66e+01 8.37e+05 7.58e+03 5.89e+00 1.89e+01
St.D. 2.86e+01 4.00e−01 1.52e+05 1.51e+02 3.91e−01 2.49e+00

DMS-PSO Mean 0.00e+00* 9.15e+01 8.98e+09 3.84e+03 0.00e+00* 7.76e+00
St.D. 0.00e+00* 7.14e−01 4.39e+08 1.71e+02 0.00e+00* 8.92e−02

(
a

d
T
w
D
p
t
n
i
p
f
a

a
l
l
i
o
p
a
i

6

t
a
m
w
t
w
r

p
t
w
c
t
y
s
C
r
i
p

a
m
p
i
b

DEwSAcc Mean 8.79e−03 9.61e+01

St.D. 5.27e−03 1.82e+00

DMS-PSO) [52], and the differential evolution with self-adaptation
nd cooperative co-evolution (DEwSAcc) [53].

The comparisons with respect to the mean value and stan-
ard deviation of the obtained solution errors are reported in
able 16. The values reported for EPUS-PSO, DMS-PSO and DEwSAcc
ere adopted directly from the original sources. The results of
MS-PSO marked with an asterisk (*) in Table 16 appear as
ure zeros in the original source (the lowest non-zero value in
hat table was of order 10−2). As we see in the table, there is
o algorithm that dominates all others in all problems. Exclud-

ng the convex unimodal problem F1, PCOMPSO was able to
roduce competitive results with the rest of the algorithms. In
act, for F2, F4 and F6, it was the best performing PSO-based
pproach.

This is remarkable, keeping in mind that in contrast to other
pproaches PCOMPSO does not employ complex strategies or
ocal search to fine-tune the obtained solutions. Obviously, the
ack of such a mechanism is highly responsible for its inabil-
ty to move as close to the global minimizer of F1 as the rest
f the algorithms. Nevertheless, its performance suggests that,
roviding additional search mechanisms such as local search or
daptive parameter tuning, PCOMPSO can become a very compet-
tive approach.

. Conclusions

An essential master–slave model for the parallelization of
he COMPSO algorithm was introduced. The proposed PCOMPSO
pproach was implemented using the MPI standard. Its perfor-
ance was assessed on a set of five widely used test problems
here additional random time–delays were considered in the func-

ion evaluations. Besides that, a random decomposition scheme
as incorporated to the algorithm to enhance its performance with

espect to solution quality.
The proposed approach was implemented on two different com-

uter systems. The first one was an academic cluster, namely
he Saw facility of the SHARCNET grid network. The second one
as a shared-memory multicore PC based on an Intel® I7 pro-

essor. The results were statistically analyzed with respect to
he obtained solution quality and time-performance. The anal-
sis revealed some significant aspects of the algorithm. First, it
uggested that PCOMPSO can be a valuable tool, outperforming
OMPSO in time-demanding problems. Second, it showed the supe-
iority of the random decomposition scheme against the linear one
n general problems. Finally, it offered intuition regarding the time-
erformance of PCOMPSO in different parallel hardware platforms.

The experimental results suggested that, despite the limited
vailable resources, PCOMPSO implementations on shared-

emory systems can offer satisfactory results in high-dimensional

roblem instances. This holds even when the demand for process-
ng resources is pushed to the limit. However, it is accompanied
y a possible sensitivity on the time instance of the algorithm’s
9.15e+03 1.82e+03 3.58e−03 2.30e+00
1.26e+03 1.38e+02 5.74e−03 2.98e−01

execution, i.e., on the operating system procedures running at the
time of experimentation.

On the other hand, in large scale systems with hundreds of pro-
cessors, the communication burden shall be seriously taken into
consideration. The performance of the algorithm is related to the
number of processors, which shall be kept in relatively small values.
Using more CPUs does not guarantee performance improvement
even in higher–dimensional problem instances.

Moreover, comparisons of PCOMPSO with other PSO-based
and DE-based approaches on recently proposed large scale opti-
mization test suites, suggest that it can be competitive to more
sophisticated approaches that employ complex update rules and
local search. This is a strong motivation for further experimentation
with memetic variants of the algorithm.

Future research will also include the development of alterna-
tive parallel implementations of PCOMPSO with an emphasis on
the island model. This model requires substantial modifications to
the algorithm’s structure and operation, as well as a decentralized
communication system among the subswarms.

Acknowledgements

The author wishes to thank the anonymous reviewers for their
valuable comments and suggestions.

Appendix A.

Test problem 0 (TP0 – Sphere) [15]. This is a separable n-
dimensional problem, defined as:

f (x) =
n∑

i=1

x2
i , (9)

with x ∈ [−100, 100]n, and it has one global minimizer, x* = (0, 0, . . .,
0)�, with f(x*) = 0.

Test problem 1 (TP1 - Generalized Rosenbrock) [15]. This is a
non-separable n-dimensional problem, defined as:

f (x) =
n−1∑
i=1

(100(xi+1 − x2
i)2 + (xi − 1)2), (10)

with x ∈ [−30, 30]n, and it has a global minimizer, x* = (1, 1, . . ., 1)�,
with f(x*) = 0.

Test problem 2 (TP2 – Rastrigin) [15]. This is a separable n-
dimensional problem, defined as:

f (x) = 10n +
n∑

(x2 − 10 cos(2�x)), (11)
i=1

i i

with x ∈ [−5.12, 5.12]n, and it has a global minimizer, x* = (0, 0, . . .,
0)�, with f(x*) = 0.

3 t Com

n

f

w
0

d

f

w
w

R

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[
[

[

[

578 K.E. Parsopoulos / Applied Sof

Test problem 3 (TP3 – Griewank) [15]. This is a non–separable
-dimensional problem, defined as:

 (x) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos
(

xi√
i

)
+ 1, (12)

ith x ∈ [−600, 600]n, and it has a global minimizer, x* = (0, 0, . . .,
)�, with f(x*) = 0.

Test problem 4 (TP4 - Ackley) [15]. This is a non-separable n-
imensional problem, defined as:

 (x) = 20 + exp(1) − 20 exp

⎛
⎝−0.2

√√√√1
n

n∑
i=1

x2
i

⎞
⎠

− exp

(
1
n

n∑
i=1

cos(2�xi)

)
, (13)

ith x ∈ [−20, 30]n, and it has a global minimizer, x* = (0, 0, . . ., 0)�,
ith f(x*) = 0.

eferences

[1] M.R. AlRashidi, M.E. El-Hawary, A survey of particle swarm optimization
applications in electric power systems, IEEE Transactions on Evolutionary Com-
putation 13 (4) (2009) 913–918.

[2] J. Robinson, Y. Rahmat-Samii, Particle swarm optimization in electromagnetics,
IEEE Transactions on Antennas and Propagation 52 (2004) 397–407.

[3] J. Park, K. Choi, D.J. Allstot, Parasitic-aware RF circuit design and optimiza-
tion, IEEE Transactions on Circuits and Systems I: Regular Papers 51 (2004)
1953–1966.

[4] D.W. Boeringer, D.H. Werner, Particle swarm optimization versus genetic
algorithms for phased array synthesis, IEEE Transactions on Antennas and
Propagation 52 (3) (2004) 771–779.

[5] Y.G. Petalas, K.E. Parsopoulos, M.N. Vrahatis, Improving fuzzy cognitive maps
learning through memetic particle swarm optimization, Soft Computing 13 (1)
(2009) 77–94.

[6] B. Liu, L. Wang, Y.-H. Jin, An effective pso-based memetic algorithm for flow
shop scheduling, IEEE Transactions on Systems, Man and Cybernetics, Part B
37 (2007) 18–27.

[7] K. Parsopoulos, F. Kariotou, G. Dassios, M. Vrahatis, Tackling magnetoen-
cephalography with particle swarm optimization, International Journal of
Bio-Inspired Computation 1 (1/2) (2009) 32–49.

[8] R. Xu, D.C. Anagnostopoulos, D.C. Wunsch, Multiclass cancer classification using
semisupervised ellipsoid artmap and particle swarm optimization with gene
expression data, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 4 (1) (2007) 65–77.

[9] C. Skokos, K.E. Parsopoulos, P.A. Patsis, M.N. Vrahatis, Particle swarm optimiza-
tion: An efficient method for tracing periodic orbits in 3D galactic potentials,
Monthly Notices of the Royal Astronomical Society 359 (2005) 251–260.

10] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part
I: background and development, Natural Computing 6 (4) (2007) 467–484.

11] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part
II: hybridisation combinatorial multicriteria and constrained optimization and
indicative applications, Natural Computing 7 (1) (2008) 109–124.

12] R. Poli, An Analysis of Publications on Particle Swarm Optimisation Appli-
cations, Tech. Rep. CSM-649, University of Essex, Department of Computer
Science, UK, 2007.

13] M. Clerc, Particle Swarm Optimization, ISTE Ltd, London, UK, 2006.
14] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley,

Chichester, UK, 2006.
15] K.E. Parsopoulos, M.N. Vrahatis, Particle Swarm Optimization and Intelligence:

Advances and Applications, Information Science Publishing (IGI Global), Her-
shey (PA), USA, 2010.

16] W.B. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality, Wiley, New York, USA, 2007.

17] M.A. Potter, K. De Jong, Cooperative coevolution: An architecture for evolving
coadapted subcomponents, Evolutionary Computation 8 (1) (2000) 1–29.

18] G. Sánchez-Ante, F. Ramos, J. Frausto, Cooperative simulated annealing for path
planning in multi-robot systems, in: Proceedings of the Mexican International
Conference on Artificial Intelligence (MICAI 2000), Acapulco, Mexico, Vol. 1793
of Lecture Notes in Computer Science, Springer, Berlin, Germany, 2000, pp.
148–157.

19] T.G. Crainic, M. Grendeau, Cooperative parallel tabu search for capacitated net-

work design, Journal of Heuristics 8 (2002) 601–627.

20] M.A. Potter, K. De Jong, A cooperative coevolutionary approach to function
optimization, in: Y. Davidor, H.-P. Schwefel (Eds.), Proc. 3rd Conference on Par-
allel Problem Solving from Nature, Springer-Verlag, Berlin, Germany, 1994, pp.
249–257.

[

puting 12 (2012) 3552–3579

21] K. Doerner, R.F. Hartl, M. Reimann, Cooperative ant colonies for optimizing
resource allocation in transportation, in: Lecture Notes in Computer Science,
Vol. 2037, Springer, Berlin, Germany, 2001, pp. 70–79.

22] D. Sofge, K. De Jong, A. Schultz, A blended population approach to coopera-
tive coevoultion for decomposition of complex problems, in: Proc. 2002 IEEE
Congress on Evolutionary Computation (CEC’02), 2002, pp. 413–418.

23] B. Niu, Y. Zhu, X. He, Multi-population cooperative particle swarm optimization,
in: Proc. 2005 European Conference on Artificial Life, 2005, pp. 874–883.

24] M. El-Abd, M.S. Kamel, A taxonomy of cooperative particle swarm optimiz-
ers, International Journal of Computational Intelligence Research 4 (2) (2008)
137–144.

25] M. Köppen, K. Franke, R. Vicente-Garcia, Tiny GAs for image processing appli-
cations, IEEE Computational Intelligence Magazine 1 (2) (2006) 17–26.

26] T. Huang, A.S. Mohan, Micro-particle swarm optimizer for solving high
dimensional optimization problems �PSO for high dimensional optimization
problems, Applied Mathematics and Computation 181 (2) (2006) 1148–1154.

27] K.E. Parsopoulos, Cooperative micro-particle swarm optimization, in: ACM
2009 World Summit on Genetic and Evolutionary Computation (2009 GEC
Summit), Shanghai, China, 2009, pp. 467–474.

28] K.E. Parsopoulos, Cooperative micro-differential evolution for high-
dimensional problems, in: Genetic and Evolutionary Computation Conference
2009 (GECCO’09), Montreal, Canada, 2009, pp. 531–538.

29] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. IEEE Int.
Conf. Neural Networks, Vol. IV, IEEE Service Center, Piscataway, NJ, 1995, pp.
1942–1948.

30] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers,
San Francisco (CA), USA, 2001.

31] J. Kennedy, Small worlds and mega-minds: Effects of neighborhood topology
on particle swarm performance, in: Proc. IEEE Congr. Evol. Comput., IEEE Press,
Washington, DC, USA, 1999, pp. 1931–1938.

32] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence
in a multidimensional complex space, IEEE Transactions on Evolutionary Com-
putation 6 (1) (2002) 58–73.

33] I.C. Trelea, The particle swarm optimization algorithm: convergence analysis
and parameter selection, Information Processing Letters 85 (2003) 317–325.

34] K.E. Parsopoulos, M.N. Vrahatis, On the computation of all global minimiz-
ers through particle swarm optimization, IEEE Transactions on Evolutionary
Computation 8 (3) (2004) 211–224.

35] M. El-Abd, Cooperative models of particle swarm optimizers, Ph.D. Thesis, Dept.
Elect. Comput. Eng., Univ. Waterloo, Waterloo, Ontario, Canada, 2008.

36] F. Van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004)
225–239.

37] L. Baldo, L. Brenner, L.G. Fernandes, P. Fernandes, A. Sales, Performance models
for master/slave parallel programs, Electronic Notes in Theoretical Computer
Science 128 (4) (2005) 101–121.

38] S. Sahni, G. Vairaktarakis, The master–slave paradigm in parallel computer and
industrial settings, Journal of Global Optimization 9 (3-4) (2004) 357–377.

39] E. Alba (Ed.), Parallel Metaheuristics, Wiley-Interscience, Hoboken, NJ, 2005.
40] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms, Kluwer Aca-

demic Publishers, Boston, MA, 2000.
41] M. Belal, T. El-Ghazawi, Parallel models for particle swarm optimizers, Inter-

national Journal on Intelligent Cooperative Information Systems 4 (1) (2004)
100–111.

42] M. Waintraub, R. Schirru, C.M.N.A. Pereira, Multiprocessor modeling of parallel
particle swarm optimization applied to nuclear engineering problems, Progress
in Nuclear Energy 51 (6–7) (2009) 680–688.

43] Y. Li, Y. Cao, Z. Liu, Y. Liu, Q. Jiang, Dynamic optimal reactive power dispatch
based on parallel particle swarm optimization algorithm, Computers & Math-
ematics with Applications 57 (11-12) (2009) 1835–1842.

44] Y. Zhang, D. Gallipoli, C.E. Augarde, Simulation-based calibration of geotech-
nical parameters using parallel hybrid moving boundary particle swarm
optimization, Computers and Geotechnics 36 (4) (2009) 604–615.

45] A.B. de Carvalho, A. Pozo, Mining rules: a parallel multiobjective particle swarm
optimization approach, in: Swarm Intelligence for Multi-Objective Problems in
Data Mining, Vol. 242 of Studies in Computational Intelligence, Springer, Berlin,
Germany, 2009, pp. 179–198.

46] A. Farmahini-Farahani, S. Vakili, S.M. Fakhraie, S. Safari, C. Lucas, Parallel
scalable hardware implementation of asynchronous discrete particle swarm
optimization, Engineering Applications of Artificial Intelligence 23 (2) (2010)
177–187.

47] I.T. Jolliffe, Principal Component Analysis, Springer, Secaucus (NJ), USA, 2002.
48] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using cooperative

coevolution, Information Sciences 178 (15) (2008) 2986–2999.
49] X. Li, X. Yao, Tackling high dimensional nonseparable optimization problems

by cooperatively coevolving particle swarms, in: Proc. IEEE 2009 Congress on
Evolutionary Computation (IEEE CEC’09), 2009, pp. 1546–1553.

50] K. Tang, X. Yao, P.N. Suganthan, C. MacNish, Y.P. Chen, C.M. Chen, Z. Yang,
Benchmark Functions for the CEC’2008 Special Session and Competition on
Large Scale Global Optimization, Tech. rep., Nature Inspired Computation and
Applications Laboratory, University of Science and Technology of China, China,

2007.

51] S.-T. Hsieh, T.-Y. Sun, C.-C. Liu, S.-J. Tsai, Solving large scale global opti-
mization using improved particle swarm optimizer, in: Proceedings of the
IEEE 2008 Congress on Evolutionary Computation, Hong Kong, 2008, pp.
1777–1784.

t Com

[

K.E. Parsopoulos / Applied Sof
52] S.Z. Zhao, J.J. Liang, P.N. Suganthan, M.F. Tasgetiren, Dynamic multi-swarm par-
ticle swarm optimizer with local search for large scale global optimization, in:
Proceedings of the IEEE 2008 Congress on Evolutionary Computation, Hong
Kong, 2008, pp. 3845–3852.

[

puting 12 (2012) 3552–3579 3579
53] A. Zamuda, B. Bošković, Large scale global optimization using differential evo-
lution with self-adaptation and cooperative co-evolution, in: Proceedings of
the IEEE 2008 Congress on Evolutionary Computation, Hong Kong, 2008, pp.
3718–3725.

	Parallel cooperative micro-particle swarm optimization: A master–slave model
	1 Introduction
	2 Background information
	2.1 Particle swarm optimization
	2.2 Micro-particle swarm optimization
	2.3 Cooperative particle swarm optimization
	2.4 Cooperative micro-particle swarm optimization
	2.5 Parallel master–slave model

	3 Master–slave model for parallel cooperative micro-particle swarm optimization
	4 Experimentation environments and parameter setup
	4.1 Employed parallel computing systems
	4.2 The parameter setup
	4.3 Performance measures

	5 Experimental results
	5.1 Results for the academic cluster
	5.2 Results for the desktop multicore system
	5.3 Further experimentation

	6 Conclusions
	Acknowledgements
	References
	Appendix B Supplementary data

