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a b s t r a c t

We investigate the dynamic lot-size problem under stochastic and non-stationary demand over the

planning horizon. The problem is tackled by using three popular heuristic methods from the fields of

evolutionary computation and swarm intelligence, namely particle swarm optimization, differential

evolution and harmony search. To the best of the authors’ knowledge, this is the first investigation of

the specific problem with approaches of this type. The algorithms are properly manipulated to fit the

requirements of the problem. Their performance, in terms of run-time and solution accuracy, is

investigated on test cases previously used in relevant works. Specifically, the lot-size problem with

normally distributed demand is considered for different planning horizons, varying from 12 up to 48

periods. The obtained results are analyzed, providing evidence on the efficiency of the employed

approaches as promising alternatives to the established Wagner–Whitin algorithm, as well as hints on

their proper configuration.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The deterministic lot-size (DLS) problem consists of determin-
ing the quantity of products to order or produce in each time
period over a finite discrete planning horizon, in order to satisfy
the demand for each period while minimizing the summation of
setup and inventory holding costs. This model was first intro-
duced by Wagner and Whitin in 1958 [1], who developed an
O(H2) forward algorithm for a general dynamic version of the
uncapacitated economic lot-size model, where H stands for the
number of time periods.

DLS is embedded within many practical production planning
problems. The zero-inventory ordering principle, which imposes
that no production is undertaken if inventory is available, con-
stitutes a key contribution for the uncapacitated cases. Zangwill
[2] extended the Wagner–Whitin model by allowing complete
backlogging of unsatisfied demand. This was the first work to
highlight the importance of using networks to represent some
production planning problems. More specifically, the problem
was represented as a minimum cost flow problem in a network
with concave arc costs and a single source.

Although many alternative algorithms have been proposed,
the dynamic programming method still remains the major
ll rights reserved.

: þ30 2651008890.

kas),

kouri),
analytical tool for solving lot-size problems. Federgruen and Tzur
[3] presented a simple forward algorithm which solves the
general dynamic lot-size model in O ðH log HÞ time or in O(H)
under some assumptions on the cost data. This was the key
improvement to the previously recommended well-known short-
est path algorithm solution, which required O(H2) time.

Wagelmans et al. [4] extended the range of allowable cost data
to permit coefficients with unrestricted signs. They developed an
alternative algorithm to solve the resulting problem in O ðH log HÞ

time. Aggarwal and Park [5] developed an algorithm with com-
plexity O ðH log HÞ, which solved the problem of H periods by
solving two sub-problems of H/2 periods. Two recent review
papers on the dynamic lot-size problem are those by Karimi et al.
[6] and Jans and Degraeve [7]. The first one reviews single-level
lot-size problems, their variants and solution approaches. The
second one presents an overview of recent developments on the
deterministic dynamic lot-size problem, focusing on the modeling
of various industrial extensions rather than solution approaches.

All the above models assume that relevant data, such as the
demand, are known and deterministic. However, this assumption
is unrealistic in many situations. Guan and Miller [8] studied the
stochastic version of the deterministic lot-size problem and
proposed a polynomial time algorithm to obtain the optimal
solution. Guan [9] studied a more general setting of the stochastic
lot-size problem, assuming varying capacities and backlogging of
unsatisfied demand.

Recently, Vargas [10] investigated the problem of planning
dynamic order quantities, extending the Wagner–Whitin algorithm
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to the case of stochastic, time-varying demand with known density
function. Safety stock requirements were implicitly included in
planned order quantities whereby the objective was to minimize
the sum of expected setup, backorder and inventory holding costs. A
particularly elegant solution procedure was developed for the case of
normally distributed periodic demands. In his analysis, Vargas [10]
stated that his work

‘‘...may serve as a basis for the development of improved
production scheduling heuristics for the stochastic case and
new heuristics can be directly incorporated in production sche-
duling systems.’’

Motivated by this proposal, we selected three heuristic opti-
mization algorithms, still unstudied on the specific problem. The
algorithms were selected on the basis of popularity, number of
interdisciplinary applications, easy implementation and verified
efficiency, which imply a prevailing position among similar
approaches. Particle swarm optimization (PSO) [11], differential
evolution (DE) [12] and harmony search (HS) [13] are three
algorithms that perfectly matched our criteria. Although they
were not the only candidate approaches, the ongoing interest of
the research community on their properties and applications was
the motive for our choice in the present study.

The engaged algorithms have been shown to be very efficient
in various scientific and engineering problems. Their development
was inspired by the evolution and self-organization properties of
living entities. PSO roughly resembles the swarming behavior
observed in bird-flocks or fish schools, which is also intimately
related to physical laws that characterize more fundamental
systems such as gases in particle physics. On the other hand, DE
is closely associated with evolutionary algorithms, resembling
recombination and mutation procedures. HS performs a procedure
similar to the musical improvisation process, although its struc-
ture and operation have many commons with state-of-the-art
evolutionary algorithms such as evolution strategies.

The aforementioned algorithms have been successfully applied
also in operations research. For instance, we can refer to flow
shop and machine scheduling problems [14–16], optimal sche-
duling of multiple dam systems and fluid-transport network
design [17,18], inventory optimization [19], dynamic lot-sizing
problems [20], etc.

The rest of the paper is organized as follows: in Section 2, the
model is clarified and an analytical mathematical formulation is
provided. Section 3 is devoted to the description of the employed
algorithms. The experimental setup is presented in Section 4,
along with the obtained results and, finally, the paper concludes
in Section 5.
2. Problem formulation

The mathematical description of the stochastic lot-size pro-
blem is deployed in the following paragraphs, closely following
the presentation of Vargas [10].

2.1. Assumptions and notation

The formal representation of the problem requires the follow-
ing assumptions for the stochastic version of the Wagner–Whitin
lot-size problem:
(a)
 The planning horizon is composed of H time periods.

(b)
 Demand in each period, t, is non-negative, independent and

stochastic with known density.

(c)
 The production capacity is unlimited.

(d)
 Unsatisfied demand is fully backlogged and a backlogging

cost is assessed at the end of each period per unit backlogged.
(e)
 A fixed lead time, L, is assumed and no disposal of inventory is
allowed.
(f)
 At the conclusion of the horizon, holding or backlogging costs
are assessed and any backlogged demand is left unfilled.
(g)
 The first scheduled production lot arrives at the start of
period 1, and there are no pipeline production lots.
Additional notation used in the problem formulation, follows
below:
dt:
 demand in period t¼ 1;2, . . . ,H, with known density func-
tion, ftðxÞ
ht:
 holding cost, assessed at the end of each period per unit held

bt:
 backlogging cost, assessed at the end of each period per unit

backlogged, assumed to be proportional to the holding cost,
i.e., bt ¼ pht , for some p40
At:
 fixed production setup for each time period

St:
 cumulative sum of all production lots to arrive up to and

including period t (initially S0 ¼ 0Þ

k(x):
 binary decision variable defined as

kðxÞ ¼
1, xa0,

0, x¼ 0,

(
ð1Þ
where x is the production volume in a time period.
Now we can give the general mathematical formulation of the

problem, in the following section.

2.2. Existing formulation and solution approach

The expected cost incurred in period t¼ 1;2, . . . ,H is given by
the following expression:

EtðS1,S2, . . . ,StÞ ¼ At�LkðSt�St�1Þþht

Z St

0
ðSt�qÞftðqÞ dq

þbt

Z 1
St

ðq�StÞftðqÞ dq, ð2Þ

where ft(q) is the convolution of the demand density functions fi

for periods i¼ 1�L to t. The corresponding optimization problem
is to specify the cumulative production amounts, St, t¼ 1;2, . . . ,H,
that produce the minimum total expected setup, holding and
backlogging costs [10], i.e.

min
0oS1 rS2 r ���rSH

XH

t ¼ 1

EtðS1,S2, . . . ,StÞ: ð3Þ

Actually, the problem is solved in two stages. At first the optimal
replenishment quantities for any sequence of epochs is deter-
mined and, afterwards, the optimal sequence of replenishment
epochs is identified.

More specifically, if S is the cumulative production quantity
received up to period i, then the expected cost incurred in periods
i,iþ1, . . . ,j�1, is computed as

KðS,i,jÞ ¼ Ai�Lþ
Xj�1

t ¼ i

ht

Z S

0
ðS�qÞftðqÞ dq

þ
Xj�1

t ¼ i

bt

Z 1
S
ðq�SÞftðqÞ dq, ð4Þ

where i and j are periods in which a production lot is available,
with

1r io jrHþ1, ð5Þ

while no replenishment occurs for j¼Hþ1.
As stated in [10], Eq. (4) is differentiable and convex in S so

that we obtain the optimal solution by setting its derivative equal
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to zero. Consequently, if

FtðxÞ ¼

Z x

0
ftðqÞ dq, ð6Þ

then

Xj�1

t ¼ i

ðhtþbtÞFtðSÞ ¼
Xj�1

k ¼ i

bt , ð7Þ

which can be extended as [10]

Xj�1

t ¼ i

ðhtþbtÞPj�1
k ¼ iðhkþbkÞ

FtðSÞ

( )
¼

Pj�1
t ¼ i btPj�1

t ¼ iðhtþbtÞ
¼

p

ð1þpÞ
: ð8Þ

The first optimization stage is completed by computing the root,
Snði,jÞ, of Eq. (8), which represents the optimal cumulative
production amount to be received up to period i while no
subsequent production lot is received before period j, and p is
the parameter for which, bt ¼ pht holds.

The second optimization stage consists of the computation of
the optimal sequence of replenishment epochs, i.e., the sequence
that gives the minimum value of the objective function defined in
Eq. (3). This can be done by using different techniques and it
constitutes the point of our interference in the solution process
with the heuristic algorithms.

Exhaustive search is the most trivial algorithm for solving the
problem and may even be effective in small problem instances.
However, it becomes exponentially laborious with the number of
time periods, since the number of all possible sequences becomes
very large, requiring prohibitive computation time for their
assessment. Nevertheless, it may still be useful for small problem
instances.

Vargas [10] proposed a sophisticated technique that builds a
tree-like structure and translates the problem to an equivalent
one of finding the shortest path of the resulting acyclic network.
The corresponding arcs of the network represent the options of
replenishment occurring in period i with no subsequent replen-
ishment until period j, and they are labeled with non-negative arc
costs

Cij ¼ KðSnði,jÞ,i,jÞ, 1r io jrHþ1: ð9Þ

Further analysis on this technique can be found in [10].
In the current work, we propose the solution of the second

optimization stage by using the heuristic optimization algorithms
mentioned in the previous sections. Details of the proposed
approaches are provided in the following sections, after a brief
presentation of the employed algorithms.
Fig. 1. The ring (left) and star (right) neighborhood topologies of PSO.
3. Employed heuristic optimization algorithms

The main features of the employed algorithms, PSO, DE and
HS, are presented in this section. In our presentation, we assume
that the optimization problem under consideration is defined as

min
xAX � Rn

GðxÞ, ð10Þ

where X is the search space. No assumptions on the objective
function GðxÞ are required, except the availability of its value at
any give point in X.

3.1. Particle swarm optimization

The original PSO algorithm was introduced in 1995 by
Eberhart and Kennedy [11]. The method utilizes a swarm, i.e., a
population of search points that iteratively probe the search space
for the global minimizer. The search points are called particles,
and they concurrently move with an adaptable velocity (position
shift) to new positions.

Moreover, each particle has a memory where it retains the best
position it has ever visited, i.e., the position with the lowest
function value. This can be considered as experience storage for
the particle, which exploits this information to guide its search
towards the most promising regions of the search space. The
search stops as soon as a stopping criterion is achieved, usually
related to the quality of the best solution found so far or to the
number of function evaluations spent by the algorithm.

Apart from the personal memory, each particle has a neighbor-
hood, i.e., a set of indices of other particles that shares their
memories (best positions) with it. Thus, the particle decides on its
next move by aggregating its own discoveries with the best
findings of its neighboring mates.

Based on the concept of neighborhood, two main PSO schemes
were proposed. The first one is called the global PSO (also known
as gbest) model on account of the underlying global information-
sharing scheme. According to this, all particles assume the whole
swarm as their neighborhood and each particle takes into con-
sideration its own memory as well as the overall best memory,
i.e., the best position ever discovered by the whole swarm.

The second model is the local PSO (also known as lbest), where
each particle is assigned a neighborhood usually consisting of a
few particles. The organization of particles in neighborhoods rises
the concept of neighborhood topologies, which refers to abstract
representations of information-flow channels among the parti-
cles. Usually, the topologies are represented as graphs consisting
of nodes (particles) and interconnections (communication chan-
nels) among them. The most common topology is the ring, where
all particles are assumed to lie on a ring ordered according to their
indices, such that each particle has two immediate neighbors
with adjacent indices. Then, for a given particle, its neighborhood
is completely defined by determining a radius, i.e., the number of
particles with adjacent indices that constitute the neighborhood.
More information on the effect of neighborhoods can be gained in
[21,22]. Fig. 1 illustrates the aforementioned ring topology (left)
as well as another popular scheme called star (right).

In general, the search procedure of heuristic algorithms such
as PSO consists of two phases, namely exploration and exploitation.
In the first, the swarm attempts to detect the most promising
regions of the search space. In the latter, it promotes the faster
convergence to the most promising regions detected so far. It has
been experimentally verified that the neighborhood topology can
influence the swarm’s convergence dynamic. As can be easily
inferred, the gbest model promotes the search around the overall
best position in favor of exploitation. On the other hand, the lbest
model with its regional and gradual information transmission
between particles, leans effectively to exploration.

To put it formally, let

S¼ fx1,x2, . . . ,xNg ð11Þ
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be a swarm of N particles, xiAX �Rn, i¼ 1;2, . . . ,N. The i-th
particle has a velocity (position shift), vi, and retains in memory
the best position, piAX, it has ever visited. A ring neighborhood of
radius m for the particle xi, is defined as the set of indices

Bi ¼ fi�m,i�mþ1, . . . ,i, . . . ,iþm�1,iþmg: ð12Þ

The ring is assumed to recycle at its end, i.e., the particles xN and
x2 are the immediate neighbors of x1.

Assume that gi is the index of the best position found so far in
the neighborhood of xi, i.e.

gi ¼ arg min
jABi

GðpjÞ, ð13Þ

and let t denote the iteration counter. Then, according to the
constriction coefficient version of PSO [23], the swarm is updated
as follows:

vðtþ1Þ
ij ¼ w½vðtÞij þj1ðp

ðtÞ
ij �xðtÞij Þþj2ðp

ðtÞ
gij
�xðtÞij Þ�, ð14Þ

xðtþ1Þ
ij ¼ xðtÞij þvðtþ1Þ

ij , ð15Þ

where i¼ 1;2, . . . ,N, and j¼ 1;2, . . . ,n. The parameter w is the
constriction coefficient and it is used as a means to control the
magnitude of the velocities. The other two parameters are defined as

j1 ¼ c1r1, j2 ¼ c2r2, ð16Þ

where c1 and c2 are positive constants, also called the cognitive and
the social parameters, respectively, and r1, r2, are random variables
uniformly distributed in [0,1], assuming different values for each i, j

and t.
The constriction coefficient is needed to restrict the magnitude

of the velocities, promoting convergence and alleviating the
‘‘swarm explosion’’ effect that has been shown to be detrimental
for the search procedure [23]. In early PSO versions, the para-
meters were empirically determined based on trial runs. In more
recent versions, the PSO stability analyses by Clerc and Kennedy
[23] and Trelea [24] imply that parameters are selected such that
the following equation holds:

w¼ 2

92�j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2�4j

p
9

, ð17Þ

where j44 and j¼ c1þc2. Following this result, the values
w¼ 0:729, c1 ¼ c2 ¼ 2:05 are considered as the default para-
meter set.

A full iteration of PSO is completed with the best positions
update

pðtþ1Þ
i ¼

xðtþ1Þ
i if Gðxðtþ1Þ

i ÞoGðpðtÞi Þ,

pðtÞi otherwise:

8<
: ð18Þ

PSO was primarily designed to operate in continuous search
spaces. However, experimental evidence has shown signs of
efficiency also in integer and mixed-integer problems, without
the need of radical modifications in the algorithm [15,25]. The
most straightforward approach to achieve this is the use of its
standard form with the particles being rounded to the closest
integer prior to each function evaluation, while their position
updates are performed in the continuous domain. This is the
approach adopted also in the present paper. A typical example is
provided in a later section.

3.2. Differential evolution

The DE algorithm was introduced by Storn and Price [12]
as a population-based, stochastic optimization algorithm for
numerical optimization problems. Similar to PSO, DE employs
a population, S¼ fx1,x2, . . . ,xNg, of individuals to probe the search
space. The population is randomly initialized, usually following
a uniform distribution over the search space. At each iteration, N

competitions are held to determine the members of the popula-
tion for the next iteration. This is achieved by iteratively applying
three operations on each individual: mutation, crossover and
selection.

The mutation operator produces a new vector, vi, for each
individual, xi, i¼ 1;2, . . . ,N, by combining it with some of the rest.
Different operators have been proposed for this task. The follow-
ing five operators are among the most common DE mutation
schemes:

DE1 : vðtþ1Þ
i ¼ xðtÞg þFðxðtÞr1

�xðtÞr2
Þ, ð19Þ

DE2 : vðtþ1Þ
i ¼ xðtÞr1

þFðxðtÞr2
�xðtÞr3
Þ, ð20Þ

DE3 : vðtþ1Þ
i ¼ xðtÞi þFðxðtÞg �xðtÞi þxðtÞr1

�xðtÞr2
Þ, ð21Þ

DE4 : vðtþ1Þ
i ¼ xðtÞg þFðxðtÞr1

�xðtÞr2
þxðtÞr3

�xðtÞr4
Þ, ð22Þ

DE5 : vðtþ1Þ
i ¼ xðtÞr1

þFðxðtÞr2
�xðtÞr3

þxðtÞr4
�xðtÞr5
Þ, ð23Þ

where t denotes the iteration counter; F is a fixed user-defined
parameter; g denotes the index of the best individual in the
population, i.e.

g ¼ arg min
j ¼ 1,...,N

GðxjÞ, ð24Þ

and riAf1;2, . . . ,Ng, i¼ 1;2, . . . ,5 are mutually different, randomly
selected indices that differ also from the index i. Obviously, in
order to enable all mutation operators, it must hold that N45. All
vector operations in Eqs. (19)–(23) are performed componentwise.

After mutation, the recombination operator is applied on the
generated vector, vi, producing a trial vector

ui ¼ ðui1,ui2, . . . ,uinÞ, ð25Þ

which is defined as follows:

uðtþ1Þ
ij ¼

vðtþ1Þ
ij if RjrCR or j¼ RIðiÞ,

xðtÞij otherwise,

8<
: ð26Þ

where j¼ 1;2, . . . ,n; Rj is the j-th evaluation of a uniform random
number generator in the range [0,1]; CRA ½0;1� is a user-defined
crossover constant; and RIðiÞ is an index randomly selected from
the set f1;2, . . . ,ng.

Finally, the produced trial vector, ui, is compared against the
corresponding individual and the best between them is included
in the population of the next generation, i.e.,

xðtþ1Þ
i ¼

uðtþ1Þ
i if Gðuðtþ1Þ

i ÞoGðxðtÞi Þ,

xðtÞi otherwise:

8<
: ð27Þ

Apparently, DE does not require a separate memory as PSO, since
it operates directly on the best solutions found so far (the
corresponding best positions in PSO). This renders DE a greedier
algorithm than PSO. Also, there is no sound theoretical evidence
on the proper parameter setting of the algorithm. Several differ-
ent settings have been used in the literature [26] but their
performance appears to be strongly dependent on the operator
and problem at hand. Nevertheless, by their nature, the mutation
operators that involve the best individual of the population are
expected to be more exploitation-oriented than those that use
randomly selected individuals.

3.3. Harmony search

HS was proposed by Geem et al. in 2001 [13]. Inspiration was
drawn from musical performance processes that occur when
a musician searches for a better state of harmony, improvising
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the instrument pitches towards a better aesthetic outcome. In a
similar manner, the algorithm seeks for the global optimum,
maintaining and iteratively updating a memory, called the har-

mony memory (HM), of candidate solutions (harmonies). HM
contains the best harmonies considered so far, i.e., candidate
solutions with the smallest objective function values.

HM consists of N randomly initialized vectors (memory size is
user-defined) along with their function values [27]

ð28Þ

The harmonies in HM are ordered in ascending order with respect
to their values, i.e.

Gðx1ÞrGðx2Þr � � �rGðxNÞ: ð29Þ

Also, two additional parameters must be defined. The first one is
the harmony memory considering rate (HMCR), which stands for
the probability of selecting a vector component value among
those already stored in HM. The second parameter is called the
pitch adjusting rate (PAR) and it defines the mutation probability
of a selected value from HM. The role of these parameters is
clarified below.

The algorithm works iteratively, exploiting the stored informa-
tion in HM for the production of one or many new solutions at
each iteration. The new solutions are built component by compo-
nent, selecting at each step either a stored component or a
random value. More specifically, let x¼ ðx1,x2, . . . ,xnÞ

> be a new
solution to be built, with components

xjAXj, j¼ 1;2, . . . ,n, ð30Þ

where Xj �R is the subspace of the search space X that corre-
sponds to the j-th component. Then, xj is probabilistically selected
according to the scheme

xj ¼
xsjAfx1j,x2j, . . . ,xNjg if rjrHMCR,

yAXj otherwise,

(
ð31Þ

where rj is a random variable uniformly distributed in ½0;1�; s is
an index selected from the set f1;2, . . . ,Ng; and y is a random
value in Xj.

The selection of s is probabilistic and can be either uniform
over the set of indices or it can be a linear ranking selection
scheme [28] of the stored harmonies in HM. In the latter, high
selective pressure can impose strong selection bias towards the
indices of the best solutions, in contrast to uniform selection
which assigns equal selection probabilities to all indices. Conse-
quently, uniform selection is expected to be more diversity-
preserving in the produced harmonies.

After the construction of the new solution, x¼ ðx1,x2, . . . ,xnÞ
>,

each component is mutated as follows:

xj ¼
xjþqw if RjrPAR,

xj otherwise,

(
ð32Þ

where Rj is a uniformly distributed random variable in [0,1]; q is a
uniformly distributed random variable in [�1,1]; and w is a user-
defined mutation magnitude.

The aforementioned operations can be repeated to produce a
number, Mprod, of new harmonies. Each new harmony is evalu-
ated with the objective function, and the best MreprMprod of
them replace the worst Mrep harmonies stored in HM, if they
improve them. Both parameters Mrep and Mprod are user defined.
In the simplest case, Mrep ¼Mprod ¼ 1 is used.

In contrast to PSO and DE, the HS operators with proper
parameter setting can directly handle integer and mixed-integer
problems without any modification. Also, we shall notice that HS
has shown many structural similarities with the established
evolution strategies (ES) approaches [29]. In fact, HS can be
considered as an alternative ES variant, although with a different
motivation and inspiration source. In view of this similarities, it is
anticipated that the performance of HS can provide evidence also
on the performance of standard ES variants.
4. Experimental settings and results

In this section, we expose the exact settings used in our
experiments as well as the obtained results, followed by the
corresponding discussion.

4.1. Solution representation

As mentioned in Section 2, a production schedule for the entire
planning horizon that minimizes the total cost defined in Eq. (3)
can be determined through a two-stage optimization procedure.
In the first stage, the optimal replenishment quantities for any
sequence of replenishment epochs are analytically computed
using Eq. (8) [10].

The second stage consists of a binary optimization problem
that aims at identifying the optimal sequence of replenishment
epochs. For each epoch, a decision of placing an order (corre-
sponding to 1) or not (corresponding to 0) must be made. If the
decision is to place an order then the optimal quantity is already
known from the first optimization stage and it is directly used for
the computation of the total cost.

For a problem of H epochs, the employed algorithms need to
work on the n-dimensional binary space X ¼ f0;1gn with n¼H.
However, as we already mentioned, the employed algorithms are
primarily destined to work on real variables (with the exception
of HS, which can alleviate this problem). For this reason, the tried-
and-true rounding technique was adopted in the present study.
More specifically, the algorithms were let to operate on the real
search space X ¼ ½0;1�n but, whenever the function evaluation of a
particle (or individual) was required, its components were
rounded to the nearest integer (0 or 1) without substituting the
real components with the integers in the vectors. For example, the
candidate solution

x¼ ð0:31, 0:74, 0:56, 0:91, 0:22Þ> ð33Þ

would be mapped to the binary vector

x ¼ ð0, 1, 1, 1, 0Þ> ð34Þ

and

GðxÞ ¼ GðxÞ: ð35Þ

In contrast to other approaches that introduce new operators to
tackle integer variables at the cost of radically changing the
algorithms’ operation and performance, this approach imposes
only minimal intervention in the algorithms’ dynamics. Only for
the case of HS, the real components of the harmonies were
replaced by their nearest integers both in HM and in the new
harmonies produced by mutation.

4.2. The case of normally distributed demand

Without restricting the applicability of the considered algo-
rithms, stochastic demand was assumed to follow a normal
distribution in our study, in accordance to the case study reported
in [10]. Under this assumption, Eqs. (4) and (8) can be simplified
to avoid multiple numerical integrations for determining the
optimal cumulative production quantities.



Table 1
Setup cost and cumulative demand (ft(q)) used in the test problems.

Time period Setup cost Cumulative demand

Mean StD

1 85 69 7.7

2 102 98 8.3

3 102 134 9.2

4 101 195 11.4

5 98 256 13.3

6 114 282 13.6

7 105 316 14.1

8 86 383 16.0

9 119 428 16.7

10 110 495 18.3

11 98 574 20.3

12 114 630 21.2

13 108 657 25.1

14 122 718 25.6

15 79 767 26.8

16 111 816 27.7

17 106 894 28.6

18 89 952 29.9

19 98 1008 30.9

20 106 1089 31.7

21 140 1127 33.0

22 132 1192 33.6

23 89 1259 34.5

24 135 1307 35.5

25 110 1363 36.2

26 102 1395 36.9

27 110 1427 37.3

28 101 1481 37.8

29 102 1546 38.5

30 119 1644 39.3

31 118 1685 40.5

32 118 1741 41.0

33 110 1792 41.7

34 90 1810 42.3

35 110 1855 42.5

36 120 1876 43.1

37 108 1943 43.3

38 114 1980 44.1

39 110 2034 44.5

40 100 2077 45.1

41 106 2135 45.6

42 95 2177 46.2

43 112 2238 46.6

44 91 2304 47.3

45 92 2387 48.0

46 94 2436 48.9

47 72 2450 49.4

48 118 2488 49.5
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In this manner, two functions are involved: cumulative normal

distribution and the standard normal loss integral. Let st and mt

denote the mean and standard deviation of cumulative demand in
period t, with density function ft(x). Let also fðxÞ denotes the
standard normal density function with cumulative distribution
function FðxÞ, and let

INðxÞ ¼

Z 1
z ¼ x
ðz�xÞfðzÞ dz ð36Þ

be the normal loss integral. Then, Eq. (4) is simplified as follows:

KðS,i,jÞ ¼ Ai�Lþ
Xj�1

t ¼ i

htst½ztþð1þpÞINðztÞ�, ð37Þ

where

zt ¼
S�mt

st
: ð38Þ

A proof of Eq. (37) is extensively presented in [10].

4.3. Test problems

Our aim in the present study was the investigation of the
employed algorithms on various instances of the problem with
respect to its dimension. The main interest behind this is the
scaling of the run-time required to find the optimal sequence of
replenishment epochs. As we already mentioned in previous
sections, the exhaustive inspection of all possible combinations
requires exponentially increasing time with the problem dimen-
sion (number of epochs), which becomes prohibitive even for
modern computer systems. Therefore, efficiency with respect to
both solution accuracy and run-time was in the center of our
investigation.

For consistency, the test problems used in our experiments
were based on the 12-dimensional problem presented in [10]. The
data provided in this source includes the setup cost and cumu-
lative demand for 12 epochs. We used this data and extended
them for up to 48 epochs. For this purpose, we fitted a Gaussian
distribution on the provided data and generated new setup cost
and cumulative demand values by sampling the fitted distribu-
tion. The obtained values are reported in Table 1.

We considered the problem for dimensions 12, 18, 24, 30, 36,
42 and 48. The optimal sequence of the replenishment epochs for
each instance was initially determined through exhaustive search.
The total number of binary sequences per case as well as the
required run-time1 for their evaluation are reported in Table 2. As
we can see, problem instances with more than 36 epochs need
excessive computation time due to the huge number of
sequences, which becomes larger than 1010.

It must be emphasized that the actual number of binary
variables for a problem instance of H epochs is equal to H�1,
due to the model assumption that there is always an order
decision in the first epoch [10], which implies that the corre-
sponding binary variable is always fixed to 1. Thus, a problem
with H epochs corresponds to 2H�1 binary sequences.

4.4. Experimental setup

We performed extensive experiments with the three
employed algorithms under different parameter settings and
variants. PSO was considered in both its global and local variant
with ring neighborhoods of radius 1 and the default parameter set
given in Section 3.1. DE was considered in its five basic operators
and all possible combinations of its parameters, F,CRAf0:3,
1 The time refers to an Intel I7 (c) machine with 8 GB of memory.
0:5,0:7g. HS was considered under various harmony memory sizes
and for both the uniform and the linear ranking selection
schemes. Preliminary experiments provided clear evidence that
for harmony memory size equal to N, the values Mprod ¼N=2 and
Mrep ¼N=5 for the produced and replaced new harmonies (see
Section 3.3), respectively, as well as HMCR¼0.9 and PAR¼0.3,
constitute appropriate choices.

The swarm size in PSO (equivalently the population size in DE
and harmony memory size in HS) was set to 10�n for all problem
instances, where n is the corresponding problem dimension. For
each algorithm, 100 independent experiments were performed
per problem instance. The stopping condition was the determina-
tion of the optimal sequence of replenishment epochs within a
prescribed maximum number of function evaluations. For the
smallest problem instances, this number was equal to the total
number of sequences. For larger instances, it was limited to the
value Tmax ¼ 5� 106 as reported in Table 3.

Besides the employed heuristic optimization algorithms, the
COMSOAL [30] approach was also applied on the problem under



Table 2
Total number of sequences and run-time required for the exhaustive search per

problem instance. The symbol ‘‘� ’’ stands for ‘‘order of’’ and ‘‘4 ’’ denotes ‘‘higher

than’’.

Dim. Sequences Time

12 2048 0.1 s

18 131 072 0.5 s

24 � 106 � 5 s

30 � 108 � 312 s

36 41010 47 h

42 41010 42 days

48 41010 45 days

Table 3
Maximum function evaluations ðTmaxÞ and swarm/

population/harmony memory size (N) per problem

instance.

Dim. Tmax N

12 2048 120

18 131 072 180

24 5�106 240

30 5�106 300

36 5�106 360

42 5�106 420

48 5�106 480
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consideration, with the same computational resources as for the
rest of the algorithms. COMSOAL is a randomized algorithm for
sequencing operations in assembly lines [31–33]. Its operation is
based on the generation of sequences by randomly picking a task
and constructing subsequent tasks, while concurrently keeping a
record of the best detected sequence. If during its construction a
sequence is proved to be worst than the best one (i.e., it
corresponds to a higher cost) then it is abandoned and another
sequence is built. Given the binary nature of the problem at hand,
such a naive algorithm could prove to be promising with a
minimal effort.

All algorithms were extensively tested. The total number of
independent experiments for all problem instances was higher
than 26 000. For each algorithm, variant, parameter set and
problem instance, we recorded the success rate, i.e., the number
of experiments (out of 100) where it succeeded to reach the
optimal solution within the maximum number of function eva-
luations. Also, the mean, standard deviation, minimum and
maximum values of the expected number of function evaluations,
as well as the average required run-time (in s) were recorded per
algorithm and problem instance.

4.5. Presentation of results and discussion

In view of the huge amount of the obtained results, it was
necessary to make a selection of only the most interesting cases to
report in our presentation. For this reason, we identified the most
promising variant of each algorithm. For PSO, the lbest model was
far the most successful variant. The gbest model was prone to get
stuck in suboptimal solutions, even for the low-dimensional
problem instances. This can be attributed to its exploitation
orientation in combination with the rounding scheme. Very often,
the particles in the gbest model were rapidly clustered in very
small ranges around the best solutions, also assuming very small
velocities. This effect, combined with the fact that components in
the range [0,0.5] were mapped to 0 while components in (0.5,1]
were mapped to 1, offers a reasonable explanation for the low
efficiency of gbest PSO. On the other hand, lbest PSO is clearly
more exploration-oriented than gbest. Thus, the particles were
able to retain sufficiently higher velocities that allowed them to
move from the one-half of the search space to the other, thereby
exploring a higher number of binary sequences.

Regarding the DE algorithm, two operators were clearly dis-
tinguished among the five presented in Section 3.2, namely DE2
and DE5, while the most successful parameter values were F¼0.7
and CR¼0.3. A closer look at these two operators reveals that they
both use only randomly selected individuals from the population,
in contrast to the rest operators that exploit the best individual.
This can be interpreted as an evidence that, on average, operators
with higher diversity-preserving properties are related to the best
observed performance. This is aligned with our observations
reported above for the PSO algorithm.

Finally, for the HS algorithm, the uniform selection scheme
was more efficient than the linear ranking scheme. It must be
underlined that, since uniform selection represents the most fair
scheme (equal selection probability for all vectors stored in
memory), the linear ranking scheme was assigned high selective
pressure, representing the completely biased selection towards
the best harmonies. Obviously, uniform selection is more diver-
sity-preserving than the linear ranking. Hence, its superiority
aligns with the observations for the previous two algorithms, i.e.,
diversity-preserving variants are more successful in the specific
problem.

In fact, this is the first interesting conclusion of the present
work and it can be attributed to the nature of the binary
optimization problem, with local minimizers that differ slightly
(in one or two components) from the global one while their
function values differ less than 0.6% from the global minimum.

Table 4 reports the detailed results for the aforementioned
most successful algorithmic variants. More specifically, for each
algorithm and problem instance, the success rate (successful
experiments out of 100), mean, standard deviation, minimum,
and maximum values of the required function evaluations for the
successful experiments, as well as the required run-time (in s) are
reported. The column that corresponds to the best algorithm is
boldfaced. As best algorithm, we considered the one that primar-
ily had the largest success rate and the smallest mean, and
secondarily the smallest run-time. Although COMSOAL was infer-
ior than most of the population-based approaches, it is included
in Table 4 for comparison purposes (although excluded from the
figures).

In addition to Table 4, the results are also graphically illu-
strated in Figs. 2–10 to provide intuitive evidence of their
performance and facilitate visual comparisons among them.
Fig. 2 illustrates the success rate per algorithm, with different
colors denoting the different problem instances in ascending
dimension order. In Figs. 3–9 boxplots are used to illustrate the
distribution of the number of function evaluations required for
each algorithm in the 100 independent experiments. On each box,
the central mark is the median, the edges of the box are the 25-th
and 75-th percentiles, the whiskers extend to the most extreme
values, and the outliers are plotted individually (denoted with
crosses). The notches define comparison intervals between med-
ians. Two medians are significantly different at the 5% level if the
corresponding intervals do not overlap. The interval endpoints are
the extremes of the notches. Finally, Fig. 10 illustrates the scaling
of the required run-time per algorithm as dimension increases.

A first inspection of Table 4 provides some immediate conclu-
sions. Firstly, there is an undoubtful superiority of the DE variants
over the rest of the algorithms. Evidently, DE2 is the overall best
performing variant, followed by DE5, PSO and HS, while COM-
SOAL has a clearly declining performance as problem dimension
increases. Secondly, the performance differences among them
exhibit an increasing pattern with the problem’s dimension. As we



Table 4
Results for all algorithms and problem instances.

Dim. Stat. PSO HS DE2 DE5 COM

12 Succ. 86 99 100 100 63

Mean 911.16 556.36 823.20 778.80 900.60

StD 454.33 291.81 363.19 373.54 627.22

Min 240 180 240 240 3

Max 2040 1740 1800 1800 2028

Time 0.00023 0.00000 0.00000 0.00010 0.11000

18 Succ. 100 100 100 100 71

Mean 7524.00 10 693.80 3556.80 3997.80 58 300.61

StD 6736.47 9927.87 1277.40 1417.39 40 082.74

Min 540 540 360 720 740

Max 46 440 53 730 7560 8100 131 004

Time 0.007 0.014 0.005 0.007 1.587

24 Succ. 100 100 100 100 46

Mean 20 846.40 29 565.60 10 022.40 11 714.40 2 196 825.00

StD 16 223.65 23 897.46 2440.96 3581.99 1 218 299.43

Min 4080 1920 3840 3600 87 747

Max 92 160 126 600 16 560 20 880 4 489 500

Time 0.026 0.063 0.036 0.053 70.945

30 Succ. 100 100 100 100 1

Mean 61 653.00 63 703.50 25 302.00 31 272.00 1 479 775.00

StD 92 675.79 33 648.22 6189.35 8393.15 0.00

Min 8100 7200 10 800 4800 1 479 775

Max 899 700 219 600 37 800 52 500 1 479 775

Time 0.119 0.191 0.123 0.152 251.590

36 Succ. 100 99 100 100 0

Mean 122 878.80 198 676.36 41 648.40 56 170.80 –

StD 79 122.15 159 591.75 8280.73 11 729.42 –

Min 11 160 21 780 19 440 29 880 –

Max 383 040 801 360 63 000 84 960 –

Time 0.274 0.756 0.245 0.354 –

42 Succ. 100 99 100 100 0

Mean 277 708.20 607 986.06 74 991.00 103 286.40 –

StD 198 676.70 308 601.75 14 390.06 21 287.47 –

Min 16 380 28 560 44 520 53 760 –

Max 1 086 120 1 339 380 106 680 156 660 –

Time 0.756 2.772 0.562 0.735 –

48 Succ. 100 88 100 100 0

Mean 607 920.00 1 199 640.00 130 032.00 203 716.80 –

StD 387 796.66 452 624.87 21 837.47 36 113.55 –

Min 63 360 105 360 72 480 98 880 –

Max 1 770 240 2 167 440 189 120 291 360 –

Time 1.913 6.611 1.149 1.835 –
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Fig. 2. Success rate for each algorithm. Different colors denote the different

problem instances. (For interpretation of the references to color in this figure
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Fig. 4. Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 18-dimensional problem instance.
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Fig. 5. Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 24-dimensional problem instance.
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Fig. 6. Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 30-dimensional problem instance.
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Fig. 7. Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 36-dimensional problem instance.
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observe, even DE5 grows an exponentially increasing difference
with DE2, although it has a slightly better mean in the 12-dimen-
sional case. However, the latter problem instance needs special
attention. A closer inspection of the reported data reveals that,
despite the slightly lower mean of DE5, DE2 has slightly smaller
standard deviation, which may suggest statistical insignificance
between them. This is also visible in Fig. 3 with the overlapping
comparison intervals between their medians in the boxplots. Also,
we can observe that HS had also very satisfactory performance. In
fact, it had the smallest mean in the successful experiments but with
a slightly worse success rate, which is the reason for not considering
it as the best algorithm in the 12-dimensional case. The same
question as previously for the DE variants rises also here, i.e., how
(statistically) crucial is the observed difference.

In order to answer this question, we performed a statistical
significance test for each pair of algorithms. For this purpose, the
two-sided rank-sum test of the hypothesis that the performance
samples of each pair of algorithms come from distributions with
equal medians was used. Each pair was tested against the null
hypothesis that the samples have the same median in a 95% level
of significance. The outcome of the tests is reported in Table 5,
where the existence of statistical significance is denoted with the
symbol ‘‘n’’ and the lack is denoted with the symbol ‘‘–’’.

The statistical tests revealed that, as anticipated, the two
DE algorithms had essentially the same performance in the
12-dimensional problem. Also, the visual evidence from Fig. 3,
which suggests that HS has noteworthy performance in the
specific problem instance, is verified by the statistical significance
of HS against the rest of the algorithms. However, the perfor-
mance of HS exhibits a rapid decline as dimension increases. The
picture becomes clearer in higher-dimensional instances, where
all algorithms are statistically different, with a single exception
between PSO and HS in the 18-dimensional case, which can be
attributed to their large standard deviations.

Regarding the running time illustrated in Fig. 10, we observe an
anticipated superiority of the computationally cheapest approach,
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Table 5
Wilcoxon rank-sum tests between the algorithms.

Dim. PSO HS DE2 DE5 COM

12 PSO – n n n n

HS – n n n

DE2 – – n

DE5 – n

COM –

18 PSO – – n n n

HS – n n n

DE2 – n n

DE5 – n

COM –

24 PSO – n n n n

HS – n n n

DE2 – n n

DE5 – n

COM –

30 PSO – n n n n

HS – n n n

DE2 – n n

DE5 – n

COM –

36 PSO – n n n n

HS – n n n

DE2 – n n

DE5 – n

COM –

42 PSO – n n n n

HS – n n n

DE2 – n n

DE5 – n

COM –

48 PSO – n n n n

HS – n n n

DE2 – n n
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i.e., the DE2 variant, while PSO and DE5 had virtually the same
run-time requirements. HS remained the more computationally
demanding algorithm, evidently due to the excessive required
number of function evaluations and its reduced success rate in the
higher-dimensional cases.

As a closing remark, we must underline that notwithstanding
their differences, the employed heuristic algorithms offered
immense improvement against the exhaustive search, which is
the trivial baseline for addressing such problems.
DE5 – n

COM –
5. Conclusion

The Wagner–Whitin dynamic lot-size problem has been
widely studied in the literature. The original deterministic model
recently has been extended by considering stochastic demand.
This was the main problem tackled in the present paper. Our
approach was based on PSO, DE and HS, three established
algorithms with an ongoing increasing popularity in research
community. Proper modifications were introduced in the algo-
rithms to address the most controversial part of problem, which
consists of a binary optimization task. Special attention was paid
to avoid radical modifications of the algorithms’ dynamics.
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Experimental results on a previously used test case with
normally distributed demand manifest that the employed algo-
rithms, especially DE and PSO, can be very efficient even in high-
dimensional problems, with respect to both solution accuracy and
time efficiency. Also, they were able to outperform other rando-
mized algorithms such as COMSOAL. The next step in our research
will consider problems with different distributions of demand as
well as different heuristic optimization approaches.
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