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One of the most commonly encountered approaches for the solution of unconstrained
global optimization problems is the application of multi-start algorithms. These algorithms
usually combine already computed minimizers and previously selected initial points, to gen-
erate new starting points, at which, local search methods are applied to detect new minimizers.
Multi-start algorithms are usually terminated once a stochastic criterion is satisfied. In this pa-
per, the operators of the Differential Evolution algorithm are employed to generate the starting
points of a global optimization method with dynamic search trajectories. Results for various
well-known and widely used test functions are reported, supporting the claim that the pro-
posed approach improves drastically the performance of the algorithm, in terms of the total
number of function evaluations required to reach a global minimizer.
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1. Introduction

Optimization problems are frequently encountered in engineering applications. In
numerous applications it is required to detect the globally optimal solutions. Economics,
finance, networks and mechanical design, molecular biology, image processing and,
chemical engineering are just some of the scientific fields where such applications can be
met. Consequently, the development of efficient global optimization (GO) algorithms,
remains up-to-date an active area of research [3].

In general, the unconstrained GO problem (without loss of generality we consider
only the minimization case) for a continuously differentiable objective function F :X ⊂
R
n→ R, can be stated as finding a point x∗ ∈ X, such that,

F ∗ = F(x∗) = min
x∈X

F(x), (1)
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where X is a compact set and F ∈ C1. This is an ill-posed problem in the sense that a
lower bound for F ∗ cannot be estimated after any finite number of evaluations, unless
the function F satisfies the Lipschitz condition with known Lipschitz constant L [2]:∥∥F(x)− F(y)∥∥ � L‖x − y‖, ∀x,y ∈ X.
Unfortunately, the value of L is rarely known in most applications, rendering the algo-
rithms which are heavily dependent on such assumptions, of limited applicability. Thus,
most of the GO methods are of heuristic nature, i.e. the lowest minimum among sev-
eral detected minima is considered as the estimate of F ∗. In this sense, GO should be
considered as a problem of locating sufficiently low local minima [2].

One of the most common approaches for solving GO problems is the multi-start
technique. According to this technique, several starting points are sampled and a local
search procedure is applied to each one. This method has been widely discussed [1,16],
especially with respect to its regions of attraction. The algorithm considered in this study
is the Multi-start Global Minimization Algorithm with Dynamic Search Trajectories, de-
veloped by Snyman and Fatti [13] (henceforth denoted as SF). The SF algorithm probes
the search space using trajectories that are generated by integrating the differential equa-
tion

ẍ(t) = −∇F (
x(t)

)
, (2)

which describes the motion of a unit mass particle in a conservative force field, where
F(x(t)) represents the potential energy of the particle. The trajectories are modified in
a manner that ensures convergence to a lower minimum, compared to the one obtained
using a common gradient descent local search method. Therefore, the region of con-
vergence of the global minimum is increased. The global scope phase of the algorithm
involves randomly selecting the starting point of the first trajectory, and combining al-
ready computed minimizers as well as previously selected initial points to generate the
starting points for the trajectories considered in later steps.

Alternatively, the GO problem can be tackled by modern stochastic methods, like
Evolutionary Algorithms [5,11] and Differential Evolution [14,15] (DE). In this context,
a population of potential solutions is employed to probe the search space synchronously.
The individuals of the population are combined by applying recombination operators,
and they are perturbed through mutation operators. These operators give rise to a new
population consisting of the most promising solutions, at each iteration of the algorithm,
by selecting the best individuals, i.e. the individuals with the lowest function values. The
stochastic combination of potential solutions is one of the main characteristics of such
algorithms and a crucial aspect of their performance.

In this paper, a hybrid algorithm that combines the SF and DE algorithms is intro-
duced. Specifically, the recombination and mutation operators of the DE algorithm are
utilized to generate the starting points of the trajectories of the SF algorithm. Experi-
mental results on various widely used test functions support the claim that the proposed
approach improves significantly the performance of the plain SF algorithm.
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The rest of the paper is organized as follows: the SF and the DE algorithms are
briefly described in sections 2 and 3, respectively. The proposed approach is presented
in section 4 and experimental results are presented in section 5. The paper closes with
conclusions and ideas for future work in section 6.

2. The multi-start global minimization algorithm with dynamic search
trajectories

SF is a multi-start numerical algorithm that utilizes trajectories derived by (2), for
tackling GO problems. Assuming x(0) = x0 and ẋ(0) = 0 to be the initial condi-
tions, multiplying (2) by ẋ(t), and integrating from time 0 to time t , implies the energy
conservation relationship:

1

2

∥∥ẋ(t)∥∥2 + F (
x(t)

) = 1

2

∥∥ẋ(0)∥∥2 + F (
x(0)

) = F(x0). (3)

The first term on the left-hand side of (3) represents the kinetic energy, whereas the
second term represents the potential energy of a particle of unit mass, at any time in-
stant t . Obviously, the particle will start moving in the direction of the steepest descent
and its kinetic energy will continue to increase (and thus F will decrease) as long as the
following relation holds:

−∇F Tẋ > 0.

If the descent condition is not met along the generated path then the magnitude of
the velocity decreases and its direction changes in a way that ensures motion towards a
local minimizer [12]. If more than one local minimizers exist and the global minimizer
is required, a potential strategy is to let the particle continue its motion, while recording
the point xm at which the minimum along this path occurs, as well as the corresponding
quantities ẋm and Fm. In such cases, the path may surmount a ridge of height Fr , where
Fm < Fr < F(x0), detecting probably the basin of attraction of a lower minimum. On
the other hand, the trajectory shall be stopped before it retraces itself in an indefinite
motion. A proper termination condition is to stop the trajectory once it reaches a point
with function value close to F(x0), while at the same time the relation ∇F Tẋ > 0 is
satisfied, i.e. the movement is uphill [13]. Auxiliary trajectories are then generated to
better utilize the knowledge of xm and its associated quantities. The initial point of the
second trajectory can be selected as:

x2
0 =

1

2

(
x1

0 + x1
b

)
, (4)

with initial velocity ẋ2
0 = 1

2 ẋ
1
m, where the superscripts denote the trajectory’s number,

and x1
b ← x1

m. The termination criterion of this trajectory is the same as before. If
F(x2

m) < F(x
1
b ) then x2

b ← x2
m, otherwise x2

b ← x1
b . Further trajectories are generated

by repeating the procedure, if it is necessary.
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The integration method that is used for the generation of the trajectories is the
Leap-Frog algorithm. Given x0, ẋ0, and a time step�t , the Leap-Frog scheme is defined
as follows:

xk+1 = xk + ẋk�t,
ẋk+1 = ẋk −∇F(xk+1)�t,

where k = 0, 1, 2, . . . . The initial velocity over the first step is taken as ẋ0 =
−∇F(x0)�t/γ , where γ is usually set equal to 2. The time step, �t , is chosen so
as to ensure descent at the first step. If this condition is not met, �t is successively
halved and the trajectory is restarted until descent is achieved.

In the algorithm given in [13], the termination condition for a trajectory is

F
(
x(t)

) − FT > α(
F(x0)− FT

)
,

where FT is the lowest available value of F , and α is a relaxation parameter almost equal
but less than one. A trajectory is terminated on the uphill, provided that

T = 1

2

∥∥ẋ(t)∥∥2
< (1− α)(F(x0)− FT

)
.

This prevents the trajectory from becoming almost endless. A typical choice for α is
α = 0.95 [13].

For each starting point, the minimization procedure is provisionally ended if, for
some xk, the inequality ∥∥∇F(xk)∥∥ < ε
holds for some prescribed small positive number ε > 0. If F(xk) is the smallest function
value obtained so far for the corresponding starting point, then the procedure terminates
with final values xf = xk and F(xf). If the smallest function value occurs at another point
xq �= xk , then the procedure is restarted by using the value of xq as the starting point.
In order to prevent excessive computation, an upper limit km is posed on the number of
integration steps for each starting point.

The global scope component of the algorithm involves a stochastic criterion that
reports the probability of the lowest obtained minimum to be the global one. To this end,
let Rj denote the region of convergence of a local minimum F̂j in the search space, and
αj denote the probability that a randomly selected point falls into Rj . If R∗ and α∗ are
the corresponding quantities of the global minimum, then a usual assumption is

α∗ = Pr
[
R∗

] = max
j
αj . (5)

Then, the following theorem is proved [13].

Theorem 1. Let r be the number of sample points falling within the region of con-
vergence of the current overall minimum F̃ , after n points have been sampled. Then,
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under the assumption given in (5) and a statistically noninformative prior distribution,
the probability that F̃ be equal to F ∗ satisfies the following relationship:

Pr
[
F̃ = F ∗] � q(n, r) = 1− (n+ 1)!(2n − r)!

(2n + 1)!(n− r)! .

For each starting point, the quantity q(n, r) is compared with a prescribed value q∗,
and the algorithm is terminated if and only if q(n, r) > q∗. A commonly used value is
q∗ = 0.99 [13].

An analytic description of all the aforementioned concepts, as well as the
pseudocode of the SF algorithm can be found in [13]. In the next section, the DE al-
gorithm is briefly described.

3. The differential evolution algorithm

The DE algorithm was developed by Storn and Price [14,15]. It is a parallel di-
rect numerical search method, which utilizes NP,D-dimensional parameter vectors xi,G,
i = 1, 2, . . . ,NP, as a population to probe the search space. The index G denotes the
generation (iteration) number of the algorithm. The initial population is taken to be
uniformly distributed in the search space. At each generation, the mutation and recom-
bination operators are applied on the individuals, and a new population arises. Then,
selection takes place, and the corresponding individuals from both populations compete
to comprise the next generation.

According to the mutation operator, for each vector xi,G, i = 1, 2, . . . ,NP, a mu-
tant vector is determined by

vi,G+1 = xr1,G +K(xr2,G − xr3,G),
where r1, r2, r3 ∈ {1, 2, . . . ,NP} are mutually different random indices and K ∈ (0, 2].
The indices r1, r2, r3, also need to differ from the current index i and, consequently,
mutation can be applied only if NP is at least 4.

Following the mutation phase, the recombination operator is applied on the popu-
lation. Thus, a trial vector

ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1),

is generated, where

uji,G+1 =
{
vji,G+1, if (randb(j) � CR) or j = rnbr(i),

xji,G, if (randb(j) > CR) and j �= rnbr(i),

where j = 1, 2, . . . ,D; randb(j) is the j th evaluation of a uniform random number
generator in the range [0, 1]; CR is the (user specified) crossover constant within [0, 1];
and rnbr(i) is a randomly chosen index from the set {1, 2, . . . ,D}.
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To decide whether the vector ui,G+1 will be a member of the population of the next
generation, it is compared to the initial vector xi,G, and

xi,G+1 =
{
ui,G+1, if F(ui,G+1) < F(xi,G),

xi,G, otherwise,

where F is the function under consideration.
The procedure described above is considered as the standard variant of the DE

algorithm, and it is denoted as DE/rand/1/bin. Different kinds of mutation and recom-
bination operators have also been applied on minimization problems with promising
results [15]. A parallel version of the DE algorithm is reported in [10]. In the next
section, the proposed (hybrid) algorithm is described.

4. The proposed algorithm

The combination operator used by Snyman and Fatti in the SF algorithm, to gener-
ate the starting points of the auxiliary trajectories, is very simple as exhibited in (4) [13].
The central idea of the proposed algorithm is to provide the SF algorithm with a more
sophisticated recombination technique so as to increase its success rate and its overall
performance. The DE mutation and recombination operators have proved very promis-
ing in developing efficient GO techniques and have been selected for this purpose. Thus,
a population of already computed minimizers and previously selected initial points is
maintained. The best individual of the population, after the application of recombina-
tion and mutation, is selected as the initial point for the new auxiliary trajectory. Then,
a new trajectory is generated, and its best point is considered as a potential member of
the population. The DE operators are re-applied to determine the initial point of the next
auxiliary trajectory. The process is thoroughly described in the rest of this section.

Initially, a randomly selected starting point x1
0 is introduced into an (initially empty)

population P , and the first trajectory is generated using the standard SF algorithm. The
best point x1

m of this trajectory, i.e. the point of the trajectory with the smallest function
value, is also included into the maintained population P . The two available points x1

0
and x1

m are then combined, according to (4), to give the starting point x2
0 of the second

trajectory. The SF operator is employed at this initial stage because the DE mutation
and recombination operators can be applied only on populations of size popsize � 4.
Consequently, they cannot be applied at this stage since the population consists of only
two points.

The second trajectory is generated by starting from x2
0 . The initial point x2

0 as well
as the best point x2

m of the second trajectory are also included in P . It should be noted
here that a point is introduced into the population P , if and only if it is not already a
member of P .

Beyond this step, the population consists of four points, and the DE operators are
applicable. Thus, mutation and recombination are applied on the population and four
new points are generated. Then, the selection phase takes place, and a new popula-
tion P ′ is formed. The best point of P ′ is selected as the initial point for the new (third)
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Table 1
The modified trajectory generation procedure.

Step 1. Given x1
0 , compute the trajectory T 1 by solving (2) subject

to ẋ1
0 = 0. Record x1

m, ẋ1
m, F 1

m. Let x1
b
← x1

m and i ← 2.
Insert x1

0 and x1
m in the population P . Set popsize← 2.

Step 2. If popsize < 4 then compute the trajectory T i with
xi0 = 1

2 (x
i−1
0 + xi−1

b ), ẋi0 = 1
2 ẋ
i−1
m , and set P = P ∪ {xi0}.

Otherwise apply the mutation and recombination operators on the
population P , to find the point xi0, and take ẋi0 = 1

2 ẋ
i−1
m .

Record xim, ẋim, Fim.

Step 3. If F(xim) < F(x
i−1
b
), then set xi

b
← xim and if xi

b
differs from

all the points into the population P , then set P = P ∪ {xi
b
}

and popsize← popsize + 1. Otherwise set xi
b
← xi−1

b
.

Step 4. If popsize > maxps, then evaluate the population and take
the maxps better points as the new population P .

Step 5. Set i ← i + 1 and go to step 2.

trajectory, and it is included in P . The remaining points of P ′ are of no interest and
they are omitted. The whole procedure is repeated as long as the SF algorithm generates
new trajectories. Obviously, this procedure results in a huge population, since in many
problems hundreds or even thousands of trajectories may be required. To address this
problem, a threshold maxps is posed on the maximum number of points included in P . If
there is a potential new member of the population but popsize is equal to maxps, i.e. the
population’s size has already reached its maximum value, then the new point is included
in the population and all the individuals are sorted according to their function values.
The individual with the worst (highest) function value is excluded from the population,
in order to reduce its size to maxps.

Following the technique described above, the Procedure 2.1 of the SF algorithm,
which is described in [13], is modified as reported in table 1. The rest of the SF algorithm
is unaltered and it is applied following the guidelines provided by Snyman and Fatti
in [13].

In the next section, experimental results from the application of the proposed ap-
proach as well as the plain SF algorithm are reported and compared.

5. Experimental results

Ten well-known test functions of various dimensions have been used to investigate
the performance of the proposed algorithm (denoted as Hybrid SF), and to compare it
with that of the plain SF algorithm. For each test function, 100 runs were performed
for four different sets of the parameters CR and K of the DE algorithm. The name
and dimension of each test function; the range in which the initial point x1

0 of the first
trajectory was randomly selected; the maximum size of the population; as well as the
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Table 2
The results for the Rosenbrock function.

Function: Rosenbrock [6], dimension: 2
Initial interval: [−3, 3], maximum population size: 10

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 10156.38 2249.22 77.85%
0.5 0.5 8486.66 2349.46 72.32%
0.9 0.1 8299.88 2664.12 67.90%
0.5 0.9 5408.02 2334.06 56.84%

Table 3
The results for the Freudenstein–Roth function.

Function: Freudenstein–Roth [6], dimension: 2
Initial interval: [−1, 1], maximum population size: 10

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 182163.08 16500.32 90.94%
0.5 0.5 158424.40 3294.64 97.92%
0.9 0.1 170561.80 18457.88 89.18%
0.5 0.9 139451.04 17594.44 87.38%

Table 4
The results for the Hellical Valley function.

Function: Hellical Valley [6], dimension: 3
Initial interval: [−2, 2], maximum population size: 10

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 3800.36 3076.74 19.04%
0.5 0.5 3872.14 3106.98 19.76%
0.9 0.1 4204.72 2944.46 29.97%
0.5 0.9 3843.52 3082.48 19.80%

obtained results are reported in tables 2–11. The results indicate the mean values of the
required function evaluations for the plain SF and the proposed Hybrid SF algorithm, as
well as the percentage of the improvement in the mean number of function evaluations
that is gained by using the Hybrid SF. The values of the parameters of the SF algorithm
that were used in all experiments, were identical to the values reported in [13], namely,
γ = 2, α = 0.95, ε = 10−3, q∗ = 0.99, ω = 10−2 and km = 5000.

The reported results support the claim that the proposed hybrid approach outper-
forms the plain SF algorithm. The improvement in performance in some cases exceeds
90%. Moreover, there were cases where the proposed algorithm converged, while the
plain SF algorithm failed. Furthermore, the proposed algorithm can be easily imple-
mented, through a minor modification of the plain SF algorithm.
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Table 5
The results for the Levy No. 8 function.

Function: Levy No. 8 [4], dimension: 3
Initial interval: [−1, 1], maximum population size: 10

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 28867.75 17458.75 39.53%
0.5 0.5 29221.50 17182.00 41.17%
0.9 0.1 21078.00 16605.00 18.18%
0.5 0.9 25434.50 18064.00 28.39%

Table 6
The results for the Wood function.

Function: Wood [6], dimension: 4
Initial interval: [−3, 3], maximum population size: 10

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 30667.64 5679.84 81.48%
0.5 0.5 26058.16 5679.36 78.21%
0.9 0.1 28224.32 6044.60 78.58%
0.5 0.9 25842.24 5750.80 77.75%

Table 7
The results for the Watson function.

Function: Watson [6], dimension: 6
Initial interval: [−0.5, 0.5], maximum population size: 5

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 22176.10 14984.20 32.43%
0.5 0.5 22747.80 14985.80 34.12%
0.9 0.1 32634.40 13612.30 58.29%
0.5 0.9 38189.00 17748.00 53.53%

Table 8
The results for the Hyper-Ellipsoid function.

Function: Hyper-Ellipsoid [15], dimension: 6
Initial interval: [−1, 1], maximum population size: 5

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 1742.42 1436.68 17.55%
0.5 0.5 2049.52 1450.60 29.22%
0.9 0.1 1997.02 1415.36 29.13%
0.5 0.9 1750.68 1453.86 16.95%
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Table 9
The results for the 6-dimensional Rastrigin function.

Function: Rastrigin 6D [15], dimension: 6
Initial interval: [−1, 1], maximum population size: 5

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 14013.84 3742.52 73.29%
0.5 0.5 16721.84 4398.80 73.69%
0.9 0.1 16316.04 5182.68 68.24%
0.5 0.9 17709.92 4199.28 76.29%

Table 10
The results for the 10-dimensional Rastrigin function.

Function: Rastrigin 10D [15], dimension: 10
Initial interval: [−0.5, 0.5], maximum population size: 5

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 7079.10 3528.70 50.15%
0.5 0.5 7486.25 4477.75 40.19%
0.9 0.1 8043.60 3878.70 51.78%
0.5 0.9 7843.30 2706.80 65.49%

Table 11
The results for the 15-dimensional Rastrigin function.

Function: Rastrigin 15D [15], dimension: 15
Initial interval: [−0.5, 0.5], maximum population size: 5

CR K Plain SF Hybrid SF Imrovement

0.1 0.9 21309.90 9576.00 55.06%
0.5 0.5 18991.20 9338.90 50.83%
0.9 0.1 25605.30 9879.00 61.42%
0.5 0.9 19449.10 3984.70 79.51%

6. Conclusions and future research directions

A hybrid modification of the global optimization algorithm with dynamic search
trajectories, that utilizes differential evolution operators for the selection of the initial
points of the auxiliary trajectories, has been introduced. The hybrid algorithm exhibits
superior performance relative to the plain algorithm, on various well-known test func-
tions. Specifically, the mean number of function evaluations required to detect the global
minimizer is significantly reduced. In many cases the efficiency of the algorithm is also
increased and the number of the generated trajectories is reduced.

Future work will include the combination of the hybrid approach with techniques
for avoiding local minima, such as the “stretching” technique [7–9], and the utilization
of other variants of the DE operators as well as operators of different evolutionary and
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swarm intelligence algorithms that might further improve the algorithm’s performance.
The performance of parallel approaches using the parallel DE [10] will be also consid-
ered.
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