
MIC/MAEB 2017 id–1

Grid-Based Parameter Adaptation in
Particle Swarm Optimization

Vasileios A. Tatsis, Konstantinos E. Parsopoulos

Department of Computer Science and Engineering,
University of Ioannina,

GR-45110 Ioannina, Greece
{vtatsis, kostasp}@cse.uoi.gr

Abstract

Metaheuristics have been established as essential tools for solving complex optimization prob-
lems. Although they have proved to be useful in cases where other algorithms fail, their performance
is heavily dependent on their proper parametrization. This is typically addressed through a labori-
ous preprocessing phase of parameter tuning, which consumes significant amount of computational
resources and development time. For this purpose various techniques, also called tuners, have been
proposed in the relevant literature. Tuners are distinguished into offline and online ones, depending
on whether they tune the parameters prior or during the algorithm’s execution. Recently a grid-based
parameter tuner was proposed and successfully applied on the Differential Evolution algorithm. The
present work extends the tuner’s application also to Particle Swarm Optimization for the adaptation
of its scalar parameters and neighborhood radius. Proper modifications are introduced and a first em-
pirical evaluation is conducted on a large-scale optimization test suite where standard PSO exhibited
questionable performance. The results show that PSO equipped with the proposed tuner becomes
more efficient while, concurrently, the user is relieved from the burden of proper parametrization.

1 Introduction

Metaheurstics have been widely recognized as valuable approaches for solving a variety of complex
optimization problems in science and engineering. Although optimality of the final solution is not guar-
anteed, metaheuristics can provide useful (sub-)optimal solutions within reasonable computation time.
Also, they typically have minor requirements regarding the form and mathematical properties of the
underlying problem models. This property renders them viable as alternatives for tackling otherwise
intractable real-world problems.

Numerous experimental evidence suggests that performance of metaheuristics is highly dependent
on their parameterization [5]. Also, it is widely perceived that proper parameter values are problem-
dependent and can be hardly generalized to different problem types. Thus, the user is typically obligated
to conduct a laborious parameter-tuning procedure prior to the application of the algorithm. A number
of diverse techniques, also called tuners, have been proposed for this purpose. Tuners define formal
procedures for determining proper parameter values for the algorithm. These techniques are often based
on Computational Statistics and they require a significant computational cost that, in some cases, may
exceed even the cost of solving the problem itself. Such techniques are also called offline tuners [5, 6].
Design of Experiments [2], F-Race [3], and ParamILS [8] are among the most popular ones.

Alternatively, online tuners are techniques for the dynamic adaptation of the algorithm’s parameters
during its execution. They are typically based on performance feedback from the algorithm on the
considered problem instance. The absence of preprocessing phase and the minimal human interaction
renders online tuners quite appealing. Yet, their outcome is barely reusable in different problems even
of the same type, since it is explicitly fitted to the specific run of the algorithm on the specific problem
instance [5, 6].

There is a number of online parameter-tuning techniques but most of them are algorithm-dependent.
With respect to our algorithm of interest, namely Particle Swarm Optimization, one can mention the
technique proposed in [16], where the inertia weight is automatically controlled based on the swarm’s
distribution and particles’ fitness values. In [4] an adaptable PSO algorithm was proposed based on a
stability criterion, while in [13] a fuzzy system was employed for the same purpose.

Barcelona, July 4-7, 2017



id–2 MIC/MAEB 2017

Recently, a generic online tuner based on parameter search in a discretized parameter space (grid)
was proposed in [14]. The tuner was demonstrated on the Differential Evolution (DE) algorithm, which
is widely known for its parameter sensitivity. The derived DEGPA approach adapts the scalar parameters
of DE according to estimations of the algorithm’s performance. The estimations are based on short
runs initiated from the current population instance but with neighboring parameter values in the grid.
DEGPA was extended in the DEGPOA variant [15] by adapting also the mutation operator of the DE
algorithm. Empirical assessment was conducted on a large-scale optimization test suite published in the
Soft Computing journal [10] and significant improvements for DE were achieved.

The present work aims at extending the previous studies by incorporating the grid-based parameter
adaptation approach in the Particle Swarm Optimization (PSO) algorithm. PSO is more thoroughly
studied and theoretically analyzed than DE, with default parameter sets been proposed in the relevant
literature. Nevertheless, it is unclear whether these values are appropriate for a wide range of problems.
Thus, there are several cases where the user needs to assign arbitrary parameter values. Especially
in the considered test suite [10], PSO equipped with its default parametrization exhibits questionable
performance. Thus, the use of the grid-based parameter adaptation technique in PSO appears to be an
attractive option.

The rest of the paper is organized as follows: Section 2 briefly describes the PSO algorithm, while
Section 3 introduces the proposed approach. Section 4 offers experimental evaluation and analysis and,
finally, Section 5 concludes the paper.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) occupies a salient position among the state-of-the-art in metaheuris-
tics literature. It was initially proposed by J. Kennedy and R. Eberhart in 1995 [9]. Its robustness and
efficiency in a variety of complex optimization problems, as well as its easy implementation and minor
requirements on the underlying problem’s model, has placed PSO among the most popular algorithms.

The main concept of PSO involves a swarm of search points called particles. The particles coop-
eratively probe the search space through adaptable position shifts, while retaining in memory their best
visited positions. Putting it formally, let,

f : X → R, X ⊂ Rn,

be the objective function under consideration and,

S = {x1, x2, . . . , xN},

be a swarm of search points, which is randomly and uniformly initialized in X . Each particle,

xi = (xi1, xi2, . . . , xin) ∈ X, i ∈ I def
= {1, 2, . . . , N},

represents a candidate solution of the problem. We will denote the objective value of xi simply as
fi = f (xi). Each particle xi iteratively moves in X according to an adaptable position shift called
velocity, which is denoted as,

vi = {vi1, vi2, . . . , vin}.

Its best visited position, denoted as,

pi = {pi1, pi2, . . . , pin} ∈ X,

is stored in an external memory,
P = {p1, p2, . . . , pN}.

The operation of PSO is strongly dependent on information exchange among the particles. Specifically,
the particles communicate their best positions to other particles through communication channels that
define their neighborhoods. This socially shared information is then used to guide their move.

Barcelona, July 4-7, 2017



MIC/MAEB 2017 id–3

There are two major PSO models with respect to the extent of information sharing. In the global
(gbest) model each particle is aware of the overall best position of the whole swarm. In the local (lbest)
model, only particles that belong to strict subsets of the swarm share their best positions. The com-
munication channels among the particles are determined by the employed neighborhood topology. The
most popular neighborhood topology is the ring, where the i-th particle takes into account the findings
of particles with indices belonging in the set,

NBi = {i−m, . . . , i− 1, i, i+ 1, . . . , i+m} ⊂ I.

This neighborhood topology can be depicted as a ring-shaped graph (hence the name) where particles lie
on the nodes and each one is connected only with its two immediate neighbors. The parameter m defines
the size of the neighborhood and it is called the neighborhood’s radius.

Let the index gi denote the best particle in NBi, i.e.,

gi = arg min
k∈NBi

f(pk),

and let t denote the iteration counter. Then, the update equations of plain PSO are given as follows [12]:

v
(t+1)
ij = w v

(t)
ij + c1 rand()

(
p
(t)
ij − x

(t)
ij

)
+ c2 rand()

(
p
(t)
gij
− x(t)ij

)
, (1)

x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij , (2)

where i ∈ I and j = 1, 2, . . . , n; w is a velocity clamping parameter called inertia weight; c1, c2, are
called the cognitive parameter and social parameter, respectively; and rand() is the realization of a
uniform random number generator that returns a random real number in the range [0, 1] at each call.

Finally, each particle updates its best position at every iteration as follows,

p
(t+1)
i =

 x
(t+1)
i , if f

(t+1)
i 6 f

(
p
(t)
i

)
,

p
(t)
i , otherwise.

(3)

The algorithm iterates until a user-defined termination condition is satisfied. The reader can find thorough
presentation of PSO and its variants in [11, 12].

3 Proposed Approach

The proposed approach is an extension of the previously introduced DEGPA approach [14, 15]. In the
present case, the grid-based adaptation scheme is used to dynamically adapt the scalar parameters w, c1,
c2, and the neighborhood radius m of the lbest PSO during its run. We will henceforth call the proposed
approach Particle Swarm Optimization with Parameter and Neighborhood Adaptation (PSOPNA).

Initially, the search space of the scalar parameters of PSO shall be defined. In the present work we
assumed the following ranges,

w ∈ (0, 1], c1, c2 ∈ (0, 3],

which are commonly used in various applications. These ranges are discretized with predefined step
sizes,

λw = λc1 = λc2 = 0.1. (4)

Also, a set of possible values for the neighborhood radius m is defined. In our case we considered,

m ∈ {1, 3, 5, 7, 9}.

For each value of m, a 3-dimensional grid parameter search space is defined as follows,

Gm = {(w, c1, c2); w ∈ {0.0, 0.1, . . . , 1.0}, c1, c2 ∈ {0.0, 0.1, 0.2, . . . , 3.0}} .

Barcelona, July 4-7, 2017



id–4 MIC/MAEB 2017

Dynamic’s

Deployment

Phase

Primary

Population

Copying the new population to primary with the new parameters

Secondary

Populations

.

.

.

S

S

S

Performance

Estimation

Phase

Figure 1: A complete cycle of the proposed approach.

The grid’s density can be changed by modifying the step sizes of Eq. (4) if more fine-grained parameter
search is needed. Obviously, each triplet (w, c1, c2) in the interior of Gm has 6 immediate neighboring
points along the 3 directional axes.

The algorithm starts by randomly initializing a swarm, called the primary swarm and denoted as Sp,
assuming an initial neighborhood radiusm and a set of parameters (w, c1, c2) ∈ Gm. A reasonable initial
choice is,

m = 1, (w, c1, c2) = (0.5, 1.5, 1.5),

but the algorithm works also for different choices as it will be shown later. The primary swarm is evolved
for a number of iterations defined as,

tp = 10× n,

following the setting in [14]. Then, three main phases take place, namely cloning, performance estima-
tion, and dynamic deployment, which are explained below.

Cloning

The primary swarm, along with its best positions, is copied in 7 secondary swarms, S1, . . . , S7, of the
same neighborhood radius m, each one assuming different scalar parameters as follows,

w′ = w + sw λw, c′1 = c1 + s1 λc1 , c′2 = c2 + s2 λc2 , sw, s1, s2 ∈ {−1, 0, 1}. (5)

Obviously, the case sw = s1 = s2 = 0 corresponds to the parameter setting of the primary swarm.
Besides the 7 secondary swarms of same radius m, four additional secondary swarms, S8, . . . , S11, are
considered, adopting the scalar parameters (w, c1, c2) of the primary swarm but for different neighbor-
hood radius values, i.e., for m = 3, 5, 7, and 9. Intuitively, these secondary swarms define bridges from
the 3-dimensional grid ofm = 1 to the other grids, aiming at identifying a more beneficial neighborhood
radius for the algorithm.

Performance Estimation

All the 11 secondary swarms are then evolved for a small number of iterations, ts � tp, according to
the standard PSO procedure, updating also their best positions. These short runs aim at revealing rough
performance trends of the secondary swarms with their assigned parameter settings. For time-efficiency
purpose, the short runs can be done in parallel by evoking a separate thread for each individual secondary
swarm, thereby taking full advantage of modern multi-core computer systems. Following previous work,
typical values for ts lie between 5 and 10 iterations.

Barcelona, July 4-7, 2017



MIC/MAEB 2017 id–5

Algorithm 1 Pseudocode of the PSOPNA approach.
1: initialize(Sp, Pp,m,w, c1, c2) /* primary swarm */
2: evolve(Sp, Pp, tp)
3: M ← 11 /* number of secondary swarms */
4: while (not termination) do
5: /* Cloning */
6: for (i = 1 . . .M) do
7: if (i 6 7) then
8: /* secondary swarms: same radius, different parameters */
9: (Si, Pi,m

′, w′, c′1, c
′
2)← (Sp, Pp,m,w

′, c′1, c
′
2)

10: else
11: /* secondary swarms: different radius, same parameters */
12: (Si, Pi,m

′, w′, c′1, c
′
2)← (Sp, Pp,m

′, w, c1, c2)

13: end if
14: end for
15: /* Performance Estimation */
16: for (i = 1 . . .M) do
17: evolve(Si, Pi, ts) /* short runs (in parallel) */

18: end for
19: /* Dynamic’s Deployment */
20: (Sp, Pp,m,w, c1, c2)← select(Si, Pi,m

′, w′, c′1, c
′
2; AOV,OVSD, IQR)

21: evolve(Sp, Pp,m,w, c1, c2, tp)

22: end while

After the short runs, for each secondary swarm Sj the average objective value (AOV) of its best
positions Pj is computed [14],

f̄j =
1

N

N∑
i=1

f (pi) , pi ∈ Pj , i ∈ I, j = 1, . . . , 11. (6)

along with the objective value standard deviation (OVSD) of its best positions [15],

σj =

√√√√ 1

N

N∑
i=1

(
f(pi)− f̄j

)
, pi ∈ Pj , i ∈ I, j = 1, . . . , 11. (7)

The 11 obtained performance pairs,

(f̄j , σj), j = 1, . . . , 11,

are then compared in terms of Pareto dominance and the non-dominated ones are distinguished. In order
to select one among the non-dominated secondary swarms but also reduce the possibility of being misled
due to temporarily extremal (high or low) objective values, we consider a diversity-oriented performance
measure computed for each non-dominated swarm. Specifically, we select the secondary swarm that has
the highest interquartile range (IQR).

IQR is a common statistical measure of variability, based on the division of a data set into four equal
quartiles. The data is sorted and the IQR is defined as,

IQR = Q3−Q1,

where Q1 and Q3 specify the 1st and 3rd quartile of the data, respectively. In our case, IQR is computed
on the best positions values f (pi) of the non-dominated secondary swarms. The secondary swarm with
the highest IQR value is then selected in order to retain search diversity.

Barcelona, July 4-7, 2017



id–6 MIC/MAEB 2017

Table 1: Statistical comparisons of PSOPNA against plain PSO.
PSOPNA0.5/1.5 PSOPNA0.2/1.0 PSOPNA0.8/2.0

Dimension Algorithm + − = + − = + − =

50 PSO 7 6 6 15 0 4 12 3 4

100 PSO 8 6 5 14 1 4 16 3 0

200 PSO 8 3 8 15 1 3 17 2 0

500 PSO 8 7 4 8 3 8 16 2 1

“+” denotes wins, “−” denotes losses, and “=” denotes ties of PSOPNA against PSO

Table 2: Statistical comparisons of PSOPNA0.5/1.5 against the base algorithms.
Dimension

50 100 200 500
+ − = + − = + − = + − =

DEbin 6 12 1 6 10 3 7 8 4 9 5 5

DEexp 3 13 3 2 17 0 1 15 3 6 12 1

CHC 10 4 5 11 4 4 9 5 5 17 1 1

GCMAES 14 3 2 13 4 2 13 5 1 n/a n/a n/a

“+” denotes wins, “−” denotes losses, and “=” denotes ties of PSOPNA against the correspon-
ding base algorithm

Dynamic’s Deployment

This is the final phase of the proposed approach, where the selected secondary swarm along with all its
parameters becomes the primary swarm, replacing the existing one. In order to make complete use of
newly detected best positions in the short runs, the overall bests of all the unselected secondary swarms
are also inserted into the new primary swarm, replacing equal number of worst individuals. The new
primary swarm is then evolved for tp iterations to fully exploit the new parametrization.

This step completes a full cycle of the algorithm, and the whole procedure is repeated anew from the
cloning phase. Given a maximum computational budget of Vmax function evaluations, we can estimate
the maximum number of cycles that will be performed by the algorithm as follows,

cmax =

⌊
Vmax

(tp + 11 ts)N

⌋
, (8)

where b.c defines the standard floor function. The main procedure is graphically illustrated in Fig. 1,
while the approach is given in the pseudocode of Algorithm 1.

4 Experimental Evaluation

The experimental evaluation of the proposed PSOPNA approach was conducted on the large-scale opti-
mization test suite published in the Special Issue on Large Scale Continuous Optimization Problems of
the Soft Computing journal [10]. The test suite consists of 19 scalable test functions, henceforth denoted
as F1 − F19, of dimension n ∈ {50, 100, 200, 500}. Note that the test suite includes the test functions
of the IEEE CEC 2008 Competition on Large Scale Global Optimization.

The test suite provides three base algorithms for comparisons, namely DE with exponential crossover,
CHC, and GCMAES [1, 7, 10]. All base algorithms are considered with their optimal parameters pro-
vided in [10]. Besides those algorithms, we also considered DE with binomial crossover, which is more
popular than the one with exponential crossover. The maximum computational budget in the test suite is

Barcelona, July 4-7, 2017



MIC/MAEB 2017 id–7

Table 3: Average and standard deviation of error values for dimension n = 50 and 100.
Prob. PSOPNA0.5/1.5 DEbin DEexp CHC GCMAES

Mean StD Mean StD Mean StD Mean StD Mean StD
50-dimensional

F1 2.32e− 13 2.80e− 13 3.00e− 17 7.69e− 18 2.78e− 17 6.29e− 33 2.90e+ 02 5.69e+ 02 2.78e− 17 6.29e− 33

F2 1.59e+ 01 9.16e+ 00 3.87e+ 01 8.90e+ 00 3.31e− 01 5.90e− 02 7.72e+ 01 1.23e+ 01 7.69e− 11 4.83e− 11

F3 4.09e+ 01 3.79e+ 01 6.99e+ 01 3.58e+ 01 3.10e+ 01 8.65e+ 00 5.64e+ 07 1.42e+ 08 6.38e− 01 1.49e+ 00

F4 1.74e+ 02 4.29e+ 01 3.21e+ 01 1.38e+ 01 4.79e− 02 2.01e− 01 1.12e+ 02 2.74e+ 01 3.72e+ 02 8.68e+ 01

F5 6.39e− 03 1.18e− 02 9.86e− 04 2.76e− 03 0.00e+ 00 0.00e+ 00 9.02e− 01 1.82e+ 00 2.16e− 01 5.64e− 01

F6 2.30e+ 00 1.54e+ 00 7.16e− 14 1.86e− 14 1.39e− 13 9.43e− 15 3.23e+ 00 2.44e+ 00 1.90e+ 01 1.02e+ 00

F7 2.80e− 16 5.35e− 16 2.22e− 15 1.17e− 15 8.88e− 17 1.96e− 16 1.23e− 09 1.45e− 09 2.10e+ 01 1.38e+ 01

F8 1.31e− 01 2.64e− 01 9.02e+ 10 0.00e+ 00 9.02e+ 10 0.00e+ 00 9.02e+ 10 9.02e+ 06 9.03e+ 10 9.39e+ 07

F9 1.44e+ 02 4.12e+ 01 2.85e+ 02 5.30e+ 00 2.73e+ 02 7.40e− 01 3.11e+ 02 4.98e+ 00 3.16e+ 02 7.03e+ 00

F10 6.63e+ 00 5.57e+ 00 1.53e+ 00 1.29e+ 00 6.50e− 29 3.60e− 29 7.72e+ 00 2.93e+ 00 9.25e+ 00 2.82e+ 00

F11 1.39e+ 02 3.81e+ 01 9.65e− 01 2.02e+ 00 6.26e− 05 1.30e− 05 1.01e− 02 1.26e− 02 1.95e+ 02 3.65e+ 01

F12 3.19e+ 01 3.65e+ 01 5.82e+ 00 1.03e+ 01 5.26e− 13 1.64e− 13 8.23e+ 01 1.53e+ 02 1.14e+ 02 1.01e+ 01

F13 1.13e+ 02 4.70e+ 01 5.97e+ 01 2.22e+ 01 2.48e+ 01 1.31e+ 00 1.43e+ 07 3.29e+ 07 1.16e+ 02 1.43e+ 01

F14 1.25e+ 02 2.49e+ 01 3.35e+ 01 1.86e+ 01 3.55e− 08 2.26e− 08 6.76e+ 01 1.30e+ 01 2.71e+ 02 7.30e+ 01

F15 4.20e− 02 2.10e− 01 2.29e− 01 6.07e− 01 1.99e− 24 3.22e− 24 3.07e+ 00 5.32e+ 00 3.94e+ 01 1.25e+ 02

F16 9.35e+ 01 4.98e+ 01 5.64e+ 00 8.47e+ 00 1.56e− 09 2.81e− 10 5.60e+ 01 5.16e+ 01 2.23e+ 02 1.50e+ 01

F17 2.98e+ 02 3.84e+ 01 1.51e+ 01 1.43e+ 01 8.52e− 01 4.92e− 01 7.61e+ 06 2.44e+ 07 3.47e+ 02 2.18e+ 01

F18 7.28e+ 01 7.22e+ 00 5.73e+ 00 5.26e+ 00 1.28e− 04 4.63e− 05 6.76e+ 01 3.46e+ 01 3.59e+ 02 8.45e+ 01

F19 2.76e+ 00 3.04e+ 00 1.23e+ 00 9.26e− 01 2.00e− 24 1.50e− 24 1.95e+ 02 5.01e+ 02 1.71e+ 03 5.84e+ 03

100-dimensional
F1 2.76e− 12 5.37e− 12 1.12e− 16 4.28e− 17 7.77e− 17 1.13e− 17 4.67e+ 02 7.02e+ 02 5.55e− 17 1.26e− 32

F2 3.64e+ 01 1.08e+ 01 7.74e+ 01 7.77e+ 00 4.60e+ 00 4.24e− 01 9.96e+ 01 1.16e+ 01 2.61e− 03 1.30e− 02

F3 1.32e+ 02 8.18e+ 01 4.43e+ 02 3.63e+ 02 8.01e+ 01 1.03e+ 01 1.52e+ 08 2.69e+ 08 1.23e+ 01 1.80e+ 01

F4 4.86e+ 02 8.67e+ 01 1.01e+ 02 2.25e+ 01 9.53e− 03 4.76e− 02 2.92e+ 02 5.16e+ 01 8.38e+ 02 1.39e+ 02

F5 3.15e− 03 7.81e− 03 2.93e− 02 5.32e− 02 2.55e− 17 5.19e− 18 5.95e+ 00 1.29e+ 01 2.68e+ 00 1.05e+ 01

F6 5.14e+ 00 2.28e+ 00 1.55e+ 00 3.88e− 01 3.10e− 13 1.62e− 14 4.79e+ 00 1.87e+ 00 1.86e+ 01 2.45e+ 00

F7 7.69e− 13 2.72e− 12 1.39e− 14 7.12e− 15 3.80e− 17 5.29e− 17 8.67e− 02 3.70e− 01 6.35e+ 01 2.36e+ 01

F8 2.71e+ 02 3.44e+ 02 1.79e+ 11 0.00e+ 00 1.79e+ 11 0.00e+ 00 1.79e+ 11 1.92e+ 07 1.80e+ 11 3.54e+ 08

F9 4.46e+ 02 5.74e+ 01 5.43e+ 02 1.36e+ 01 5.06e+ 02 9.16e− 01 5.87e+ 02 1.01e+ 01 6.08e+ 02 1.07e+ 01

F10 2.50e+ 01 6.38e+ 00 1.54e+ 01 3.31e+ 00 1.35e− 28 3.86e− 29 2.89e+ 01 1.01e+ 01 1.93e+ 01 5.10e+ 00

F11 4.78e+ 02 6.32e+ 01 4.31e+ 01 2.09e+ 01 1.25e− 04 1.43e− 05 2.80e+ 01 3.02e+ 01 4.82e+ 02 4.27e+ 01

F12 1.43e+ 02 5.57e+ 01 7.21e+ 01 3.21e+ 01 6.44e− 11 1.52e− 11 8.72e+ 02 2.55e+ 03 2.41e+ 02 1.23e+ 01

F13 2.61e+ 02 5.82e+ 01 2.76e+ 02 6.18e+ 01 6.13e+ 01 1.00e+ 00 9.37e+ 07 4.02e+ 08 2.59e+ 02 2.16e+ 01

F14 3.31e+ 02 4.86e+ 01 9.37e+ 01 1.56e+ 01 4.48e− 02 2.24e− 01 2.25e+ 02 4.59e+ 01 6.19e+ 02 9.25e+ 01

F15 1.83e+ 00 2.30e+ 00 3.67e+ 00 1.76e+ 00 7.10e− 23 7.00e− 23 5.99e+ 00 1.19e+ 01 5.57e+ 01 5.22e+ 01

F16 3.39e+ 02 4.56e+ 01 1.10e+ 02 3.80e+ 01 1.94e− 02 9.70e− 02 2.08e+ 02 1.49e+ 02 4.84e+ 02 2.08e+ 01

F17 6.26e+ 02 6.07e+ 01 1.78e+ 02 5.49e+ 01 1.19e+ 01 2.62e+ 00 4.36e+ 07 7.09e+ 07 7.04e+ 02 3.92e+ 01

F18 1.81e+ 02 2.17e+ 01 1.04e+ 02 4.39e+ 01 2.92e− 04 6.77e− 05 2.37e+ 02 7.02e+ 01 1.09e+ 03 4.15e+ 02

F19 1.38e+ 01 6.03e+ 00 1.17e+ 01 2.61e+ 00 4.79e− 23 2.65e− 23 4.70e+ 02 1.84e+ 03 5.83e+ 03 9.85e+ 03

defined as [10],
Vmax = 5000× n,

function evaluations. The algorithm’s solution quality is measured according to its error from the pro-
vided optimal solution, i.e.,

erralg = f (xalg)− f (x∗) ,

where x∗ is the optimal solution and xalg is the best solution achieved by the algorithm.
The C programming language was used for the implementation of the proposed approach. A stan-

dard master-slave model was implemented under the OpenMPI library (http://www.open-mpi.org/) for
the parallelization of the secondary swarms. All experiments were conducted on Intelr i7 machines
providing 8 CPUs each, with 8GB RAM, running under Ubuntu Linux. The proposed approach and the
base algorithms were run for 25 independent experiments, and the average value and standard deviation
of the error values erralg were recorded.

In previous works [14, 15], the central point of the grid was taken as the initial parameter setting. This
is a reasonable choice in absence of any hints regarding the proper parametrization of the algorithm. In

Barcelona, July 4-7, 2017



id–8 MIC/MAEB 2017

Table 4: Average and standard deviation of error values for dimension n = 200 and 500.
Prob. PSOPNA0.5/1.5 DEbin DEexp CHC GCMAES

Mean StD Mean StD Mean StD Mean StD Mean StD
200-dimensional

F1 6.10e− 09 2.93e− 08 6.39e− 16 5.32e− 16 1.78e− 16 1.60e− 17 9.61e+ 02 1.65e+ 03 1.17e− 16 1.13e− 17

F2 6.10e+ 01 8.44e+ 00 1.01e+ 02 5.90e+ 00 1.89e+ 01 1.05e+ 00 1.17e+ 02 7.60e+ 00 7.47e− 02 2.44e− 01

F3 3.07e+ 02 1.14e+ 02 6.38e+ 02 3.80e+ 02 1.79e+ 02 8.89e+ 00 2.54e+ 08 3.97e+ 08 1.24e+ 02 8.85e+ 01

F4 1.22e+ 03 1.34e+ 02 4.21e+ 02 5.63e+ 01 8.52e− 02 3.98e− 01 6.32e+ 02 8.43e+ 01 1.57e+ 03 1.54e+ 02

F5 4.20e− 02 1.06e− 01 3.00e− 01 7.73e− 01 7.49e− 17 6.94e− 18 1.02e+ 01 1.59e+ 01 1.13e+ 00 2.84e+ 00

F6 1.11e+ 01 4.22e+ 00 5.28e+ 00 9.65e− 01 6.46e− 13 2.53e− 14 8.14e+ 00 2.26e+ 00 1.93e+ 01 7.39e− 01

F7 2.77e− 08 1.18e− 07 1.78e− 11 4.65e− 11 2.25e− 16 1.92e− 16 3.95e− 01 1.21e+ 00 1.25e+ 02 1.92e+ 01

F8 1.01e+ 04 1.30e+ 04 8.33e+ 11 0.00e+ 00 8.33e+ 11 0.00e+ 00 8.33e+ 11 3.09e+ 08 8.56e+ 11 3.36e+ 09

F9 1.18e+ 03 7.39e+ 01 1.13e+ 03 1.87e+ 01 1.01e+ 03 1.30e+ 00 1.18e+ 03 8.29e+ 00 1.22e+ 03 1.79e+ 01

F10 5.64e+ 01 9.29e+ 00 5.52e+ 01 1.02e+ 01 2.77e− 28 5.31e− 29 7.34e+ 01 6.25e+ 01 3.76e+ 01 2.78e+ 01

F11 1.17e+ 03 6.83e+ 01 3.95e+ 02 6.11e+ 01 2.55e− 04 3.20e− 05 4.03e+ 02 8.45e+ 01 1.08e+ 03 8.25e+ 01

F12 3.56e+ 02 5.83e+ 01 2.84e+ 02 4.97e+ 01 9.97e− 10 2.01e− 10 8.11e+ 02 1.58e+ 03 5.87e+ 02 4.52e+ 02

F13 6.25e+ 02 8.59e+ 01 7.52e+ 02 2.71e+ 02 1.40e+ 02 1.26e+ 01 2.06e+ 08 3.51e+ 08 5.92e+ 02 1.08e+ 02

F14 8.96e+ 02 1.17e+ 02 3.11e+ 02 3.66e+ 01 8.08e− 03 4.04e− 02 4.90e+ 02 5.23e+ 01 1.26e+ 03 1.81e+ 02

F15 6.30e+ 00 3.07e+ 00 1.17e+ 01 2.85e+ 00 3.71e− 24 2.32e− 24 1.40e+ 01 9.80e+ 00 1.95e+ 02 1.66e+ 02

F16 7.60e+ 02 6.07e+ 01 5.58e+ 02 7.96e+ 01 7.85e− 09 1.11e− 09 6.77e+ 02 6.04e+ 02 9.56e+ 02 3.33e+ 01

F17 1.29e+ 03 8.24e+ 01 1.03e+ 03 1.11e+ 02 3.71e+ 01 8.30e− 01 1.17e+ 07 1.70e+ 07 1.49e+ 03 8.00e+ 01

F18 4.26e+ 02 4.56e+ 01 7.53e+ 02 6.55e+ 01 5.10e− 04 9.97e− 05 7.67e+ 02 2.14e+ 02 3.94e+ 03 3.91e+ 03

F19 4.16e+ 01 6.67e+ 00 4.04e+ 01 7.71e+ 00 1.67e− 22 7.58e− 23 7.51e+ 02 1.76e+ 03 2.53e+ 04 2.45e+ 04

500-dimensional
F1 1.15e+ 02 3.81e+ 02 3.88e− 05 7.93e− 05 5.17e− 16 1.36e− 17 9.25e+ 02 1.27e+ 03 n/a n/a
F2 9.65e+ 01 1.43e+ 01 1.25e+ 02 5.37e+ 00 5.38e+ 01 1.21e+ 00 1.35e+ 02 5.52e+ 00 n/a n/a
F3 1.24e+ 07 5.97e+ 07 3.44e+ 04 1.62e+ 05 4.74e+ 02 1.48e+ 00 6.93e+ 08 1.72e+ 09 n/a n/a
F4 3.81e+ 03 2.19e+ 02 2.35e+ 03 1.60e+ 02 7.12e− 01 9.64e− 01 2.11e+ 03 1.66e+ 02 n/a n/a
F5 8.57e− 01 1.82e+ 00 3.11e− 01 5.07e− 01 2.38e− 16 1.18e− 17 1.45e+ 01 2.52e+ 01 n/a n/a
F6 1.91e+ 01 3.69e− 01 1.49e+ 01 8.38e− 01 1.64e− 12 4.85e− 14 1.27e+ 01 1.26e+ 00 n/a n/a
F7 5.89e− 02 1.96e− 01 2.74e− 03 6.49e− 03 7.29e− 16 3.58e− 16 3.33e− 05 1.12e− 04 n/a n/a
F8 1.66e+ 05 1.23e+ 05 4.94e+ 12 0.00e+ 00 4.94e+ 12 0.00e+ 00 4.94e+ 12 1.42e+ 08 n/a n/a
F9 3.29e+ 03 1.18e+ 02 2.97e+ 03 3.17e+ 01 2.52e+ 03 2.10e+ 00 3.00e+ 03 1.64e+ 01 n/a n/a
F10 1.11e+ 02 2.90e+ 01 1.36e+ 02 2.08e+ 01 9.79e− 28 1.43e− 28 1.64e+ 02 5.62e+ 01 n/a n/a
F11 3.35e+ 03 1.14e+ 02 2.34e+ 03 9.22e+ 01 6.78e− 04 3.60e− 05 1.67e+ 03 1.44e+ 02 n/a n/a
F12 1.09e+ 03 2.33e+ 02 1.02e+ 03 6.68e+ 01 6.80e− 09 8.58e− 10 1.62e+ 03 1.83e+ 03 n/a n/a
F13 3.39e+ 05 1.68e+ 06 2.49e+ 03 3.13e+ 02 3.60e+ 02 9.23e+ 00 3.41e+ 08 4.29e+ 08 n/a n/a
F14 2.91e+ 03 1.84e+ 02 1.67e+ 03 1.51e+ 02 3.93e− 01 1.05e+ 00 1.59e+ 03 1.57e+ 02 n/a n/a
F15 2.47e+ 01 7.28e+ 00 4.44e+ 01 5.59e+ 00 2.93e− 18 7.16e− 18 3.50e+ 01 1.20e+ 01 n/a n/a
F16 2.03e+ 03 2.84e+ 02 2.02e+ 03 8.60e+ 01 2.05e− 08 1.64e− 09 1.92e+ 03 1.44e+ 03 n/a n/a
F17 3.53e+ 03 2.64e+ 02 3.83e+ 03 1.41e+ 02 1.12e+ 02 1.02e+ 00 6.64e+ 08 1.64e+ 09 n/a n/a
F18 1.31e+ 03 1.38e+ 02 3.37e+ 03 4.34e+ 02 1.25e− 03 1.87e− 04 2.74e+ 03 3.59e+ 02 n/a n/a
F19 9.13e+ 01 2.01e+ 01 1.29e+ 02 2.34e+ 01 3.35e− 21 2.15e− 21 2.05e+ 03 4.03e+ 03 n/a n/a

the considered 3-dimensional grids of the PSO parameters, the central point corresponds to (w, c1, c2) =
(0.5, 1.5, 1.5), which happens to be an admittedly efficient parameter setting. Thus, in order to obtain
unbiased evidence of the benefits of the proposed approach, we also considered two extremal initial
points closer to the boundaries of the grid, i.e.,

(w, c1, c2) = (0.2, 1.0, 1.0), (w, c1, c2) = (0.8, 2.0, 2.0).

The corresponding PSOPNA instances for the three initial parameter settings are henceforth denoted
as PSOPNA0.5/1.5, PSOPNA0.2/1.0, and PSOPNA0.8/2.0. Following the setting requirements of the test
suite, the swarm size was fixed to the value,

N = 60,

for all test problems and dimensions.
The experimental assessment consisted of two phases. In the first phase, the three PSOPNA instances

were compared against their plain PSO counterparts with the corresponding (fixed) initial parameter sets

Barcelona, July 4-7, 2017



MIC/MAEB 2017 id–9

and neighborhood radius m = 1. Pairwise Wilcoxon ranksum tests were conducted at confidence level
95% for all test problems. A favorable comparison was counted as a win for the PSOPNA approach
and denoted with “+”. Respectively, negative comparisons are denoted with “−”, and ties (no statistical
difference between the algorithms) is denoted as “=”.

Table 1 summarizes the results. It is clearly seen that for the two extremal initial points PSOPNA
dramatically improved the performance over the corresponding plain PSO approaches. Note that the im-
provement was achieved without any additional preprocessing or preliminary experimentation. Even for
the case of the near-optimal initial parameter setting, the proposed approach achieved better or equivalent
performance in more than 60% of the problems. Also, we observe that increasing the dimension from 50
to 500 does not radically change the observed performance, which is a trait of nice scaling properties.

Table 2 reports the results of the second experimentation phase where the PSOPNA0.5/1.5 version is
compared against the base algorithms of the test suite. The specific PSOPNA approach was considered
as it is the one that would be most probably selected by a practitioner. As we can see, PSOPNA was
competitive against two of the base algorithms, namely CHC and GCMAES, while it was outperformed
by the DE variants. However, it shall be noted that plain PSO was completely out of competition against
all base algorithms, while the dominant DE algorithm was shown to be the best one for the specific test
suite.

Moreover, it shall be emphasized that all base algorithms assumed their optimal parameter settings
specifically fine-tuned for the considered test suite, while PSOPNA did not spent any function evaluations
on fine-tuning. Thus, in a completely fair comparison, PSOPNA should be receiving PSOPNA also the
additional computational budget that is spent by the rest of the algorithms for their laborious fine-tuning.

For completeness purpose, the achieved averages and standard deviations of the obtained solution
values of PSOPNA and the base algorithms are reported in Tables 3-4 for all test problems. Missing
values due to excessive running time are denoted with “n/a” for the GCMAES approach in the 500-
dimensional case.

5 Conclusion

The performance of metaheurstics has been shown to be dependent on their proper parameterization.
Parameter tuning is a laborious and complex task that needs significant amount of time and computational
resources. The present work extends a recently proposed grid-based parameter adaptation technique,
which was successfully applied on the DE algorithm. The PSO algorithm is equipped with this technique
in the present work, in order to verify its wide applicability regardless of the considered algorithm and
its initial parameterization.

The proposed technique is used to adaptively control the scalar parameters and the neighborhood ra-
dius of the PSO algorithm. Moreover, a diversity-oriented evaluation measure for the secondary swarms
is proposed in order to promote diversity and deter premature convergence. The experiments were con-
ducted on an established large-scale optimization test suite, following the setting in previous studies. The
results were promising, showing significant performance boost of PSO, while relieving the user from the
burden of parameter tuning.

Future research will include more efficient performance-estimation techniques for the secondary
swarms, more sophisticated search procedures in the parameter space (currently under development),
as well as more challenging problems.

References

[1] A. Auger and N. Hansen. A restart cma evolution strategy with increasing population size. In Proc.
of the 2005 IEEE Congress on Evolutionary Computation, pages 769–1776, 2005.

[2] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer-Verlag, Berlin,
2006.

Barcelona, July 4-7, 2017



id–10 MIC/MAEB 2017

[3] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated f-race: An overview. In
Thomas Bartz-Beielstein, Marco Chiarandini, Luı́s Paquete, and Mike Preuss, editors, Experimen-
tal Methods for the Analysis of Optimization Algorithms, pages 311–336. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[4] T. Cai, F. Pan, and J. Chen. Adaptive particle swarm optimization algorithm. In Intelligent Control
and Automation, 2004. WCICA 2004. Fifth World Congress on, volume 3, pages 2245–2247 Vol.3,
June 2004.

[5] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[6] A. E. Eiben and S. K. Smit. Evolutionary algorithm parameters and methods to tune them. In
Y. Hamadi, E. Monfroy, and F. Saubion, editors, Autonomous Search, chapter 2, pages 15–36.
Springer, Berlin Heidelberg, 2011.

[7] L. J. Eshelman and Schaffer J. D. Real-coded genetic algorithms and interval-schemata. Founda-
tions of Genetic Algorithms, 2:187–202, 1993.

[8] H. H. Hoos. Automated algorithm configuration and parameter tuning. In Y. Hamadi, E. Monfroy,
and F. Saubion, editors, Autonomous Search, chapter 3, pages 37–72. Springer, Berlin Heidelberg,
2011.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings.,
IEEE International Conference on, volume 4, pages 1942–1948 vol.4, Nov 1995.

[10] M. Lozano, F. Herrera, and D. Molina. Scalability of evolutionary algorithms and other metaheuris-
tics for large-scale continuous optimization problems. Soft Computing, 15:2085–2087, 2011.

[11] K. E. Parsopoulos. Particle swarm methods. In M.G.c. Resende, R. Marti, and P. Pardalos, editors,
Handbook of Heuristics. Springer, 2016.

[12] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization and Intelligence: Advances
and Applications. Information Science Publishing (IGI Global), 2010.

[13] Y. Shi and R. C. Eberhart. Fuzzy adaptive particle swarm optimization. In Evolutionary Computa-
tion, 2001. Proceedings of the 2001 Congress on, volume 1, pages 101–106 vol. 1, 2001.

[14] V. A. Tatsis and K. E. Parsopoulos. Differential evolution with grid-based parameter adaptation.
Soft Computing, pages 1–23, 2015.

[15] V. A. Tatsis and K. E. Parsopoulos. Grid search for operator and parameter control in differential
evolution. In Proceedings of the 9th Hellenic Conference on Artificial Intelligence, SETN ’16,
pages 7:1–7:9, New York, NY, USA, 2016. ACM.

[16] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung. Adaptive particle swarm optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6):1362–1381, Dec 2009.

Barcelona, July 4-7, 2017


