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Abstract We propose a parallel portfolio of metaheuristic algorithms that adopts a
market trading-based time allocationmechanism. This mechanism dynamically allo-
cates the total available execution time of the portfolio by favoring better-performing
algorithms. The proposed approach is assessed on a significant Operations Research
problem, namely the single-item lot sizing problem with returns and remanufactur-
ing. Experimental evidence suggests that our approach is highly competitive with
standard metaheuristics and specialized state-of-the-art algorithms.

1 Introduction

Algorithm portfolios (APs) emerged the past two decades as a promising framework
that combines different algorithms or copies of the same algorithm to efficiently
tackle hard optimization problems [3, 4]. Recently, they have gained increasing
attention as a general framework for incorporating different population-based algo-
rithms to solve continuous optimization problems [7, 13]. Significant effort has been
paid on the selection of the constituent algorithms of the APs [11], which may run
in an independent [10] or in a cooperative way [7]. The selection is usually based
on a preprocessing phase, where the constituent algorithms are selected according
to their performance from a wide range of available optimization algorithms.

In parallel implementations, theminimization of the total execution time is crucial
due to the limited (or expensive) resources allocated to the users in high-performance
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computer infrastructures. The AP’s framework offers inherent parallelization
capability that stems from the ability of concurrently using its constituent algo-
rithms. In practice, the algorithms that are used to solve a problem in parallel are
typically assigned equal execution time or function evaluation budgets that remain
constant throughout the optimization process [7]. Also, it is frequently observed that
different algorithms perform better in different phases of the optimization procedure
or problem instances [7, 10].

Motivated by this observation, we propose an AP where the algorithms are
rewarded additional execution time on a performance basis. Specifically, the portfolio
adopts a trading-based mechanism that dynamically orchestrates the allocation of
the total available execution time among the AP’s constituent algorithms. Better-
performing algorithms are assigned higher fractions of execution time compared to
worse-performing ones, without modifying the AP’s total execution time. The core
idea behind the attained mechanism is inspired by stock trading models and involves
a number of algorithms-investors that invest on elite solutions that act as stocks,
using execution time as currency.

The performance of the proposed AP is evaluated on a well studied Operations
Research (OR) problem, namely the single-item dynamic lot sizing problem with
returns and remanufacturing [9, 12]. Its performance is compared to other meta-
heuristics [6] as well as state-of-the-art heuristics for the specific problem [9]. The
rest of the paper is structured as follows: Sect. 2 briefly describes the problem, while
Sect. 3 presents the proposed AP model. The experimental setting and results are
exposed in Sect. 4 and the paper concludes in Sect. 5.

2 Problem Formulation

The considered problem constitutes an extension of the well-known Wagner-Whitin
dynamic lot sizing problem [14]. It employs the dynamic lot sizing model with
separate manufacturing and remanufacturing setup costs as it was introduced in [12]
and further studied in [9]. The problem assumes a manufacturer that sells a single
type of product over a finite planning horizon of T time periods. In each time period
t = 1, 2, . . . , T , the consumers state their demand denoted by Dt , along with a
number of used products that are returned to the manufacturer. The fraction Rt of
returned products in period t that can be recovered and sold as new is stored at a
recoverables inventory with a holding cost h R per unit time. To satisfy the demand, a
number of zR

t and zM
t products are remanufactured andmanufactured, respectively, in

period t and then brought to a serviceables inventory with a holding cost hM per unit
time. Naturally, the manufacturing and remanufacturing process incur setup costs
denoted by K R and K M , respectively.

The target is to minimize the incurring setup and holding costs by determining the
exact number of manufactured and remanufactured items per period under a number
of constraints. The corresponding cost function is defined as follows [9]:
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C =
T∑

t=1

(
K Rγ R

t + K Mγ M
t + h R y R

t + hM yM
t

)
, (1)

where γ R
t and γ M

t are binary variables denoting the initiation of a remanufacturing
or manufacturing lot, respectively. The inventory levels of items that can be reman-
ufactured or manufactured in period t are denoted by y R

t and yM
t , respectively. The

operational constraints of the model are defined as follows:

y R
t = y R

t−1 + Rt − zR
t , yM

t = yM
t−1 + zR

t + zM
t − Dt , t = 1, 2, . . . , T, (2)

zR
t ≤ Q γ R

t , zM
t ≤ Q γ M

t , t = 1, 2, . . . , T, (3)

y R
0 = yM

0 = 0, γ R
t , γ M

t ∈ {0, 1}, y R
t , yM

t , zR
t , zM

t ≥ 0, t = 1, 2, . . . , T . (4)

Equation (2) guarantees the inventory balance, while Eq. (3) assures that fixed costs
are paidwhenever a new lot is initiated. In [9] the value ofQ is suggested to be equal to
the total demand of the planning horizon. Finally, Eq. (4) asserts that inventories are
initially empty and determines the domain of each variable. The decision variables
of the optimization problem are zM

t and zR
t for each period t . Thus, for a planning

horizon of T periods the corresponding problem is of dimension n = 2 T . More
details about the considered problem can be found in [6, 9, 12].

3 Proposed Algorithm Portfolio

We propose an AP that consists of metaheuristic algorithms that operate in parallel.
We denote with N the number of algorithms. The AP employs a typical master-
slave parallelization model, where each algorithm runs on a single slave node. Each
algorithm invests a percentage of its assigned running time to buy solutions from
the other algorithms of the AP. The remaining time is used for its own execution.
We assign equal initial execution time budgets, Ttot, and investment time budgets,
Tinv = α Ttot, for all algorithms. The parameter α ∈ (0, 1) tunes each algorithm’s
investment policy. Clearly, high values of α indicate a risky algorithm-investor, while
lower values characterize a more conservative one.

The master node retains in memory a solution archive that is asynchronously
accessed by the slaves via amessage passing communicationmechanism.The archive
holds the elite solution found by each algorithm. For their pricing, the solutions are
sorted in descending orderwith respect to their objective values. If pi is the position of
the i th solution after sorting, then its cost is defined asC Si = (pi × SBC)/N , where
SBC = β Tinv is a fixed base cost. The parameter β ∈ (0, 1) tunes each algorithm’s
elitism. High values of β limit the number of the best elite solutions each algorithm
can buy throughout the optimization process.

Whenever an algorithm cannot improve its elite solution for an amount of time,
it requests to buy a solution from another algorithm. The master node acts as a
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trading broker that applies a solution selection policy to help the buyer-algorithm
make the most profitable investment. In particular, the master node proposes to the
buyer-algorithm elite solutions that are better than its own and cost less or equal to
its current investment budget. Among the possible solutions, the algorithm opts to
buy the solution that maximizes the Return On Investment (ROI) index, defined as
RO I j = (C − C j )/C Sj , j ∈ {1, 2, . . . , N }, where C is the objective value of the
algorithm’s own elite solution, C j is the objective value of the candidate buying
solution and CS j is its corresponding cost. If the buyer-algorithm decides to buy the
j th elite solution, it pays its price of C Sj running time to the seller-algorithm (the
one that found this solution). The seller algorithm adds this time to its total execution
time budget. Thus, better-performing algorithms sell solutions more often, gaining
longer execution times. Yet, the total execution time of the AP remains constant.

In the present work, the proposed AP consists of 4 algorithms, namely Parti-
cle Swarm Optimization (PSO) [1], Differential Evolution (DE) [8], Tabu Search
(TS) [2], and Iterated Local Search (ILS) [5].

4 Experimental Results

The proposed approach was evaluated on the established test suite used in [9]. It
consists of a full factorial study of various problem instances with common planning
horizon T = 12. Table1 summarizes the configuration of the problem parameters

Table 1 Parameters of the considered problem and the employed algorithms

Problem parameter Value(s) Algorithm parameter Value(s)

Dimension n = 24 AP Number of slave
algorithms

N = 4

Setup costs K M , K R ∈
{200, 500, 2000}

Per algorithm
execution time

Ttot = 75000ms

Holding costs hM = 1, h R ∈
{0.2, 0.5, 0.8}

Constants α, β α = 0.1, β = 0.05

Demand for period t Dt ∼ N (μD, σ 2
D) PSO Model lbest (ring topology)

μD = 100 Swarm size 60

σ 2
D = 10% of μD

(small variance)
Constriction
coefficient

χ = 0.729

σ 2
D = 20% of μD

(large variance)
Cognitive/social
constants

c1 = c2 = 2.05

Returns for period t Rt ∼ N (μR, σ 2
R) DE Population size 60

μR ∈ {30, 50, 70} Operator DE/rand/1

σ 2
R = 10% of μR

(small variance)
Differential/crossover
constants

F = 0.7, CR = 0.3

σ 2
R = 20% of μR

(large variance)
TS Size of tabu list 24
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as well as the employed algorithm parameters for the AP. Further details on the
problem setting can be found in [9]. The proposed AP was compared against the
best-performing variant (SM+

4 ) of the state-of-the-art Silver-Meal heuristic [9], as
well as against the sequential versions of its constituent algorithms. The goal of the
experiments was to achieve the lowest possible percentage error [9] from the global
optimumwithin a predefined budget of total execution time Ttot. The global optimum
per problem was computed by CPLEX and was provided in the test suite.

Table2 shows the average (Avg), standard deviation (StD), and maximum (Max)
value of the percentage error for the different values of the problem parameters. A
first inspection of the results reveals superiority of the proposed AP, which achieves
the best overall mean percentage error (1.9%). The second lowest valuewas achieved
by SM+

4 (2.2%), followed by the sequential versions of DE (3.3%) and PSO (4.3%).
Specifically, AP prevails in 14 out of 17 considered parameter cases, while in the rest
3 cases SM+

4 is the dominant algorithm. The results of SM+
4 and PSO were directly

adopted from [9] and [6], respectively.
The results indicate that population-based algorithms (DE and PSO) outperform

(by far) the trajectory-based ones (TS and ILS). Moreover, when all algorithms are
integrated into the AP, the overall performance with respect to solution quality is
further enhanced. This can be attributed to the dynamics of the trading among the
algorithms. In particular, we observed that the population-based algorithms were
mainly the seller ones, using their exploration capability to discover high-quality
solutions. On the other hand, trajectory-based algorithms employed their exploitation
power to further fine-tune the vast number of acquired solutions. From this point of
view, the employed algorithms of the AP exhibited complementarity, which is a
desired property in APs [7, 13]. Also, we observed that between the two population-
based algorithms, PSO acquired a higher number of solutions than DE during the
optimization, whereas the solutions of the latter were of better quality.

5 Conclusions

We proposed an Algorithm Portfolio (AP) of metaheuristic algorithms that operate
in parallel and exchange solutions via a sophisticated trading-based time allocation
mechanism. This mechanism favors better-performing algorithms with more execu-
tion time than the others. Also, it combines the exploration/exploitation dynamics of
each individual constituent algorithm in an efficient way. We assessed our approach
on a well studied OR problem. The experimental results were promising, indicating
that the AP is highly competitive against its constituent algorithms, individually, as
well as against a state-of-the-art algorithm of the considered problem.
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