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Abstract. The inventory routing problem (IRP) is a major concern in
operation management of a supply chain because it integrates transporta-
tion activities with inventory management. Such problems are
usually tackled by independently solving the underlying inventory and
vehicle routing sub-problems. The present study introduces an ant-based
solution framework by modeling the IRP problem as a vehicle routing
task. In this context, a mixed-integer mathematical model for the IRP
is developed, where a fleet of capacitated homogeneous vehicles trans-
port different products from multiple suppliers to a retailer to meet the
demand for each period over a finite planning horizon. In our model,
shortages are allowed while unsatisfied demand is backlogged and can
be met in future periods. The mathematical model is used to find the
best compromise among transportation, holding, and backlogging costs.
The corresponding vehicle routing problem is solved using an ant-based
optimization algorithm. Preliminary results on randomly generated test
problems are reported and assessed with respect to the optimal solutions
found by established linear solvers such as CPLEX.

1 Introduction

The main target of Supply Chain Management (SCM) is to align the various
stages of the supply chain. Integrating the decisions in planning the different
activities, has shown to produce improved global performance. An example of
integrating and coordinating decisions can be found in Vendor Managed In-
ventory (VMI), where customers make their inventory data available to their
suppliers (distributors), who then take the responsibility of deciding when to re-
plenish which customers. Thus, the supplier has to choose how often, when, and
in what quantities the different customers are replenished. This integrated in-
ventory and distribution management offers more freedom for designing efficient
vehicle routes, while optimizing inventory across the supply chain.

The underlying optimization problem that has to be addressed by the supplier,
namely the simultaneous decision on the replenishment quantities and the vehicle
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routes to visit all customers, is known as the Inventory Routing Problem (IRP).
IRP is one of the most interesting and challenging issues in the field of supply
chain management and typically considers a distribution firm that operates a
central vehicle station, supplying a number of geographically scattered customers
by a fleet of homogeneous vehicles, over a period of time [6].

The IRP literature is extensive and includes several variants of the prob-
lem, mainly depending on the nature of the demand at customers (determin-
istic, stochastic etc.) as well as on the length of the planning horizon (finite,
infinite etc.) We can indicatively mention several relevant works considering
single-period IRPs with stochastic demand [13] or deterministic demand [9];
multi-period finite horizon IRPs with constant or dynamic demand [1, 2, 7, 17];
as well as infinite horizon IRPs with deterministic or stochastic demand [8, 14].
For recent detailed reviews of the IRP field, the reader is referred to [3, 16].

In the present work, we propose a constructive meta-heuristic approach for
solving a two-echelon supply chain problem, where one retailer is served multi-
products by different suppliers, using a fleet of capacitated homogeneous ve-
hicles. This forms a multi-product, multi-period, finite horizon IRP where the
retailer’s demands are assumed to be known for all periods. The IRP prob-
lem is first modeled as an equivalent vehicle routing (VR) task. Then, we use
an ant-based algorithm that combines elements from some of the most suc-
cessful Ant Colony Optimization (ACO) variants, namely (Elitist) Ant System
((E)AS) [5, 10, 12] and Max-Min Ant System (MMAS) [19], to solve the cor-
responding VR problem. Preliminary experimental results on a set of randomly
generated test problems are reported. The results are compared with ones ob-
tained using the CPLEX software, offering preliminary evidence regarding the
competitiveness and weaknesses of the proposed approach.

The rest of the paper is organized as follows: Section 2 contains the mathe-
matical formulation of the problem, while Section 3 describes the algorithm, in
detail. Preliminary experimental results are reported in Section 4. Finally, the
paper concludes in Section 5.

2 Problem Formulation

We consider a many-to-one, part-supply network that is similar to the one pro-
posed in [17]. The network consists of one retailer, N suppliers, and a vehicle
station. Each supplier provides a distinct product to the retailer. Henceforth,
we will denote each supplier (and his product) with the corresponding index
i = 1, 2, . . . , N , while the index 0 will denote the station, and N + 1 will denote
the retailer. A fleet of homogeneous capacitated vehicles housed at the vehicle
station, transports products from the suppliers to meet the demand specified
by the retailer over a finite horizon, while backlogging is allowed. The vehicles
return to the vehicle station at the end of each trip. If the demand for more
than one period is collected, the inventory is carried forward subject to product-
specific holding cost. The unsatisfied demand for a specific product leads the
related product-specific shortage cost.
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The main objective of the problem is the minimization of the total trans-
portation, inventory, and shortages costs over the planning horizon. Putting it
formally, let the sets of indices:

Suppliers: Is = {1, 2, . . . , N},
Vehicles: Iv = {1, 2, . . . ,M},
Time periods: Ip = {1, 2, . . . , T },

(1)

and I ′s = Is ∪ {N + 1}. We use the following notation, which is similar to [17],
although our model assumes a finite fleet size instead of the unlimited number
of vehicles in [17]:

C: capacity of each vehicle.
F : fixed vehicle cost per trip (same for all periods).
V : travel cost per unit distance.
M : size of the vehicle fleet.
dit: retailer’s demand for product from supplier i in period t.
cij : travel distance between supplier i and j where cij = cji and the triangle

inequality, cik + ckj � cij , holds for all i, j, k with i �= j, k �= i, and k �= j.
hi: holding cost at the retailer for product i per unit product per unit time.
si: backlogging cost at the retailer for product i per unit product per unit

time.
Ii0: inventory level of product i at the retailer, at the beginning of period 1.
ait: total amount to be picked up at supplier i in period t.
Iit: inventory level of product from supplier i at the retailer, at end of period t.
qijt: quantity transported through the directed arc (i, j) in period t.
xijt: number of times that the directed arc (i, j) is visited by vehicles in period t.

Then, the mathematical formulation of the problem is defined as follows:

minimize Z1 + Z2 + Z3 + Z4 + Z5, (2)

where:

Z1 =

N∑

i=1

hi

T∑

t=1

I+it ,

Z2 =

N∑

i=1

si

T∑

t=1

(−Iit)+,

Z3 = V

⎛

⎜⎜⎝
N∑

j=1
j �=i

N∑

i=0

cij

(
T∑

t=1

xijt

)
⎞

⎟⎟⎠ , (3)

Z4 = V

(
N∑

i=1

ci,N+1

(
T∑

t=1

xi,N+1,t

))
,

Z5 = (F + cN+1,0)
N∑

i=1

T∑

t=1

x0it,



110 V.A. Tatsis et al.

where x+ = max{x, 0}, subject to the constraints:

(C1): Iit = Iit−1 + ait − dit, i ∈ Is, t ∈ Ip, (4)

(C2):
N∑

i=0
i�=j

qijt + ajt =
N+1∑

i=1
i�=j

qjit, j ∈ Is, t ∈ Ip, (5)

(C3):

N∑

i=1

qi,N+1,t =

N∑

i=1

ait, t ∈ Ip, (6)

(C4):

N∑

i=0
i�=j

xijt =

N+1∑

i=1
i�=j

xjit, j ∈ Is, t ∈ Ip, (7)

(C5):
N∑

j=1

x0jt =
N∑

j=1

xj,N+1,t, t ∈ Ip, (8)

(C6): qijt � C xijt, i ∈ Is, j ∈ I ′s, i �= j, t ∈ Ip, (9)

(C7):

N∑

i=1

x0it � M, t ∈ Ip, (10)

(C8):

T∑

t=1

ait =

T∑

t=1

dit, i ∈ Is, (11)

(C9): C xijt − qijt � C − 1, i ∈ Is, j ∈ I ′s, t ∈ Ip, (12)

(C10): ajt �
N∑

i=1
i�=j

C xijt, j ∈ Is, t ∈ Ip, (13)

(C11): xijt �
N∑

k=0
k �=i,j

xkit i ∈ Is, j ∈ I ′s, t ∈ Ip (14)

(C12): Iit ∈ R, i ∈ Is, t ∈ Ip, (15)

(C13): ait � 0, i ∈ Is, t ∈ Ip, (16)

(C14): xijt ∈ {0, 1}, i, j ∈ Is, t ∈ Ip, (17)

(C15): x0jt ∈ N, j ∈ Is, t ∈ Ip, (18)

(C16): xi,N+1,t ∈ N, i ∈ Is, t ∈ Ip, (19)

(C17): x0,N+1,t = 0, t ∈ Ip, (20)

(C18): xi0t = 0, i ∈ Is, t ∈ Ip, (21)

(C19): xN+1,j,t = 0, j ∈ Is, t ∈ Ip, (22)

(C20): qijt � 0, i ∈ Is, j ∈ I ′s, t ∈ Ip, (23)

(C21): q0jt = 0, j ∈ Is, t ∈ Ip. (24)
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The objective function defined by Eqs. (2) and (3) comprises both inventory
costs (holding and backlogging) and transportation costs (variable travel costs
and vehicle fixed cost). We note that the fixed transportation cost consists of
the fixed cost incurred per trip and the constant cost of vehicles returning to the
station from the retailer.

Constraint (C1) is the inventory balance equation for each product, while (C2)
is the product flow conservation equations, assuring the flow balance at each
supplier and eliminating all subtours. Constraint (C3) assures the accumulative
picked up quantities at the retailer and (C4) and (C5) ensure that the number
of vehicles leaving a supplier, the retailer or the station is equal to the number
of its arrival vehicles. We note that constraint (C5) is introduced because each
vehicle has to visit the retailer before returning to the station. Constraint (C6)
guarantees that the vehicle capacity is respected and gives the logical relationship
between qijt and xijt, which allows for split pick ups.

Constraint (C7) is introduced due to the limited fleet size. Constraint (C8)
ensures that the cumulative demand for every product will be satisfied, while
(C9) is imposed to ensure that either qijt = 0 with xijt = 0 or qijt � 1 with
xijt � 1. Moreover, (C10) ensures that the pick up quantities are limited by the
number of vehicles and their capacities. Constraint (C11) ensures that if there is a
vehicle to travel from one supplier to another, then this vehicle should previously
arrive to the first supplier from another one (or the station). This is necessary to
avoid fake closed loops of vehicles that may appear in the VR formulation of the
problem. Finally, (C12) implies that the demand can be backlogged. The rest are
non-negativity constraints imposed on the variables. We note that (C17), (C18),
and (C19) ensure the absence of direct links from the station to the retailer,
from a supplier to the station, and from the retailer to a supplier, respectively.

3 Proposed Approach

3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) constitutes a general metaheuristic methodol-
ogy for solving combinatorial optimization problems [12]. It draws inspiration
from the collective behavior of termites during social activities such as foraging.
The emergent behavior of such primitive entities is based on a mechanism called
stigmergy, which allows them to coordinate their actions based on stimulation
from the environment. The stimulation is their response to pheromone’s chemical
traces left in the environment by their mates and them.

ACO can be elegantly introduced in the framework of the Traveling Salesman
Problem (TSP) as a group (swarm) of agents that individually construct a route
from a start city to an end city visiting all other cities just once. At each stage
of the route construction, the agent makes a decision of its next move based on
a probabilistic scheme that gives higher probability to the alternatives that have
more frequently been visited by the rest of the swarm and, thus, they possess
higher pheromone levels. The general procedure flow of ACO approaches can be
summarized in the following actions:
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// Procedure ACO

WHILE (termination condition is false)

Construct_Solutions()

Further_Actions()

Update_Pheromones()

END WHILE

Due to space limitation the reader is referred to devoted texts such as [5,12] for
a thorough introduction of the general framework of ACO and its most popular
variants.

3.2 Solution Representation

We will now try to put the considered IRP problem in a form that can be han-
dled from the considered ant-based approaches that will be later described. Let
the problem consist of N suppliers that employ M vehicles to transport their
products over a time horizon of T periods. Following the notation presented in
Section 2, we consider the sets of indices, Is, Iv, and Ip, defined in Eq. (1). Our
approach is vehicle-centric, i.e., each vehicle constructs its order for visiting the
suppliers at each time period. The decision of not visiting a specific supplier
implies that the supplier is absent in the constructed visiting order. This for-
mulation is adequate to transform the IRP into an equivalent VR problem as
described below.

Putting it formally, let p
[j]
it denote the position of supplier i in the visiting

order of vehicle j at time period t. Then, it holds that:

p
[j]
it ∈ {0, 1, 2, . . . , N}, for all i ∈ Is, j ∈ Iv, t ∈ Ip, (25)

where p
[j]
it = 0 simply denotes that supplier i is not visited by vehicle j at

time period t. The quantities p
[j]
it for all i, j, and t, are adequate to provide the

visiting frequencies xijt in our IRP model described in Section 2. Indeed, the set
of indices of the vehicles that contain the directed arc (i, j) with i, j ∈ Is, i �= j,
in their routes at time period t, is defined as:

K(i,j,t) =
{
k ∈ Iv such that p

[k]
it = l − 1, p

[k]
jt = l, l ∈ Is \ {1}

}
.

Moreover, let the sets:

K(0,i,t) =
{
k ∈ Iv such that p

[k]
it = 1

}
,

K(i,N+1,t) =
{
k ∈ Iv such that p

[k]
it > p

[k]
jt , ∀j ∈ Is \ {i}

}
,

which define the vehicles that visit supplier i first, and the vehicles that visit
supplier i last, just before completing their route at the retailer, respectively.
Then, if |K(i,j,t)| denotes the cardinality of K(i,j,t), we can easily infer that:

xijt =

{ |K(i,j,t)|, if K(i,j,t) �= ∅,
0, otherwise,

for all i, j, t. (26)
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This equation determines all the visiting frequencies in the IRP, solely using the
constructed visiting orders of the vehicles.

Apart from the visiting order, each vehicle also follows a policy regarding the
quantities that are picked up from each supplier. The policy is based on the
reasonable assumption that a vehicle shall satisfy all demand and backlogging

requirements as long as it is permitted by its capacity. In other words, if L
[k]
it

denotes the k-th vehicle’s load when visiting supplier i at time t, and a
[k]
it is

the quantity of products that it will pick up from the supplier, it shall hold

that a
[k]
it = min

{
C − L

[k]
it , dit − Ii,t−1

}
, where C is the vehicle’s capacity, while

dit and Ii,t−1 stand for the demand and the current inventory, respectively.

Obviously, if p
[k]
it = 0 (i.e., the vehicle does not visit supplier i) then the picked-

up quantity will be a
[k]
it = 0. Then, the total quantity picked up by supplier i at

time t by all vehicles, is given by:

ait =
M∑

k=1

a
[k]
it .

We can easily notice that, according to this equation, it is possible that the total
amount picked up by supplier i becomes larger than the quantity dictated by
the system’s demands. This may be observed in the case where a number of
vehicles with adequate free capacity visit the same supplier, each one picking an
amount equal to dit − Ii,t−1. However, such a solution will be infeasible due to
the constraint of Eq. (11) and, eventually, it will be rejected by the algorithm.

The rest of the model’s parameters, i.e., the inventory levels Iit and the trans-
ported quantities qijt, can be straightforwardly determined by taking into con-
sideration the constraints of the IRP model. Specifically, Iit is given directly
from Eq. (4), while the transported quantities are given as:

qijt =
∑

k∈K(i,j,t)

(
L
[k]
it + a

[k]
it

)
, i, j ∈ Is, i �= j.

Thus, the vehicles’ visiting orders can offer all the necessary information to
describe the whole system’s operation, rendering the VR problem an equivalent
formulation of the original IRP.

Based on this formulation, we considered a solution representation scheme
that consists of the visiting orders of all vehicles for all time periods, as follows:

(
. . . p

[1]
1t , . . . , p

[1]
Nt,︸ ︷︷ ︸

vehicle 1

. . . , p
[M ]
1t , . . . , p

[M ]
Nt ,︸ ︷︷ ︸

vehicle M︸ ︷︷ ︸
time period t

. . .
)
, (27)

where p
[j]
it is defined as in Eq. (25). Obviously, for a problem with N suppliers, M

vehicles, and T time periods, this scheme requires a fixed-size vector ofN×M×T
components to represent a candidate solution.
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For example in the case of a problem with 2 suppliers, 2 vehicles, and 2 time
periods (N = M = T = 2), a candidate solution would be an 8-dimensional
vector:

(
p
[1]
11 , p

[1]
21 ,︸ ︷︷ ︸

vehicle 1

p
[2]
11 , p

[2]
21 ,︸ ︷︷ ︸

vehicle 2︸ ︷︷ ︸
time period 1

p
[1]
12 , p

[1]
22 ,︸ ︷︷ ︸

vehicle 1

p
[2]
12 , p

[2]
22︸ ︷︷ ︸

vehicle 2︸ ︷︷ ︸
time period 2

)
,

where p
[j]
it is defined as described above. Each ant in our approach has to con-

struct such vectors, based on the procedures described in the following section.

3.3 Algorithm Operators and Procedures

The employed algorithm is based on the general framework and operation of
established ACO variants. More specifically, it considers a group of agents, called
ants, which iteratively construct a set of potential solutions of the form described
in the previous section. The solution components are stochastically selected from
a set of possible values (states), similarly to the stochastic selection of a route
between several cities. Thus, each component value assumes a weight that is
used for the computation of its selection probability. The weights constitute the
pheromone values that guide the ants, and they are retained in a continuously
updated pheromone table.

In our approach, the components’ values that are selected more frequently in
the best solutions during the run of the algorithm, increase their pheromone lev-
els and, consequently, they are more frequently selected by the ants. Pheromone
restarting is also applied after a number of iterations to alleviate search stagna-
tion. All these operations are thoroughly described in the following paragraphs.

In our case, the algorithm assumes K ants, which iteratively construct candi-
date solutions while retaining in memory the best one from the beginning of the
run. Each ant constructs a solution vector of the form of Eq. (27), in a compo-
nentwise manner. The solution construction process is based on the probabilistic
selection of each component’s value, based on the table of pheromones.

More specifically, there is a pheromone value, τ
[j]
it (l), l = 0, 1, . . . , N , for each

one of the l possible values (states) of the variables p
[j]
it defined in Eq. (25), i.e.:

States of p
[j]
it : { 0, 1, . . . , N }

↑ ↑ ↑
Pheromones: τ

[j]
it (0) τ

[j]
it (1) · · · τ [j]it (N)

The corresponding probability of taking p
[j]
it = l is computed as:

ρ
[j]
it (l) =

τ
[j]
it (l)

N∑
k=0

τ
[j]
it (k)

, ∀ i, j, t.
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It is trivial to verify the necessary condition:

N∑

l=0

ρ
[j]
it (l) = 1, ∀ i, j, t.

Each ant uses these probabilities to decide for the assigned component value
(similarly as deciding among cities in the TSP) through the well-known fitness
proportionate selection (also known as roulette-wheel selection) procedure [4].

In practice, there are some limitations in this procedure. For example, p
[j]
it

cannot take the same value with a previously determined p
[j]
kt , with k �= i, since

this would imply that suppliers i and k are concurrently visited by vehicle j at
time t. These constraints can be handled either by penalizing the corresponding
solutions in the objective function or by allowing only the proper states to par-
ticipate in the selection procedure above. We followed the latter approach since
such restrictions can be straightforwardly incorporated in our algorithm, while
it does not add further constraints to the (already over-constrained) problem.

As soon as a candidate solution is constructed, it is evaluated with the ob-
jective function and all constraints are evaluated. If the solution is infeasible,
then its objective value is penalized on the basis of the number and magnitude
of constraints violations. We postpone the description of the penalty function
until the next section.

Immediately after the construction and evaluation of all K candidate so-
lutions, there is an update procedure for the best solution detected from the
beginning of the run. Specifically, each constructed solution is compared to the
best solution and, if superior, it replaces it. In order to avoid strict feasibility re-
strictions that could lead to reduced search capability of the algorithm, we allow
infeasible solutions to be constructed, although adopting the following common
rules for updating the best solution:

(a) Between feasible solutions, the one with the smallest objective value is se-
lected.

(b) Between infeasible solutions, the one with the smallest total penalty is se-
lected.

(c) Between a feasible best solution and an infeasible new candidate, the feasible
best solution is always selected.

(d) Between an infeasible best solution and a feasible new candidate, the feasible
one is selected.

These rules allow infeasible solutions to be accepted (which is the case mostly
in the first iterations of the algorithm), while favoring solutions that lie closer
or inside the feasible region. Obviously, no feasible initial solutions are required
in this case.

After updating the best solution, the pheromone update takes place. This
procedure is one of the features that distinguish between different ACO variants.
In our approach, we combined features from different variants that were found
to fit the studied problem better. Specifically, the first step in pheromone update
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is the evaporation, where each pheromone value is reduced as follows:

τ
[j]
it (l)← (1− Rev)τ

[j]
it (l), for all i, j, t, l,

where Rev ∈ (0, 1) is the pheromone evaporation rate and determines the algo-
rithm’s rate of “forgetting” previous states in most ACO variants [12]. After the
evaporation, the pheromones are updated again, as follows:

τ
[j]
it (l)← τ

[j]
it (l) +Δ

[j]
it (l), for all i, j, t, l,

where:

Δ
[j]
it (l) =

{
Δτ
K , if the best solution contains p

[j]
it = l,

0, otherwise,
(28)

and Δτ is a fixed quantity that, in combination with Rev, determines how
strongly the algorithm promotes the best detected solution. Similarly to the
MMAS approach [19], we considered only the best solution to add pheromone
instead of all ants. In the same spirit, we considered a lower bound for the

pheromone values, τ
[j]
it (l) � 10−3, in order to avoid the complete exclusion of

specific values of p
[j]
it during the search. Although, an upper bound was not found

to benefit the algorithm.
In addition, preliminary experiments revealed that the algorithm could stag-

nate if a very good solution was prematurely detected. This weakness was ad-
dressed by adopting a restarting mechanism as in MMAS [19]. Thus, every
rre iterations all pheromones are randomly re-initialized, offering the necessary
perturbation to unstuck the algorithm from possible local minimizers. The algo-
rithm is terminated as soon as a user-defined stopping criterion is satisfied.

The initialization of the pheromones follows a special yet reasonable scheme.
In the initial step of the algorithm, decisions shall be unbiased with respect to the
selected components values. Hence, we shall assign equal probability of visiting
or not a supplier. Also, if the decision is to visit a supplier, then its position
in the vehicle’s visiting order shall be selected with equal probability among
the different states. For this reason, we assign the following initial selection
probabilities of the components values:

ρ
[j]
it (l) =

{
0.5, for l = 0,

0.5/N, for l = 1, 2, . . . , N.

Thus, the state l = 0 (i.e., supplier i is not visited by vehicle j at time t) is
selected with probability 0.5, while the rest are selected with equal probability
among them.

3.4 Penalty Function

Let f(P ) be the objective function under minimization, which is defined in
Eq. (2), with the candidate solution vector P being defined as in Eq. (27).
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Table 1. The considered problem instances and the dimensions of the corresponding
optimization problems

Suppliers Vehicles Time periods Problem

(N) (M) (T ) dimension

4 5 5 100

4 8 10 320

6 6 5 180

6 8 10 480

6 12 10 720

8 6 5 240

8 8 5 320

8 10 10 800

10 6 5 300

10 10 10 1000

All parameters of the model are determined as described in Section 3.2. As men-
tioned in previous sections, infeasible solutions are penalized by using a penalty
function that takes into account the number and the degree of violations.

Thus, if VC(P ) denotes the set of violated constraints for the candidate solu-
tion P , then the penalized objective function becomes:

PF (P ) = f(P ) +
∑

i∈VC(P )

|MV(i)|, (29)

where MV(i) is the magnitude of violation for constraint i. A constraint is con-
sidered as violated if the magnitude of violation exceeds a small, fixed tolerance
value, εtol > 0.

Moreover, we shall notice that the constraints (C12)-(C21), defined in
Eqs. (15)-(24), are de facto satisfied by the solution representation that is used
in our approach. Thus, there is no need to include them in the penalty function.
All other constraints were equally considered and penalized since a solution shall
satisfy all of them in order to be useful for the considered IRP model.

4 Experimental Results

The proposed algorithm was applied on a set of test problems with various
numbers of suppliers, vehicles, and time periods. More specifically, the problem
instances reported in Table 1 were derived from the data set1 provided in [15].
Each problem instance was considered along with the parameter setting reported
in Table 2. Notice that, in contrast to the model studied in [17] using the same

1 Available at http://www.mie.utoronto.ca/labs/ilr/IRP/

http://www.mie.utoronto.ca/labs/ilr/IRP/
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Table 2. Problem and algorithm parameters

Parameter Description Value(s)

C Vehicle capacity 10

F Fixed vehicle cost per trip 20

V Travel cost per distance unit 1

si Backlogging cost (with respect to hi) 3× hi

K Number of ants 5, 10, 15

Emax Maximum function evaluations 60× 106

εtol Constraints violation tolerance 10−8

Rev Pheromone evaporation rate 10−3

Δτ Pheromone increment 10−2/N

rre Evaluations for pheromone restart 5× 106

test problems, we considered a limited flee size instead of unlimited. This makes
the problem significantly harder even in its small instances.

We followed the experimental setting in [17] whenever possible, except the
number of experiments, which was set to 20 per problem instance, instead of 10
for the GA-based approach in [17]. The best solution detected by the proposed
algorithm was recorded for each problem and compared to the solution provided
by the CPLEX software (Ver. 12.2) for our model within 4 hours of execution.

Following the basic analysis in similar papers [17], the algorithm’s performance
was assessed in basis of the gap between the best obtained solution and the
CPLEX solution. The gap is computed as follows:

gap =
solution value− CPLEX solution value

CPLEX solution value
× 100%.

Also, the required percentage fraction of the maximum computational budget
Emax for the detection of each solution, was computed as follows:

EFR =
required number of function evaluations

Emax
× 100%,

and it was used as a measure of the algorithm’s running-time requirements.
Finally, each experiment was replicated for different numbers of ants, namely
K = 5, 10, and 15. The experiments were conducted on a desktop computer
with Intel� i7 processor and 8GB RAM. The running time for the obtained
solutions was also reported.

The most successful setting proved to be that of K = 5, since it was able
to achieve the same solution gaps with the rest, but with smaller demand in
resources. The corresponding results are reported in Table 3. The results are
promising, since the obtained gaps from optimality were kept in lower values,
exhibiting a reasonable increasing trend with the problem’s dimension. This is
a well-known effect in approximation algorithms and it is tightly related to the
curse of dimensionality [18].
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Table 3. The obtained results for K = 5 ants.

Problem Gap EFR Time

N M T (%) (%) (sec)

4 5 5 0.00 14.9 67.8

4 8 10 0.96 27.1 1218.3

6 6 5 1.84 3.1 1329.4

6 8 10 4.34 14.8 3684.6

6 12 10 5.62 17.9 3688.3

8 6 5 4.87 7.4 1842.3

8 8 5 6.64 20.6 3317.8

8 10 10 8.63 60.1 5035.3

10 6 5 4.00 45.9 2778.5

10 10 10 10.05 54.9 7346.6

Moreover, the required computational budget was slightly higher than half
of the available one for the hardest cases, as we can see in the last column
of the table. However, it was not proportional to the corresponding problem’s
dimension. This can be primarily attributed to the stochastic nature of the
algorithm, as well as to the unique structure of each problem instance.

The scaling properties of the algorithm with respect to K were assessed on
the basis of the gap growing factor (ggf), which is defined as follows:

ggfK1→K2
=

Solution gap for K = K2

Solution gap for K = K1
.

The obtained values of ggf5→10 and ggf5→15, are illustrated in Fig. 1. Notice
that there is no data for the problem instance 4-5-5 due to the zero values of the
gaps reported in Table 3. In almost all cases, we observe an increasing tendency
of the gap growing factor.

In a first thought, the later may seem to be a counterintuitive evidence, since
the addition of ants would be expected to boost the algorithm’s search capability
and performance. However, it is a straightforward consequence of the pheromone
update scheme. More specifically, as described in Section 3.3, only the overall
best ant updates the pheromones at each iteration. Also, the amount of update
is inversely proportional to the number of ants as defined in Eq. (28). Hence,
larger number of ants implies smaller pheromone increments and, consequently,
higher number of iterations for the domination of the best ant’s components
against the rest.

Therefore, under the same computational budget, smaller values of K shall
be expected to converge faster to the optimal solution than the higher ones.
Nevertheless, we can observe that the rate of growth of the gap is sub-linearly
associated with the corresponding growth in K, since it exceeds it only in 2
cases.
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Fig. 1. Scaling properties of the algorithm with respect to the gap growing factor for
K = 10 (ggf5→10) and K = 15 (ggf5→15) ants

5 Conclusions

We proposed a unified framework for solving IRPs as VR problems through
an ant-based algorithm. We considered a model where a fleet of capacitated
homogeneous vehicles transport different products from multiple suppliers to a
retailer to meet the demand in each period over a finite planning horizon, while
shortages are allowed and unsatisfied demand is backlogged.

The corresponding VR problem was solved with an ant-based optimization
approach. Experiments on different test problems offered preliminary insight
regarding the algorithm’s potential. The solution gaps between the algorithm and
CPLEX solutions were kept in reasonably low values, while offering perspective
for further improvement by proper parameter tuning.

Also, the stochastic nature of the algorithm as well as its tolerance to new
operators and representations, allows the inclusion of problem-based specialized
operations. Finally, the algorithm tackles the problem without the necessity
for breaking it into sub-problems and solving each one separately. Naturally,
additional work is required to fully reveal the strengths and weaknesses of the
algorithm. Parallel cooperative schemes could be beneficial for reducing the time
complexity, and this is the primary goal of our ongoing efforts.
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12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
13. Federgruen, A., Zipkin, P.: A combined vehicle routing and inventory allocation

problem. Operations Research 32(5), 1019–1036 (1984)
14. Hvattum, L.M., Lokketangen, A.: Using scenario trees and progressive hedging for

stochastic inventory routing problems. Journal of Heuristics 15, 527–557 (2009)
15. Lee, C.-H., Bozer, Y.A., White III, C.C.: A heuristic approach and properties of

optimal solutions to the dynamic inventory routing problem. Working Paper (2003)
16. Moin, N.H., Salhi, S.: Inventory routing problems: a logistical overview. Journal of

the Operational Research Society 58, 1185–1194 (2007)
17. Moin, N.H., Salhi, S., Aziz, N.A.B.: An efficient hybrid genetic algorithm for the

multi–product multi–period inventory routing problem. International Journal of
Production Economics 133, 334–343 (2011)

18. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley (2007)
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