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ABSTRACT

The present study is focused on the problem of quality–driven cross–layer optimization of Direct Sequence Code
Division Multiple Access (DS–CDMA) Wireless Visual Sensor Networks (WVSNs). We consider a centralized
topology where each sensor transmits directly to a Centralized Control Unit (CCU), which manages the network
resources. In real environments, the visual sensors view and transmit scenes with varying amount of motion.
Thus, each recorded video has its individual motion characteristics. Our aim is to enable the CCU to jointly
allocate the transmission power and source–channel coding rates for each WVSN node under certain quality–
driven criteria and constant chip rate. We consider two approaches for the cross–layer optimization scheme.
In the first, the optimal set of network resources is assigned to each node according to its individual motion
characteristics. In the second approach, the nodes are partitioned into clusters according to the amount of motion
in the recorded scenes. Then, all nodes within a cluster are assigned identical network resources. Both approaches
result in mixed–integer optimization problems, which are solved with the Particle Swarm Optimization algorithm.
Experimental results demonstrate the quality/complexity trade–off for the two approaches.

Keywords: Wireless Visual Sensor Networks, DS–CDMA, Cross–layer Optimization, Resource Allocation, Nash
Bargaining Solution, Clustering, Particle Swarm Optimization, H.264/AVC.

1. INTRODUCTION

According to a recent study conducted by CISCO about the Visual Networking Index (VNI), mobile video has
the highest growth rate of any application category measured within the forecast. The study predicts that mobile
video traffic will exceed 50% of the total mobile data traffic in 2011 and will be approximately two-thirds of
the global mobile data traffic by 2015.1 Part of this mobile video technology are the Wireless Visual Sensor
Networks (WVSNs) that offer a variety of multimedia services, including environmental monitoring, surveillance
and automated tracking, among others. Traditional WVSNs with centralized topologies are comprised of low–
weight, spatially distributed nodes equipped with visual sensors and a Centralized Control Unit (CCU). The
nodes communicate only with the CCU over the network layer. The CCU applies channel– and source–decoding
to obtain the received video from each node.

A significant issue that arises in WVSNs is the sharing of the network resources among the sensor nodes.
Each node has different resource requirements (i.e., energy consumption or network resources), due to scenes of
varying motion or texture that the visual sensors record and transmit. Moreover, each video data transmission
has an imminent effect on the other nodes’ transmissions due to interference, which degrades the received video
quality. Furthermore, recent research has shown that wireless stations need to optimally adapt their multimedia
compression and transmission strategies jointly across the protocol stack in order to guarantee a predetermined
quality at the receiver.2, 3 Thus, a quality–driven joint allocation of network resources is necessary.

In previous WVSN cross–layer optimization schemes,4–6 the classification of the nodes in groups according
to the motion characteristics was proposed. The nodes were grouped into two general classes, namely high– and
low–motion, with respect to the motion level of the recorded video sequences, which was considered the same
for all nodes of the same class. Then, the power and network resources were allocated equally for all nodes
within each class. In general, the idea of clustering in WVSNs has been mainly used for network organization
and communication or energy efficiency purposes.7, 8 Clustering provides the advantage of scalability for large
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WVSNs, where multi–hop routings are required. In our paper, we use motion–based clustering as part of the
proposed methodology in order to reduce the number of parameters in the resource allocation problem, thereby
reducing its complexity.

In a real environment, the sensors monitor scenes with motion– and texture–varying content in most cases.
Hence, it is important to consider these individual characteristics in the resource allocation. The idea of con-
sidering independent (and unclustered) wireless network nodes has gained ground in recent research works.9–11

In Refs. 9, 10, only a small number of two or three cameras were considered. In our previous work,11 we con-
sidered the individual characteristics of a 20–node WVSN, although our main goal was the improvement of the
end–to–end video quality according to the recorded motion level.

The paper at hand extends our previous work by comparing it with another approach in terms of quality and
complexity. More specifically, we study two approaches for the problem of network resource allocation among
the nodes of a DS–CDMA WVSN. The first one considers the visual sensors as independent nodes with their
individual motion amount, while the second one partitions the independent nodes into motion clusters. In the
latter case, a simple, widely used partitional algorithm is used to divide the nodes into non–overlapping clusters.
In both approaches, the reasonably realistic case of a 20–node WVSN is considered. Also, the nodes cooperate to
find an optimal solution, in contrast to the model of Ref. 10 where the nodes were competing with each other on
the resource allocation problem to achieve higher end–to–end video quality. Moreover, the quality/complexity
trade–off of the two approaches in the problem of the joint transmission power and source–channel rate allocation
is investigated and discussed.

The rest of the paper is organized as follows: Section 2 is devoted to the necessary background information
in terms of the reference architecture of the considered WVSN. The corresponding problem is formulated in
Section 3, along with descriptions of the two approaches, while brief presentations of the employed algorithms
are provided in Section 4. Experimental results are reported and discussed in Section 5. Finally, the paper
concludes in Section 6.

2. BACKGROUND INFORMATION

DS–CDMA is used in the physical layer, hence all nodes transmit over the same frequency. For a single bit
transmission, L chips are transmitted by a node. Thus, each node, k = 1, 2, . . . ,K, is associated with a spreading
code, sk, which is a vector of length L. Namely, in order to transmit the i–th bit of a bitstream, node k actually
transmits bk(i)×sk, which is a vector of L chips with bk(i) assuming the values 1 or −1 according to the value of
the transmitted bit.4 We assume that the interference received from all other nodes at the node of interest can
be modeled as additive white Gaussian noise.12 The background and thermal noise are assumed to be negligible
compared with the interference and, hence, they are ignored.

Each network node operates at a specific power level and a reduced power is received due to attenuation.
In order to calculate the received power at the node of interest from the neighboring nodes, we adopt the two–
ray ground propagation model. This model is appropriate for the considered WVSN, since it considers both the
direct path and a ground–reflected propagation path between transmitter and receiver. The received power, Sr,k,
at distance d from the transmitting node k is proportional to the transmission power and inversely proportional
to the fourth power of the distance, i.e.:

Sr,k ∝ Sk

d4
,

and can be expressed as:

Sr,k = Sk Gt Gr
h2
t h

2
r

d4
, (1)

where Sk is the transmission power of node k in Watts; Gt, Gr are the antenna gains; and ht, hr, are the antenna
heights of the transmitter and receiver, respectively.13

The received power in Watts from each node k in the CCU is given as follows:

Sr,k = Ek Rk, (2)
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where Ek is the energy–per–bit and Rk is the total bit rate. The total transmission bit rate for node k, can be
expressed as the fraction of the source coding rate, Rs,k, to the channel coding rate, Rc,k, i.e.:

Rk =
Rs,k

Rc,k
, k = 1, 2, . . . ,K. (3)

The source coding rate is expressed in bits/sec, while the channel coding rate is a dimensionless. Thus, the
transmission bit rate is expressed in bits/sec.

The energy–per–bit to Multiple Access Interference (MAI) ratio is defined as:

Ek

N0
=

Sr,k/Rk

K∑

j=1
j �=k

Sr,j/Wt

, (4)

where N0/2 is the two–sided noise power spectral density due to MAI in Watts/Hertz and Wt is the total
bandwidth in Hertz. For the source coding of the captured video sequences, the H.264/AVC video coding
standard is used. H.264/AVC design consists of two conceptual layers: the network abstraction layer (NAL) and
the video coding layer (VCL). The VCL is specified to efficiently represent the content of the video data and
fulfill the design objective of enhanced coding efficiency. The NAL unit structure provides a generic form for use
in both packet–oriented and bitstream–based systems.14

Moreover, Rate Compatible Punctured Convolutional (RCPC) codes are deployed for channel coding (see
Ref. 15), and Viterbi’s upper bounds are used for bit error probability estimation. Under the consideration of
a constant spreading code length, L, and the constraint of identical chip rate, Rchip, for all network nodes, the
transmission bit rate, Rk = Rchip/L in bits/sec, is correspondingly constant within the network. Under this
constraint, and with the aim of achieving optimal end–to–end video quality, the network resources are allocated
to the nodes by the CCU at the network layer.

In order to estimate at the encoder the expected video distortion for each node k due to lossy compression
and channel errors, we assume the Universal Rate Distortion Characteristics (URDC):

E{Ds+c,k} = αk

[

log10

(
1

Pb

)]−βk

, (5)

where Pb is the bit error probability estimation, and parameters αk, βk > 0 depend on both the motion level of
the video sequence and the source coding rate.16

Experiments revealed that the values of αk tend to be lower for low motion video, while getting higher
as motion increases in the video sequences. This implies that the values of αk can be used for the relative
quantification of the motion level. In order to determine the values of αk and βk for each node at the encoder,
we apply mean squared error optimization on several experimentally attained pairs (E{Ds+c,k}, Pb). For the
accurate estimation of the decoder distortion at the encoder, the recursive optimal per–pixel estimate (ROPE) is
used.17 Finally, the expected distortion, E{Ds+c,k}, for node k can be written as a function of the source coding
and channel coding rates, Rs,k and Rc,k, and the transmission powers of all nodes, S = (S1, S2, . . . , SK)�, i.e.,
it has the general form E{Ds+c,k}(Rs,k, Rc,k, S).

4

3. PROBLEM FORMULATION

Based on the framework described in the previous section, our work copes with the problem of determining the
vectors of the source coding rate and channel coding rate:

Rs = (Rs,1, Rs,2, . . . , Rs,K)
�
, Rc = (Rc,1, Rc,2, . . . , Rc,K)

�
,

respectively, as well as the power level,
S = (S1, S2, . . . , SK)�,
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so that a function of the overall end–to–end expected distortion, f(E{Ds+c,1}, . . . , E{Ds+c,K}), is minimized:

(R∗
s , R

∗
c , S

∗) = arg min
Rs,Rc,S

f(E{Ds+c}),

subject to the constraint of equal transmission bit rate, Rk, for all nodes.

This distortion–related function depends on the deployed optimization criterion. In order to successfully solve
the aforementioned problem, we consider two approaches:

(1) Independent WVSN nodes: In this approach, each node acts as individual with its own content– and
time–varying video and transmission parameters. The network resources are individually assigned to each
node and the delivered video quality is estimated.

(2) Clustered WVSN nodes: In this case, we apply partitional k–means clustering according to the individual
video content–related parameters. Consequently, each node is a member of a cluster represented by its
center. The transmission parameters are allocated according to the centers of the clusters and they are used
to estimate the delivered video quality of each node.

In both approaches, we employed three distortion–related optimization criteria. The first criterion is the Mini-
mization of the Average Distortion (MAD), which results in the minimization of the average end–to–end video
distortion among all nodes.4 The second criterion is the Minimization of the Maximum Distortion (MMD), which
focuses on the minimization of the maximum video distortion of the network.4 The last criterion is the Nash
Bargaining Solution (NBS),5 derived from Game Theory, and performs a bargaining game among the nodes.
Below, we formally describe each criterion in detail.

3.1 MAD Criterion

Given a total target bit rate, Rk, we determine the vectors of optimal source coding rates, R∗
s , channel coding

rates, R∗
c , and powers, S∗, such that the overall end–to–end average distortion, Dave(Rs, Rc, S), over all nodes is

minimized:
(R∗

s , R
∗
c , S

∗) = arg min
Rs,Rc,S

Dave(Rs, Rc, S), (6)

where:

Dave(Rs, Rc, S) =
1

K

K∑

k=1

E{Ds+c,k}(Rs,k, Rc,k, S),

subject to:
R1 = R2 = · · · = RK = Rk.

Obviously, the MAD criterion emphasizes on the average performance of the network, allowing some individual
nodes to assume higher distortion values than the rest.

3.2 MMD Criterion

Given a total target bit rate, Rk, we determine the vectors of optimal source coding rates, R∗
s , channel coding

rates, R∗
c , and powers, S∗, such that the overall end–to–end maximum distortion over all nodes is minimized:

(R∗
s , R

∗
c , S

∗) = arg min
Rs,Rc,S

max
k

E{Ds+c,k}(Rs, Rc, S), (7)

subject to:
R1 = R2 = · · · = RK = Rk.

The MMD criterion emphasizes on the minimization of the worst case, ensuring that all distortions will be upper
bounded in reasonable ranges.
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3.3 NBS Criterion

The NBS approach consists of playing a bargaining game where the network nodes have to negotiate, agree and
jointly determine their parameters. It is sensible that a player (node) will join the game only if it is ensured that
it will get at least as high a utility as it would get without cooperation. This is called the disagreement point,
henceforth denoted as dp = (dp1, dp2, . . . , dpK)�.

Let the utility function, Uk, be the PSNR of the received video of each node k:

Uk = 10 log10
2552

E{Ds+c,k} , (8)

where E{Ds+c,k} is the expected video distortion for node k, given by Eq. (5). We define U as the feasible set of
all possible utility allocations, U = (U1, U2, . . . , UK)�. Each member of U results from a different combination
of source coding rates, channel coding rates and transmission powers for all nodes. Then, the NBS, which is
denoted as F (U, dp), is a member of the feasible set that satisfies the following axioms:18

(i) Feasibility: F (U, dp) � dp.

(ii) Pareto Efficiency: y > F (U, dp) ⇒ y /∈ U.

(iii) Invariance to Equivalent Utility Representations : F (τ(U), τ(dp)) = τ(F (U, dp)), for any given strictly
increasing affine transformation τ().

(iv) Independence of Irrelevant Alternatives : If dp ∈ Y ⊆ U, then F (U, dp) ∈ Y ⇒ F (Y, dp) = F (U, dp).

In order to find the NBS, we have to maximize the Nash Product (NP). Particularly, given a total target bit
rate, Rk, we need to determine the utilities vector, U , such that NP is maximized, i.e.:

F (U, dp) = arg max
U

NP , (9)

where:
NP = (U1 − dp1)

bp1 (U2 − dp2)
bp2 · · · (UK − dpK)bpK , (10)

with bp1, bp2, . . . , bpK , denoting the bargaining powers for each node,

subject to:

Uk − dpk > 0 and

K∑

k=1

bpk = 1.

Since the defined utility function of Eq. (8) depends on the expected end–to–end distortion, E{Ds+c,k}, it also
depends on Rs,k, Rc,k and S. This implies that Eq. (9) can be written as:

F (U, dp) = F (R∗
s , R

∗
c , S

∗, dp) = arg max
Rs,Rc,S

NP . (11)

In our study, we assumed that dp ∈ U is the minimum acceptable PSNR, determined by the CCU operator. The
bargaining powers, bp = (bp1, bp2, . . . , bpK)�, determine who is more advantaged by the rules in the bargaining
game,18 while the game rules are designed with no intention of favoring a node against the others. Hence, the
bargaining powers are identical:

bpk =
1

K
, (12)

with k = 1, 2, . . . ,K, which means that the bargaining powers are equal for all K nodes.

4. EMPLOYED ALGORITHMS

In the following paragraphs, brief descriptions of the clustering algorithm as well as the PSO algorithm used in
our experiments, are provided.
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4.1 Clustering Algorithm

The general goal of clustering is to form groups of objects that are similar to each other and different from
the objects in the other groups. For the clustering of the WVSN nodes in our study, we selected the k–means
algorithm. This choice was dictated by its prototype–based operation that simply divides the objects, producing
non–overlapping clusters, i.e., each object belongs to a unique cluster.19

An additional advantage of k–means is its linear complexity in all relevant factors, namely the number of
iterations, IC , the number of clusters, C, and the dimensionality, D, of the search space, i.e., O(IC × C ×D).
The k–means algorithm selects C points as initial centroids. Then, it iteratively computes each point’s distance
from the centroids, forming C clusters and recomputing the centroids. This loop ends when the centroids stop
changing.

In the present work, we perform clustering of the WVSN nodes according to the motion level of the transmit-
ting video sequences in the second approach. For this purpose, we exploit the computed parameters αk and βk

for each node at the encoder since, as already mentioned, parameter αk is a salient indication of the motion level.
In order to compute the distance between any pair of parameters (αk, βk) and the centroids, we are using the
Euclidean norm. Each formed cluster is represented at the resource allocation problem by its centroid, and par-
ticularly by the pair (αcentroid, βcentroid). This results in a remarkable reduction of the number of optimization
parameters, which is indispensable in real–time applications.

4.2 Particle Swarm Optimization

All the criteria described in previous sections produce global optimization problems. For these tasks, we employed
a swarm intelligence algorithm, namely Particle Swarm Optimization (PSO). This choice was based on its ease
of implementation, the provision of globally optimal solution(s) and its rapid convergence. Those characteristics
satisfy the performance requirements in most WVSN applications.

PSO is an effective and computationally efficient optimization algorithm, inspired by the dynamics of socially
organized groups of living organisms. It utilizes a population (called a swarm) of search points (called particles)
that iteratively probe the search space with an adaptive velocity (position shift), locating the most promising
regions with the ultimate goal of finding a global minimizer.20 Also, each particle has an adaptable memory
where it stores the best position it has ever encountered during its search, i.e., the position with the lowest
function value.

Furthermore, the particles can communicate among them, sharing their memory information. This way, they
can benefit by the findings of their mates. The communication is based on abstract schemes, which are usually
represented by graphs, where nodes correspond to particles and interconnections represent communication links
among them. The form of such a scheme is called the neighborhood topology, and it has a crucial impact on the
information flow within the swarm.21

Putting it formally, let:
min

x∈X⊂RD
f(x),

be the minimization problem under consideration. Also, let:

S = {x1, x2, . . . , xN} ,
be a swarm consisting of N particles, each one defined as a D–dimensional vector:

xi ∈ X, i = 1, 2, . . . , N,

where X is the search space. Let also vi denote the corresponding velocity and pi ∈ X the best position of the
i–th particle. If t denotes the current iteration of the algorithm, then the velocity and current position of xi are
updated according to the equations:21, 22

vi(t+ 1) = χ
[
vi(t) + c1R1

(
pi(t)− xi(t)

)
+ c2R2

(
pgi(t)− xi(t)

)]
, (13)

xi(t+ 1) = xi(t) + vi(t+ 1), (14)
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Figure 1. Considered WVSN topology for the experiments.

where χ is a parameter called the constriction coefficient; c1, c2 are positive acceleration parameters called
cognitive and social parameter, respectively; and R1, R2 are vectors with components uniformly distributed in
the range [0, 1]. All vector operations in Eqs. (13) and (14) are performed componentwise.

Also, as already mentioned, the best position of each particle is updated each time it discovers a better one,
until the global best position is achieved or a fixed number of iterations is reached:

pi(t+ 1) =

{
xi(t+ 1), if f (xi(t+ 1)) < f (pi(t)) ,

pi(t), otherwise.

The stability of PSO has been investigated by Clerc and Kennedy,22 who proposed parameter values that
probabilistically verify convergence towards solutions in the search space. From this study, the default parameter
set:

χ = 0.729, c1 = c2 = 2.05.

was derived. Habitually, initialization of the particles is uniformly performed within the search space.

5. EXPERIMENTAL SETTING AND RESULTS

For the evaluation of our proposed approaches, we considered a number of test cases. Two of them were selected
to be presented in the present study. The test cases aim to resemble reality, where each sensor node may record
a scene of different motion. We considered a simple topology as depicted in Figure 1, where all nodes are
equidistant from the CCU, having the same antenna gain (Gt, Gr) and height (ht, hr). Table 1 summarizes the
parameter settings in our experiments. In all cases, the continuous transmission power levels were selected from
the range S = [0.5, 1.5] (in Watts). Regarding PSO, the particles were allowed to take continuous values for
the position and velocity update, although they were rounded to the nearest integer for the evaluation of each
particle. The default parameter set for the constriction coefficient and the acceleration parameters (cognitive
and social) was used.
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Figure 2. Random values of αk for the three different coding sets (CS) for TC1.

Table 1. Parameter settings for the experiments.

Description Parameter Value

Number of WVSN nodes K 20

Motion Level Random

Number of Clusters C 3 (TC2)

Total Bandwidth Wt 10 MHz

Total Transmission Rate Rk 96 kbps

Valid Coding Sets for (Rs, Rc) CS 1–(32 kbps, 1/3), 2–(48 kbps, 1/2), 3–(64 kbps, 2/3)

Transmission Power Sk [0.5, 1.5] (in Watts)

Antenna Heights ht, hr 3 m

Antenna Gains Gt, Gr 2 dB

Source Node to CCU Distance d 120 m

Video Sequence Format QCIF

RCPC Code Mother Rate 1/4

Link Layer Packet Size 400 bits

Disagreement Point dp 24 dB

PSO Swarm Size N 200 (TC1), 30 (TC2)

PSO Number of Iterations Imax 2000 (TC1), 500 (TC2)

Since PSO is a stochastic algorithm, for each problem instance we conducted 30 independent experiments
to ensure the correctness of the results. During each experiment, the best detected solution was recorded. Our
experiments confirmed that the resulting optimal resource allocation is not unique. In fact, there is a set of
solutions, (Rs, Rc, S), that satisfy the proposed optimization criteria. This is because the energy–per–bit to MAI
ratio of Eq. (4) remains the same if all powers are multiplied by the same constant. Hence, in this case, only
the nodes’ power ratios, Si/Sj , with i, j = 1, 2, . . . ,K, i �= j, need to be determined in order to reach an optimal
solution.

5.1 Test Case 1: Independent Nodes

Resembling a realistic simulation of a WVSN, we considered a first test case, henceforth denoted as TC1, of
20 visual sensors with different fields of view and variable motion. For this purpose, the parameters αk and βk

were randomly assigned for each one of the 20 nodes, representing 20 different random motion levels. During
experiments with well–known test sequences of various motion amounts, it has been noticed that motion levels
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Figure 3. Clustering of the nodes based on the parameters αk and βk values for TC2.

affect αk values, while βk values lie within a narrow range. While the αk ranges are distinguishable for videos
with different amount of motion, the βk ranges overlap.

Considering these properties, we defined a wide range for αk values and randomly generated values within
it for all nodes. The random values of αk for the three different source and channel coding values in our
experiments, are depicted in Figure 2. The corresponding values of βk were determined accordingly, based on
values of sequences with similar amount of motion. The dimension of the corresponding optimization problem
for TC1 was D = 40.

5.2 Test Case 2: Clustered Nodes

In the second test case, henceforth denoted as TC2, the 20 nodes of TC1 were grouped into three clusters
(C = 3) according to the sets of parameters αk and βk, using the k–means algorithm. As illustrated in Figure 3,
for each of the clusters, three centers (pairs of (αcentroid, βcentroid) values) were produced. Each one of the
(αcentroid, βcentroid) pairs was the representative cluster value for (αk, βk), for the three different cluster centers.

After determining the clusters’ transmission power level and the source and channel coding rates, the cor-
responding PSNR values were calculated for each node of the cluster based on each node’s (αk, βk). The
corresponding optimization problem parameters were D = 6 in this case.

5.3 Discussion

Figure 4 shows the transmission power allocation, while Figure 5 shows the end–to–end video quality for all three
criteria in both test cases. As we can see, for MAD and NBS the estimated PSNR values are very close, with the
absolute differences being less than 1.0 dB. Yet, for some nodes it is higher than 1.0 dB. On the other hand, for
the MMD criterion the difference of the estimated PSNR is higher and almost half of the nodes have higher than
1.0 dB absolute PSNR difference. This is due to the fact that during the network resource allocation, different
source and channel coding rates may be assigned to the nodes. Consequently, a different pair of (αk, βk) is used
for the PSNR estimation and the resulting value diverges.

Moreover, the results reveal that the NBS criterion allocates the transmission power among the nodes using
the lowest power ratio, while the values in the two testing cases marginally differ. On the other hand, the other
two criteria have the same power allocation for some nodes, however they diverge at a higher degree for others.
The used criterion has to be decided with respect to the application requirements that may require to favor
certain nodes according to the recorded video content. If the system requires the best possible quality for the
low motion video sequences, then we recommend the NBS. Finally, for the case that the system requirements
demand similar quality levels, we recommend the MMD deployment.
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Figure 4. Comparison of the transmission power allocation for all three criteria in both test cases.

Comparing the employed source and coding rates in Figure 6, we can see that for the MAD and NBS criteria
the CCU assigns the same values for both test cases. The selected values are 1 for (32 kbps, 1/3), 2 for (48 kbps,
1/2) and 3 for (64 kbps, 2/3), which means that higher error protection was required only when using the MMD
criterion for TC1.

As far as the quality/complexity tradeoff of the different strategies is concerned, we shall consider several
issues. Firstly, taking into account that the number of the particles and number of iterations both depend on
the number of the WVSN nodes, PSO’s complexity is directly related to the number of nodes included in the
considered WVSN. This implies that TC1 has higher complexity than TC2. On the other hand, in TC2 the
number of clusters regulates the complexity and the quality difference. This quality difference may be positive
or negative as illustrated in Figure 5 and depends on the distance of each node’s (αk, βk) values from its cluster’s
centroid, (αcentroid, βcentroid).

Concerning the final decision on which approach is preferable according to the quality performance, it is
easily derived that it exclusively depends on the considered application. Using clustering makes the system
(computationally) less complicated, thus more time–efficient. However, it still fosters the danger of degrading
the received video quality for some nodes. Therefore, the system’s designer has to decide on the approach
according to the system functional and non–functional requirements.

6. CONCLUSIONS

We investigated the idea of clustered and independent nodes in WVSNs, aiming at their efficient resource
management. We assumed that in a 20–node WVSN each camera is monitoring a different field of view and,
therefore, is recording and transmitting videos of various motion levels. We used three optimization criteria,
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Figure 5. Comparison of the PSNR for all three criteria in both test cases.

namely MAD, MMD and NBS. Owing to the assumption of continuous values for the transmission power and
discrete values for the source and channel coding rates, the optimization problem is a mixed–integer one, which
potentially renders PSO an appropriate choice for its solution.

The comparison of the two test cases (clustered/independent nodes) has shown the trade–off between quality
and complexity. Overall, selecting the approach of clustering instead of having independent nodes offers the
asset of a quicker optimal solution, at the possible cost of a reasonable quality decline for some nodes.
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