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Abstract. We propose two ant–based formulations for solving autocor-
relation problems. The formulations are combined with different ACO
variants. Preliminary experiments of the derived approaches are con-
ducted on two hard instances of the problem. Their performance is com-
pared to an efficient Tabu Search algorithm, offering useful conclusions
and motivation for further investigation.

1 Introduction

Several difficult combinatorial problems can be defined in a succinct way via
the concepts of periodic and non–periodic autocorrelation functions (PAF and
NPAF, respectively) associated with a finite binary or ternary sequence. Vari-
ous metaheuristics have been previously employed in the search for solutions of
similar combinatorial problems, with varying degrees of success.

The present paper aims at triggering the interest of the Ant Colony Opti-
mization (ACO) research community in solving such combinatorial problems
through ant–based approaches. For this purpose, we propose two ant–based for-
mulations. To the best of our knowledge, this is the first attempt of formulating
such problems in the specific algorithmic framework. As case study, we use our
formulations to find Hadamard matrices with two circulant cores, a problem that
can be defined via the PAF associated to two binary sequences. Nevertheless,
the proposed ant–based formulations can be applied with minor modifications
to any combinatorial problem defined via PAF and NPAF.

The sequences that arise as solutions to these problems are useful in a wide va-
riety of applications, ranging from code–division multiple–access (CDMA) com-
munication systems to pulse compression of radar signals. The reader is referred
to [6] and [8] for further details and application areas. Additional applications in
Coding Theory can be found in [3]. The rest of the paper is organized as follows:
Section 2 offers brief descriptions of the problems while Section 3 introduces our
ant–based formulations. Experimental results are presented in Section 4. The
paper concludes with Section 5.
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2 Autocorrelation Problems

Let n be an odd positive integer. A finite sequence of length n with elements from
the alphabet {−1,+1} is called a binary sequence. Similarly, a finite sequence
of length n with elements from the alphabet {−1, 0,+1} is called a ternary
sequence. The PAF associated to a finite sequence a = (a1, . . . , an) of length n,
is a sequence (PAF(a, 0),PAF(a, 1), . . . ,PAF(a, n− 1)), also of length n where,

PAF(a, s) =

n∑

i=1

aiai+s, s = 0, 1, . . . , n− 1. (1)

The quantity i+s is taken modulo n whenever i+s > n. On the other hand, the
NPAF associated to the finite sequence a is defined as (NPAF(a, 0),NPAF(a, 1),
. . . ,NPAF(a, n− 1)) where,

NPAF(a, s) =

n−s∑

i=1

aiai+s, s = 0, 1, . . . , n− 1. (2)

Chapter 7 of [3] contains a comprehensive description of the properties of the
two autocorrelation functions defined above.

Given two finite (binary or ternary) sequences a and b of length n, we can
request that their respective PAF or NPAF values (with the exception of the
value at s = 0) add up to a constant, i.e.:

PAF(a, s) + PAF(b, s) = cPAF, NPAF(a, s) +NPAF(b, s) = cNPAF, (3)

where s = 1, 2, . . . , n − 1. In general, sequences that satisfy these requirements
are called complementary. When the values of the constants cPAF and cNPAF are
small, i.e., less than 2 in absolute value, such sequences are said to exhibit low
(auto)correlation and they have important engineering applications [6].

There are some particularly important cases of combinatorial problems that
can be defined via the aforementioned setup. In our work, we focused on the case
of binary sequences with cPAF = −2, which are related to Hadamard matrices
with two circulant cores or equivalently to Generalized Legendre pairs [5]. The
solution sequences of the aforementioned problems are also subject to Diophan-
tine Equations (DEs) that shall be satisfied by the solutions. For instance, in
our case study the corresponding DE is:

sa2 + sb2 = 1, (4)

where sa = a1 + · · ·+ an and sb = b1 + · · ·+ bn. Equation (4) has four solutions,
up to sign. In our study we focus on the case where sa = 1 and sb = 1.

3 Proposed Ant–Based Approaches

In the following paragraphs, we introduce two different formulations of autocor-
relation problems within the framework of ant–based algorithms.
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3.1 Approach Based on Binary Ants

Let n be the length (positive odd integer) of each one of the two sequences and
let N = 2n. Then, a candidate solution has the following form:

x =

⎛

⎜⎝x1, x2, . . . , xn︸ ︷︷ ︸
sequence a

, xn+1, xn+2, . . . , xN︸ ︷︷ ︸
sequence b

⎞

⎟⎠

�

. (5)

The corresponding optimization problem is N–dimensional and it is defined as
the minimization of the objective function:

F (x) =

∣∣∣∣∣

n∑

i=1

ai − 1

∣∣∣∣∣+
∣∣∣∣∣

n∑

i=1

bi − 1

∣∣∣∣∣+
(n−1)/2∑

s=1

∣∣∣PAF(a, s) + PAF(b, s) + 2
∣∣∣, (6)

where PAF(a, s) and PAF(b, s) are defined according to Eq. (1). In order to put
the problem in the ACO framework we shall define a table of pheromones, i.e.,
weights for the possible component values of a candidate solution. The proba-
bilities of selecting −1 or +1 for the component xi of a new candidate solution
x, are defined as follows:

pi,(−) =
wα

i,(−)η
β
i,(−)

wα
i,(−)η

β
i,(−) + wα

i,(+)η
β
i,(+)

, pi,(+) =
wα

i,(+)η
β
i,(+)

wα
i,(−)η

β
i,(−) + wα

i,(+)η
β
i,(+)

, (7)

where wi,(−), wi,(+), are the corresponding pheromone levels (weights) for the
values −1 and +1; α and β are user–defined parameters controlling the strength
of each term; and η is a function of desirability of the corresponding component,
i.e., it defines its significance in the solution vector.

The value of the component xi is determined by drawing a uniformly dis-
tributed random number, i.e., xi = −1, if rand() < pi,(−), otherwise xi = +1.
The same selection procedure is independently applied for all components. In-
stead of one, K ants can be used to construct K candidate solutions at each
iteration. We will call this set the colony in our approach. Nevertheless, the
construction procedure is identical for all ants.

If t denotes the iteration number, the colony can be denoted as S(t) ={
x
(t)
1 ,x

(t)
2 , . . . ,x

(t)
K

}
with x

(t)
i =

(
x
(t)
1,i, x

(t)
2,i, . . . , x

(t)
N,i

)�
, i = 1, 2, . . . ,K. After

generating the K candidate solutions of the t–th iteration, their evaluation with
the objective function F (x) of Eq. (6) takes place and the pheromones are up-
dated as follows:

w
(t+1)
i,j = (1− ρ)w

(t)
i,j +Δw

(t)
i,j,k, j ∈ {−1,+1}, i = 1, 2, . . . ,K, (8)

where Δw
(t)
i,j,k = V

(t)
k , if x

(t)
k,i = j; otherwise Δw

(t)
i,j,k = 0, k = 1, 2, . . . , N . The

increment V
(t)
k can be either fixed for all ants or inversely proportional to the

objective value of each contributing ant, i.e., V
(t)
k = 1/F (x

(t)
i ) or V

(t)
k = Q.
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Different ant–based algorithms are distinguished by considering different
groups of contributing ants. In Ant Colony Optimization [1] (ACO) only new
ants produced at each iteration contribute to the pheromone update. In Elitist
Ant System [4] (EAS), in addition to the currently constructed ants, also the
overall best ant contributes to the pheromones. In the Max–Min Ant System [7]
(MMAS) scheme the pheromones are bounded within a range [wmin, wmax] and
initialized to their maximum values. Also, they are re–initialized to their max-
imum value whenever stagnation is detected. In contrast to the previous vari-
ants, only the best ant of the current iteration or the overall best ant deposits
pheromones (we considered only the latter case).

These three popular variants were also considered in our experiments with
two minor modifications. Specifically, we adopted a fixed lower bound for the
pheromones in all variants (not only for MMAS). This decision aimed at avoid-
ing the actual elimination of component values with very small pheromones in
the selection procedure. Also, the algorithm was restarted whenever there was
no improvement of the overall best solution for a predefined number of function
evaluations. This number was defined as a fraction of the maximum available
computational budget. Apart from these modifications, some additional alter-
ations proved to enhance the algorithm’s performance and they are described in
the following section.

3.2 Performance Enhancing

The construction of candidate solutions can be modified to ensure that the pro-
duced solutions will be feasible with respect to the DEs, i.e., the sums of their
components will be equal to 1 for both their sequences. Specifically, each sequence
has length n and constitutes of values in {−1,+1}. Hence, we can build a candi-
date solution by determining its components in pairs of complementary values,
i.e., if one component receives −1 then another randomly selected component
automatically receives +1. At the end, there will be one remaining component
that is set directly to +1. Thus, −1 appears in (n− 1)/2 components while +1
appears in (n+ 1)/2 components.

This procedure produces candidate solutions that, by construction, satisfy
the DEs. Therefore, the first two terms terms in the objective function can be
dropped, resulting in the following form:

F (x) =

(n−1)/2∑

s=1

∣∣∣PAF(a, s) + PAF(b, s) + 2
∣∣∣, (9)

that replaces the one defined in Eq. (6). The performance of the algorithm can
be further enhanced by incorporating local search. We adopted the procedure
used in [2] within the framework of a very efficient Tabu Search approach.

3.3 Approach Based on Components Permutation

An alternative ant–based approach, yet closer to the general principles of the
original ACO algorithms, is based on the formulation of the problem as a search
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procedure for the best permutation of components. More specifically, we can
define a candidate solution as a permutation of solution components indices:

x =

⎛

⎜⎝ ca1 , ca2 , . . . , can︸ ︷︷ ︸
permutation for seq. a

, cb1 , cb2 , . . . , cbn︸ ︷︷ ︸
permutation for seq. b

⎞

⎟⎠

�

, (10)

where caj = i, i ∈ {1, . . . , n}, denotes that the i–th component of the actual (bi-
nary) sequence a possesses the j–th position in the specific permutation defined
by x. Then, we build a binary vector by translating x, assuming that compo-
nents that appear in the first (n+1)/2 positions of the permutation are assigned
the value +1, while the rest are assigned the value −1, i.e.:

yx =

⎛

⎜⎝a1, a2, . . . , an︸ ︷︷ ︸
sequence a

, b1, b2, . . . , bn︸ ︷︷ ︸
sequence b

⎞

⎟⎠

�

, ai, bi ∈ {−1,+1}, i = 1, 2, . . . , n.

(11)
where ai (resp. bi) = +1, if caj (resp. c

b
j ) = i for j such that 1 � j � (n + 1)/2;

otherwise ai (resp. bi) = −1. Apparently, this permutation–based representation
of the ants requires also different pheromone table representation than that of
Section 3.1. Indeed, a pheromone entry wa

i,j for sequence a defines the weight
(pheromone level) for the case where component index j appears immediately
after index i in the permutation of sequence a of a candidate solution. The
corresponding quantities are defined by weights wb

i,j for sequence b.
The objective value of the ant x is defined through its corresponding binary

translation yx, i.e., F (x) = F (yx). Since, by definition, the DEs hold for the
produced translated vectors yx, we can use the objective function defined in
Eq. (9) instead of Eq. (6). The same ant–based variants along with all modifica-
tions and performance enhancing techniques mentioned in the previous section,
were also used with this formulation.

4 Experimental Results

We report indicative experimental results for the ant–based approaches defined
in the previous sections for PAF problems of length n = 29 and 39. We shall
mention that n = 77 is the smallest value for which this is an open problem.
Henceforth, we will denote as “Bin” the approach based on binary ants and
“Per” the one based on permutations. The basic ACO algorithm will be denoted
as “A”, the EAS as “B” and the MMAS as “C”. Finally, the fixed pheromone
increment approach will be denoted as “a”, while the proportional one as “b”.

Regarding the parameter setting, the maximum function evaluations was
fevmax = 200× 106, while the maximum evaluations for restart (if no improve-
ment) was R = fevmax/5. The pheromone scaling factor of Eq. (8) was ρ = 0.1
and the fixed pheromone increment was set to Q = 0.001. The pheromones were
bounded in the range [0.01, 1.0], while the parameters η, α and β in Eq. (7) were
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(a) (b)

(c) (d)

Fig. 1. Success percentages per problem and swarm size

all set to 1. Finally, two numbers of ants were considered, namely 5 and 30. The
number of experiments conducted per approach was 20. Each experiment was
terminated as soon as a global minimizer was found or the available computa-
tional budget was exceeded. An experiment was considered as successful only if
an optimal solution was detected.

In order to provide a measure of performance for the proposed ant–based ap-
proaches, we performed the same number of independent experiments also for
the TS approach proposed in [2] for the same computational budget. For com-
parison purposes, we also conducted Wilcoxon rank–sum tests for each pair of
algorithms per problem and swarm size, and we recorded the number of favorable
(denoted with “+”), unfavorable (denoted with “-”) and neutral (denoted with
“=”) comparisons for 95% significance level. However, we shall underline that
no effort was paid in fine–tuning the ant–based approaches in the comparisons,
because a thorough comparison among the different methodologies was out of
the scope of the present paper. Thus, we used the TS performance mostly as a
reference point for a preliminary assessment of the proposed methods.

The results are graphically illustrated in Figs. 1 and 2. Specifically, Fig. 1
illustrates the success percentage of each algorithm per problem and swarm size,
i.e., the percentage of experiments where it managed to detect a global optimizer
within the available computational budget. The bars refer to the Bin and Per
ant–based approaches, while the corresponding TS performance for the same
experimental setting is depicted as a horizontal line. On the other hand, each bar
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(a) (b)

(c) (d)

Fig. 2. Statistical comparison tests among the algorithms

in Fig. 2 illustrates the percentage of positive, negative and equal comparisons
of the corresponding approach with the rest of the algorithms.

A close inspection of the results offers intuition on the algorithms’ perfor-
mance. Regarding the success percentages of the algorithms, as we see in Fig. 1,
all approaches were completely successful for the case of sequence length n = 29.
However, the picture radically changes for the (much harder) problem of n = 39.
The performance of all algorithms, including TS, plunges by at least 40%. More-
over, the ant–based approaches exhibit also different behavior with respect to
the swarm size. For the case of K = 5 ants, the Bin approaches have superior
performance than Per for the 4 out of 6 variants, as depicted in Fig. 1(c). Yet,
the Per approaches outperformed Bin for the A–a (ACO with fixed pheromone
increments) and B–b (EAS with proportional increments) cases. Increasing the
swarm size to K = 30, significantly improves the performance of Per approaches,
especially for the C variant (MMAS). Also, Per remains better than Bin for A–a
and B–b. However, even the Bin approaches achieve better performance in 3 out
of 6 variants, compared to the 5 ants case. Thus, the first impression is that
higher swarm size can rise the probability of successful experiments.

Inspecting Fig. 2, we can verify that the case n = 29 can be efficiently solved
by all algorithms. In most cases, the algorithms exhibit statistically insignificant
differences in performance but outperformed by TS in almost 60% of the cases.
Again, increasing swarm size seems to produce essentially identical performance
among ant–based approaches. However, the picture becomes more complicated
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in the n = 39 case. In this cases, the approaches with fixed pheromone incre-
ments have a clear increasing trend of positive comparisons for ACO and EAS.
On the other hand, some of the approaches with proportional increments seem
to loose part of their efficiency, especially for Bin. This behavior can be ascribed
to the faster biasing towards the best performing ants offered due to the propor-
tional increments, in combination with the higher dimensionality and degree of
difficulty.

5 Conclusions

We presented two different ant–based formulations for tackling autocorrelation
problems. Various combinations with different ACO–based approaches were con-
sidered and tested on two problems of different dimensionality and degree of
difficulty. The proposed approaches were compared against a specialized TS
approach with verified efficiency. The results are promising, offering space for
further improvement by proper fine–tuning of the ant–based approaches. Also,
they reveal that swarm size can play a role in the algorithms’ performance pro-
files. However, the exact tendency of each approach remains to be investigated
in depth. This will be the main subject of our future work.
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