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ABSTRACT
High–dimensional optimization problems appear very often
in demanding applications. Although evolutionary algori-
thms constitute a valuable tool for solving such problems,
their standard variants exhibit deteriorating performance as
dimension increases. In such cases, cooperative approaches
have proved to be very useful, since they divide the com-
putational burden to a number of cooperating subpopula-
tions. In contrast, Micro–evolutionary approaches consti-
tute light versions of the original evolutionary algorithms
that employ very small populations of just a few individu-
als to address optimization problems. Unfortunately, this
property is usually accompanied by limited efficiency and
proneness to get stuck in local minima. In the present work,
an approach that combines the basic properties of coopera-
tion and Micro-evolutionary algorithms is presented for the
Differential Evolution algorithm. The proposed Cooperative
Micro–Differential Evolution approach employs small coope-
rative subpopulations to detect subcomponents of the origi-
nal problem solution concurrently. The subcomponents are
combined through cooperation of subpopulations to build
complete solutions of the problem. The proposed approach
is illustrated on high-dimensional instances of five widely
used test problems with very promising results. Compari-
sons with the standard Differential Evolution algorithm are
also reported and their statistical significance is analyzed.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization,Unconstrained
optimization; G.3 [Probability and Statistics]: Proba-
bilistic algorithms
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1. INTRODUCTION
Modern applications often involve the solution of complex

high–dimensional optimization problems. Evolutionary al-
gorithms have been used widely for solving such problems,
especially in cases where the underlying objective functions
lack nice mathematical properties such as continuity and
differentiability. Usually, the increased dimensionality of
the problem poses obstacles on the employed algorithm, re-
ducing its performance significantly. This deficiency is also
known as the curse of dimensionality and its alleviation con-
stitutes a subject of ongoing research.

Cooperative Evolutionary Algorithms (CEAs) have pro-
ved to be a valuable tool in cases where the standard evo-
lutionary algorithms fail [9]. CEAs consist of a number of
cooperative populations that attack low–dimensional sub-
components of the original problem and evolve them con-
currently. Cooperation among subpopulations is responsible
for bringing together their discoveries and build complete
solutions of the original problem. Various cooperative ap-
proaches have been proposed and analyzed in literature [2,
8, 9, 13]. A typical example is the Cooperative Coevolutio-
nary Genetic Algorithm (CCGA) of Potter and De Jong [8],
which is based on Genetic Algorithms. Evolution Strategies
and Particle Swarm Optimization have also been used as
the basic algorithmic elements of cooperative approaches [4,
14, 16]. Recently, two cooperative approaches based on the
Differential Evolution (DE) algorithm were proposed [7, 12].
Extensive experimentation has revealed also several deficien-
cies of cooperative schemes, such as the deteriorating per-
formance in problems with correlated coordinate directions
and the introduction of new local minima [8].

In contrast to CEAs, Micro–Evolutionary Algorithms (Mi-
cro–EAs) are instances of the standard evolutionary algori-
thms with very small population size and ability to handle
simple fitness functions. Although Micro–EAs were prima-
rily used for very simple problems and educational purposes,
several attempts have been made to use them in deman-
ding applications. For example, Micro–Genetic Algorithms
(Micro–GAs), also called Tiny–GAs, have been studied in
image processing problems [6]. Recently, Micro–Particle
Swarm Optimization was proposed for tackling high–dimen-
sional optimization problems [5], and a special version of
Micro–Differential Evolution (Micro–DE) with opposition–
based operators was used for image thresholding [11].

The small population size of Micro–EAs limits their ex-
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ploration capabilities, especially in complex environments.
This is usually caused due to the rapid convergence of the
population to the most promising detected solutions, which
decreases population diversity in early iterations and, conse-
quently, deteriorates efficiency. As a countermeasure, diver-
sity–preserving schemes are usually incorporated in the al-
gorithm, along with proper techniques that prevent conver-
gence to the same solution [5].

The present work combines the main concepts of CEAs
and Micro–EAs to produce a Cooperative Micro–Differential
Evolution (COMDE) algorithm. To the best of the author’s
knowledge, this is the first variant of DE that combines these
two approaches. The proposed scheme aims at solving high–
dimensional problems more efficiently than the standard DE
algorithm. To achieve this, high–dimensional candidate so-
lutions are divided into low–dimensional subcomponents,
and each one is tackled with a small, low–dimensional sub-
population. Information sharing among subpopulations al-
lows the construction of complete solutions for the evalua-
tion of each individual with the original objective function.
COMDE is tested against the standard DE algorithm on
high–dimensional instances of five widely used test problems
from the relative literature.

The remaining of the paper is organized as follows: Sec-
tion 2 describes the DE algorithm, while Section 3 introduces
the COMDE approach. Experimental results are reported
and discussed in Section 4, and the paper concludes in Sec-
tion 5.

2. DIFFERENTIAL EVOLUTION
The DE algorithm was developed by Storn and Price [10,

15] as a population–based stochastic optimization algorithm
for numerical optimization problems. DE utilizes a popula-
tion:

P = {x1, x2, . . . , xN},
of N individuals to probe the search space. The population
is initialized randomly in the search space, usually following
a uniform distribution. Each individual is an n–dimensional
vector:

xi = (xi1, xi2, . . . , xin)⊤, i = 1, 2, . . . , N,

and serves as a candidate solution of the problem at hand.
The population is evolved by applying two operators, namely
mutation and recombination, which produce new candidate
solutions. Then, the old and the new population are merged,
and selection takes place to construct a new population that
consists of the N best individuals. These operators are ap-
plied iteratively until a termination condition is met.

The mutation operator produces a new vector, vi, for each
individual, xi, i = 1, 2, . . . , N , by combining some of the rest
individuals of the population. Different operators have been
proposed for this task, with the following constituting the
most common ones:

vi(t + 1)=xg(t) + F
“

xr1(t) − xr2(t)
”

, (1)

vi(t + 1)=xr1(t) + F
“

xr2(t) − xr3(t)
”

, (2)

vi(t + 1)=xi(t) + F
“

xg(t) − xi(t) + xr1(t) − xr2(t)
”

, (3)

vi(t + 1)=xg(t) + F
“

xr1(t) − xr2(t) + xr3(t) − xr4(t)
”

, (4)

vi(t + 1)=xr1(t) + F
“

xr2(t) − xr3(t) + xr4(t) − xr5(t)
”

,(5)

where t denotes the iteration counter; F is a fixed user–
defined parameter; g denotes the index of the best individual
in the population, i.e., the one with the smallest function
value; and ri ∈ {1, 2, . . . , N}, i = 1, 2, . . . , 5, are mutually
different randomly selected indices that differ also from the
index i. Thus, in order to be able to apply all mutation
operators, it must hold that N > 5. All vector operations in
Eqs. (1)–(5) are performed componentwise. The five opera-
tors will be henceforth denoted as OP1–OP5, respectively.

After mutation, a recombination operator is applied on
the generated vectors, vi, producing for each one a trial vec-
tor:

ui = (ui1, ui2, . . . , uin)⊤, i = 1, 2, . . . , N,

which is defined as follows:

uij(t + 1) =


vij(t + 1), if Rj 6 CR or j = RI(i),
xij(t), if Rj > CR and j 6= RI(i),

where j = 1, 2, . . . , n; Rj is the j–th evaluation of a uniform
random number generator in the range [0, 1]; CR ∈ [0, 1]
is a user–defined crossover constant; and RI(i) is an index
randomly selected from the set {1, 2, . . . , n}.

Finally, in the selection phase, the produced trial vectors,
ui, are compared against the corresponding individuals, xi,
and the best among them comprise the population in the
next generation, i.e.:

xi(t + 1) =


ui(t + 1), if f(ui(t + 1)) < f(xi(t)),
xi(t), otherwise,

where f(x) is the objective function under consideration.

3. THE PROPOSED APPROACH
Micro–DE has the same structure and operations with

standard DE. The only difference is the population size,
which is typically very small. Thus, although it is recom-
mended to use populations of size up to N = 10n [15], where
n is the problem dimension, Micro–DE uses the smallest pos-
sible number of individuals. Taking into consideration the
restriction, N > 5, that permits the application of all muta-
tion operators, a population size, N = 6, can be considered
a reasonable choice for Micro–DE.

Moreover, Micro–DE is expected to converge rapidly due
to the small number of individuals. Usually, the ratio, n/N ,
is indicative of the difficulty met by an algorithm on a given
problem. Small values of this ratio (less than 1) correspond
to population with size larger than its dimension. On the
other hand, values higher than 1 correspond to problem di-
mension higher than population size. Empirical evidence
suggest that in most cases the higher the ratio is, the harder
the problem becomes for the algorithm. Therefore, Micro–
DE can be considered as a promising approach in rather
low–dimensional problems.

The aforementioned deficiency can be addressed through
the proposed COMDE approach, a cooperative scheme for
Micro–DE. To put it formally, let, n1, n2, . . . , nK , be K po-
sitive integers such that:

n =

KX

k=1

nk,

where n is the dimension of the original problem. Then,
a candidate solution vector of the original problem can be
divided into K subcomponents, each one addressed by a
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Table 1: Pseudocode of the proposed COMDE approach.

Input: K (number of subpopulations); Ni (sizes of subpopulations); ni (dimensions of subpopulations);

i = 1, 2, . . . , K; M (buffer vector); f (objective function)

Step 1. Initialize subpopulations randomly within their search spaces (subspaces of the original one).

Step 2. Initialize buffer vector, M , using a randomly selected individual from each subpopulation.

Step 3. While (termination condition not met)

Step 4. Do (k = 1, . . . , K)

Step 5. Do (i = 1, . . . , Nk)

Step 6. Update the individual x
[k]
i with the standard DE operations.

Step 7. Evaluate x
[k]
i using Eq. (6) and the buffer M .

Step 8. Update the best position x
[k]
g of the population Pk.

Step 9. If
“

f
“

x
[k]
i

”

< f(M)
”

Then

Step 10. Copy x
[k]
i in the proper position of the buffer M .

Step 11. End If

Step 12. End Do

Step 13. End Do

Step 14. End While

Step 15. Print buffer M and f(M).

Table 2: Dimension and range for each test problem.

Problem Dimension (n) Range

TP1 300, 600, 900, 1200 [−100, 100]n

TP2 300, 600, 900, 1200 [−30, 30]n

TP3 300, 600, 900, 1200 [−5.12, 5.12]n

TP4 300, 600, 900, 1200 [−600, 600]n

TP5 300, 600, 900, 1200 [−20, 30]n

Table 3: The total number of individuals and sub-

populations of 6 individuals per problem dimension.

Problem Total number Number of

Dimension of individuals subpopulations

300 360 60

600 720 120

900 1080 180

1200 1440 240

different subpopulation, Pi, of size, Ni, and dimension, ni,
i = 1, 2, . . . , K. Thus, each subpopulation is assigned the
minimization of its corresponding subcomponent, which has
strictly smaller dimension than n.

The subpopulations work in the same manner as for the
original DE algorithm described in Section 2. However, an
apparent issue arises regarding the evaluation of individuals
with the objective function due to their different dimension.
This problem can be addressed by using an information sha-
ring mechanism in the form of a common memory buffer for
all subpopulations, where they deposit their best individu-
als. This buffer is also called context vector and it is defined
as an n–dimensional vector, M = (m1, m2, . . . , mn)⊤, where
each subpopulation deposits its contribution. Hence, if:

s[k] =
“

s
[k]
1 , s

[k]
2 , . . . , s[k]

nk

”
⊤

,

Table 4: COMDE subpopulation parameters.

Parameter Description Value

Nk subpopulation size 6

nk subpopulation dimension 5

tmax maximum iterations 103

F DE parameter 0.5

CR DE parameter 0.7

is the nk–dimensional vector (with nk < n) contributed by
the k–th subpopulation, Pk, k = 1, 2, . . . , K, then the buffer
vector is defined as:

M =
“

s
[1]
1 , . . . , s[1]

n1
| {z }

s[1] of P1

, s
[2]
1 , . . . , s[2]

n2
| {z }

s[2] of P2

, . . . , s
[K]
1 , . . . , s[K]

nK
| {z }

s[K] of PK

”⊤
.

Then, the i–th individual of the j–th subpopulation:

x
[j]
i =

“

x
[j]
i1 , x

[j]
i2 , . . . , x

[j]
i,nj

”⊤
,

is evaluated using the buffer vector, M , by substituting the
components that correspond to the contribution of the j–th

population with the actual components of x
[j]
i , while the rest

components of the buffer remain unaffected, i.e.:

f
“

x
[j]
i

”

= f
“

M
[j]
i

”

, (6)

where,

M
[j]
i =

“

s
[1]
1 , . . . , s[1]

n1
, . . . , x

[j]
i1 , . . . , x

[j]
i,nj

| {z }

individual x
[j]
i

, . . . , s
[K]
1 , . . . , s[K]

nK

”
⊤

,

i = 1, 2, . . . , Nj ; j = 1, 2, ..., K.
A straightforward choice for the contribution of each sub-

population is its overall best position, i.e., s[k] = x
[k]
g , which

results in a buffer that contains all best positions of the sub-
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Table 5: Results for TP1.
Oper. Dim. K Mean StD
OP1 300 1 1.4144e + 05 1.8617e + 04

60 8.6876e + 04 1.5732e + 04
600 1 4.4721e + 05 3.1952e + 04

120 1.8909e + 05 2.0218e + 04
900 1 8.3351e + 05 5.9673e + 04

180 2.7960e + 05 2.6643e + 04
1200 1 1.1977e + 06 6.1182e + 04

240 3.5644e + 05 2.8171e + 04
OP2 300 1 3.2582e + 05 2.0170e + 04

60 9.3599e + 04 2.2051e + 04
600 1 1.0247e + 06 4.0161e + 04

120 2.0026e + 05 3.4124e + 04
900 1 1.8648e + 06 6.1357e + 04

180 3.1485e + 05 4.5966e + 04
1200 1 2.9638e + 06 1.9296e + 05

240 4.1765e + 05 3.6677e + 04
OP3 300 1 6.8858e + 04 6.4519e + 03

60 5.6902e + 04 8.9052e + 03
600 1 2.6147e + 05 2.0403e + 04

120 1.0856e + 05 1.1119e + 04
900 1 5.1087e + 05 3.6903e + 04

180 1.5760e + 05 1.2894e + 04
1200 1 7.9133e + 05 6.1529e + 04

240 2.1152e + 05 1.5359e + 04
OP4 300 1 1.8365e + 05 2.0640e + 04

60 1.4505e + 04 1.0504e + 04
600 1 8.1520e + 05 2.7794e + 04

120 2.6381e + 04 1.2269e + 04
900 1 1.4362e + 06 3.8525e + 04

180 4.8767e + 04 1.8794e + 04
1200 1 2.1113e + 06 7.7417e + 04

240 6.7389e + 04 2.1419e + 04
OP5 300 1 8.4961e + 05 2.1281e + 04

60 1.4309e + 04 8.5621e + 03
600 1 1.7740e + 06 2.6561e + 04

120 4.8479e + 04 2.0343e + 04
900 1 2.7107e + 06 2.9989e + 04

180 9.4577e + 04 1.9779e + 04
1200 1 3.6601e + 06 3.2939e + 04

240 1.5937e + 05 2.5546e + 04

populations:

M =
“

x
[1]
g1 , . . . , x[1]

g,n1
| {z }

x
[1]
g of P1

, x
[2]
g1 , . . . , x[2]

g,n2
| {z }

x
[2]
g of P2

, . . . , x
[K]
g1 , . . . , x[K]

g,nK
| {z }

x
[K]
g of PK

”
⊤

.

Therefore, by definition, the buffer constitutes the best po-
sition ever attained by the algorithm, i.e., it is the best ob-
tained approximation of the actual minimizer.

Instead of the best from each subpopulation, a randomly
selected individual could be alternatively used. This scheme
would result in a COMDE approach with slower convergence
but higher diversity. Clearly, the type of buffer update can
affect the convergence properties of the algorithm substan-
tially. Also, in some approaches, a restart of the subpopu-
lations is performed to avoid the rapid diversity loss caused
by their small sizes. COMDE does not use restart because
DE is a greedy algorithm that stores its best positions in

Table 6: Hypothesis testing for TP1.

Oper. Dim. Improvement p–value Decision
OP1 300 38.6% 1.6132e − 10 Reject

600 57.7% 3.0199e − 11 Reject
900 66.5% 3.0199e − 11 Reject

1200 70.2% 3.0199e − 11 Reject
OP2 300 71.3% 3.0199e − 11 Reject

600 80.5% 3.0199e − 11 Reject
900 83.1% 3.0199e − 11 Reject

1200 85.9% 3.0199e − 11 Reject
OP3 300 17.4% 2.6784e − 06 Reject

600 58.5% 3.0199e − 11 Reject
900 69.2% 3.0199e − 11 Reject

1200 73.3% 3.0199e − 11 Reject
OP4 300 92.1% 3.0199e − 11 Reject

600 96.8% 3.0199e − 11 Reject
900 96.6% 3.0199e − 11 Reject

1200 96.8% 3.0199e − 11 Reject
OP5 300 98.3% 3.0199e − 11 Reject

600 97.3% 3.0199e − 11 Reject
900 96.5% 3.0199e − 11 Reject

1200 95.6% 3.0199e − 11 Reject

the population; thus, a population restart would destroy all
information obtained in previous iterations.

The COMDE algorithm is reported in pseudocode in Ta-
ble 1, and it is illustrated on high–dimensional instances of
widely used benchmark problems in the following Section.

4. EXPERIMENTAL RESULTS
COMDE was applied on high–dimensional instances of the

following widely used test problems:

Test Problem 1 (TP1 - Sphere) [15]. This n–dimensional
problem is defined as:

f(x) =

nX

i=1

x2
i . (7)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 2 (TP2 - Generalized Rosenbrock) [15]. This
n–dimensional problem is defined as:

f(x) =
n−1X

i=1

“

100
`
xi+1 − x2

i

´2
+ (xi − 1)2

”

. (8)

It has a global minimizer, x∗ = (1, . . . , 1)⊤, with f(x∗) = 0.

Test Problem 3 (TP3 - Rastrigin) [15]. This n–dimensional
problem is defined as:

f(x) = 10n +
nX

i=1

`
x2

i − 10 cos(2πxi)
´
. (9)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 4 (TP4 - Griewank) [15]. This n–dimensional
problem is defined as:

f(x) =
nX

i=1

x2
i

4000
−

nY

i=1

cos

„
xi√

i

«

+ 1. (10)
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Table 7: Results for TP2.
Oper. Dim. K Mean StD
OP1 300 1 1.6130e + 08 4.0454e + 07

60 1.2478e + 08 4.4738e + 07
600 1 6.6025e + 08 9.9172e + 07

120 2.5380e + 08 6.8593e + 07
900 1 1.2624e + 09 1.5150e + 08

180 3.7215e + 08 6.9986e + 07
1200 1 1.9992e + 09 2.3594e + 08

240 5.1075e + 08 8.6568e + 07
OP2 300 1 1.1266e + 09 1.0802e + 08

60 1.7087e + 08 3.9198e + 07
600 1 7.2234e + 09 4.5945e + 08

120 4.0705e + 08 6.5600e + 07
900 1 1.2507e + 10 3.8169e + 08

180 6.2499e + 08 9.1419e + 07
1200 1 1.6998e + 10 1.7632e + 08

240 8.7136e + 08 8.9369e + 07
OP3 300 1 4.2435e + 07 1.2132e + 07

60 4.6087e + 07 1.9138e + 07
600 1 2.4110e + 08 3.6450e + 07

120 8.7002e + 07 2.2511e + 07
900 1 5.6231e + 08 8.6604e + 07

180 1.2340e + 08 2.7540e + 07
1200 1 1.0265e + 09 1.5032e + 08

240 1.6986e + 08 2.3775e + 07
OP4 300 1 4.3794e + 08 6.4088e + 07

60 2.3383e + 07 3.6772e + 07
600 1 2.5769e + 09 2.0915e + 08

120 4.0509e + 07 4.7292e + 07
900 1 5.5220e + 09 4.4165e + 08

180 6.4051e + 07 4.8790e + 07
1200 1 8.9109e + 09 6.9988e + 08

240 8.5344e + 07 3.7267e + 07
OP5 300 1 3.8045e + 09 1.1274e + 08

60 2.3442e + 07 2.2751e + 07
600 1 8.0603e + 09 1.9497e + 08

120 7.4900e + 07 3.5246e + 07
900 1 1.2528e + 10 1.3650e + 08

180 1.0436e + 08 4.0071e + 07
1200 1 1.6951e + 10 3.0242e + 08

240 2.3820e + 08 8.4809e + 07

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 5 (TP5 - Ackley) [1]. This n–dimensional
problem is defined as:

f(x) = 20 + exp(1) − 20 exp

0

@−0.2

v
u
u
t

1

n

nX

i=1

x2
i

1

A

− exp

 

1

n

nX

i=1

cos(2πxi)

!

. (11)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Each test problem was considered for dimensions, n = 300,
600, 900, and 1200. The corresponding n–dimensional search
spaces are reported in Table 2. COMDE divides candidate
solution vectors in K, 5–dimensional subcomponents and
uses a subpopulation of 6 individuals on each. Hence, using

Table 8: Hypothesis testing for TP2.

Oper. Dim. Improvement p–value Decision
OP1 300 22.6% 8.5641e − 04 Reject

600 61.6% 3.0199e − 11 Reject
900 70.5% 3.0199e − 11 Reject

1200 74.5% 3.0199e − 11 Reject
OP2 300 84.8% 3.0199e − 11 Reject

600 94.4% 3.0199e − 11 Reject
900 95.0% 3.0199e − 11 Reject

1200 94.9% 3.0199e − 11 Reject
OP3 300 −8.6% 5.8945e − 01 Accept

600 63.9% 3.0199e − 11 Reject
900 78.1% 3.0199e − 11 Reject

1200 83.5% 3.0199e − 11 Reject
OP4 300 94.7% 3.0199e − 11 Reject

600 98.4% 3.0199e − 11 Reject
900 98.8% 3.0199e − 11 Reject

1200 99.0% 3.0199e − 11 Reject
OP5 300 99.4% 3.0199e − 11 Reject

600 99.1% 3.0199e − 11 Reject
900 99.2% 3.0199e − 11 Reject

1200 98.6% 3.0199e − 11 Reject

the notation of Section 3, it follows that nk = 5 and Nk = 6
for all k = 1, 2, . . . , K, and K = n/5; therefore, the ratio
nk/Nk remains smaller than 1 for all subpopulations. For
example, in the 600–dimensional case, the problem is divided
in 600/5 = 120 subcomponents; thus, 120 subpopulations
are used, each consisting of six 5–dimensional individuals.
The number of subpopulations, as well as the total number
of individuals used per problem dimension are reported in
Table 3.

All DE operators, OP1–OP5, defined by Eqs. (1)–(5),
were considered in the experiments. A maximum number
of 1000 iterations was allowed for each subpopulation in all
cases. We must notice that iterations are performed concur-
rently for all subpopulations. Thus, COMDE has significant
parallelization capabilities, since each subpopulation can be
assigned to a different processor, while the buffer update can
be either synchronous or asynchronous. Regarding the DE
parameters, the common setting, F = 0.5, CR = 0.7, was
used for all subpopulations. All parameter values are sum-
marized in Table 4. We must notice that parameters were
arbitrarily set to reasonable values without any further fine–
tuning that could enhance the algorithm’s performance.

For each test problem, operator, and dimension, 30 inde-
pendent experiments were performed. At each experiment,
the best solution achieved after 1000 iterations was recorded
along with its function value. The obtained function values
were analyzed statistically, in terms of their mean value and
standard deviation averaged over the 30 experiments. For
comparison purposes, the experiments were repeated also for
the standard DE, using a single population with the same
parameters as COMDE. In order to have fair comparisons,
the population size of standard DE was set equal to the to-
tal number of individuals employed by all subpopulations in
COMDE per case. This number is reported in the second
column of Table 3. DE was allowed to perform the same
number of iterations as COMDE, and its performance was
also statistically analyzed.
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Table 9: Results for TP3.
Oper. Dim. K Mean StD
OP1 300 1 1.6540e + 03 1.0024e + 02

60 1.6969e + 03 9.6112e + 01
600 1 4.2253e + 03 2.2691e + 02

120 3.3438e + 03 1.6715e + 02
900 1 7.1628e + 03 2.6416e + 02

180 5.0532e + 03 2.1358e + 02
1200 1 1.0174e + 04 3.8489e + 02

240 6.6904e + 03 1.6206e + 02
OP2 300 1 3.9075e + 03 7.0155e + 01

60 1.4579e + 03 1.1371e + 02
600 1 8.5470e + 03 1.0257e + 02

120 3.4638e + 03 1.2190e + 02
900 1 1.3257e + 04 1.2749e + 02

180 5.6513e + 03 1.7424e + 02
1200 1 1.7929e + 04 2.1022e + 02

240 7.8643e + 03 2.1178e + 02
OP3 300 1 2.2727e + 03 8.2036e + 02

60 1.1791e + 03 6.4883e + 01
600 1 3.0793e + 03 8.9632e + 02

120 2.3899e + 03 1.0092e + 02
900 1 5.3564e + 03 2.1050e + 02

180 3.6284e + 03 1.1715e + 02
1200 1 8.0055e + 03 2.5775e + 02

240 4.8156e + 03 1.6551e + 02
OP4 300 1 3.9327e + 03 8.4663e + 01

60 1.4660e + 03 7.2126e + 01
600 1 8.4721e + 03 1.0971e + 02

120 3.1654e + 03 1.3256e + 02
900 1 1.3020e + 04 1.5311e + 02

180 4.9847e + 03 1.7586e + 02
1200 1 1.7618e + 04 2.1850e + 02

240 6.6017e + 03 2.7700e + 02
OP5 300 1 4.9805e + 03 4.7388e + 01

60 7.2558e + 02 9.7278e + 01
600 1 1.0285e + 04 1.0541e + 02

120 1.9104e + 03 1.5805e + 02
900 1 1.5690e + 04 1.0655e + 02

180 3.1601e + 03 1.7140e + 02
1200 1 2.1033e + 04 1.2561e + 02

240 4.5055e + 03 2.1214e + 02

In addition, hypothesis tests were conducted to ensure sta-
tistical significance of the derived conclusions. Therefore, for
each test problem, COMDE was compared against DE using
the nonparametric Wilcoxon rank–sum test [3] with the null
hypothesis that the two samples of function values, obtained
by COMDE and DE in 30 experiments, come from identical
continuous distributions with equal medians, against the al-
ternative of different medians. The decision for acceptance
or rejection of the null hypothesis in a 95% level of signifi-
cance, as well as the corresponding p–value, were recorded
for each test problem. Besides that, the performance im-
provement percentage between COMDE and DE, in terms
of the obtained solution values averaged over the 30 experi-
ments, was computed for all cases.

All results and statistical tests are reported in Tables 5–
14. More specifically, for each test problem, operator, and
dimension, the mean value and standard deviation of the

Table 10: Hypothesis testing for TP3.

Oper. Dim. Improvement p–value Decision
OP1 300 −2.6% 5.9428e − 02 Accept

600 20.9% 3.3384e − 11 Reject
900 29.5% 3.0199e − 11 Reject

1200 34.2% 3.0199e − 11 Reject
OP2 300 62.7% 3.0199e − 11 Reject

600 59.5% 3.0199e − 11 Reject
900 57.4% 3.0199e − 11 Reject

1200 56.1% 3.0199e − 11 Reject
OP3 300 48.1% 1.9527e − 03 Reject

600 22.4% 3.3384e − 11 Reject
900 32.3% 3.0199e − 11 Reject

1200 39.8% 3.0199e − 11 Reject
OP4 300 62.7% 3.0199e − 11 Reject

600 62.6% 3.0199e − 11 Reject
900 61.7% 3.0199e − 11 Reject

1200 62.5% 3.0199e − 11 Reject
OP5 300 85.4% 3.0199e − 11 Reject

600 81.4% 3.0199e − 11 Reject
900 79.9% 3.0199e − 11 Reject

1200 78.6% 3.0199e − 11 Reject

obtained solution values after 1000 iterations, in the 30 in-
dependent experiments, are reported both for the COMDE
(table rows with K > 1) and the standard DE (table rows
with K = 1). Also, the p–values and decision of hypothesis
testing are reported per problem and operator, along with
the improvement attained by COMDE, with negative values
denoting worse performance of COMDE against DE.

As a first observation, we can see that COMDE has signi-
ficantly improved performance for all operators. Especially
for OP4 and OP5, there was a tremendous improvement over
90% in three test problems (TP1, TP2, and TP4), while, for
the rest problems, their improvement remained the high-
est among all operators. Remarkable improvement was ob-
served also for the OP2 operator. If we take a closer look at
the aforementioned three operators, defined in Eqs. (2), (4),
and (5), we will observe that they employ the highest num-
ber of randomly selected individuals from the population.
Indeed, OP2 consists of one difference vector that combines
three randomly selected individuals, in contrast to the sim-
ilar operator OP1, which also has one difference vector but
with two randomly selected individuals. Similarly, both OP4
and OP5 consist of two difference vectors, involving four and
five randomly selected individuals, respectively, while OP3,
which also uses two difference vectors, involves only two ran-
domly selected individuals. This indicates the increasingly
beneficial effect of COMDE when the number of involved
randomly selected individuals in the operators is increased.

As a second observation, we see that the two most bene-
fited operators, OP4 and OP5, of COMDE also exhibit the
highest overall performance in all test problems and dimen-
sions, in terms of the reported mean values. Indeed, OP4 is
the best for all dimensions in TP2 and TP4, while the same
holds for OP5 in TP3 and TP5. Only in TP1, OP5 was the
best among all operators for the 300–dimensional case, while
OP4 was the best for all other dimensions. This verifies the
instrumental contribution of the COMDE approach to these
operators.
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Table 11: Results for TP4.
Oper. Dim. K Mean StD
OP1 300 1 1.2399e + 03 1.7837e + 02

60 8.2556e + 02 1.4660e + 02
600 1 4.1313e + 03 2.9879e + 02

120 1.6579e + 03 1.2883e + 02
900 1 7.4216e + 03 4.8889e + 02

180 2.4738e + 03 2.1885e + 02
1200 1 1.0853e + 04 6.1849e + 02

240 3.3135e + 03 2.4706e + 02
OP2 300 1 2.8930e + 03 1.4252e + 02

60 8.5437e + 02 1.8164e + 02
600 1 9.2399e + 03 4.0236e + 02

120 1.9105e + 03 2.7263e + 02
900 1 1.6908e + 04 7.1325e + 02

180 2.7540e + 03 2.9849e + 02
1200 1 2.7056e + 04 1.8457e + 03

240 3.7251e + 03 3.6052e + 02
OP3 300 1 6.2043e + 02 9.2146e + 01

60 4.6329e + 02 6.8827e + 01
600 1 2.3797e + 03 1.7747e + 02

120 9.9943e + 02 1.0220e + 02
900 1 4.6113e + 03 4.1597e + 02

180 1.4127e + 03 1.0873e + 02
1200 1 7.3171e + 03 5.6150e + 02

240 1.9647e + 03 1.2357e + 02
OP4 300 1 1.6291e + 03 1.3325e + 02

60 1.2757e + 02 7.3330e + 01
600 1 7.3704e + 03 2.9143e + 02

120 2.4710e + 02 1.1863e + 02
900 1 1.3037e + 04 5.4661e + 02

180 4.2938e + 02 1.2733e + 02
1200 1 1.8819e + 04 6.7970e + 02

240 5.7269e + 02 1.6323e + 02
OP5 300 1 7.7043e + 03 1.4479e + 02

60 1.2792e + 02 8.5594e + 01
600 1 1.5848e + 04 3.0308e + 02

120 4.8975e + 02 1.9774e + 02
900 1 2.4276e + 04 3.3834e + 02

180 9.5644e + 02 2.2423e + 02
1200 1 3.2922e + 04 3.1154e + 02

240 1.4481e + 03 2.6392e + 02

We shall also note that the null hypothesis was rejected
in all but two cases, namely the 300–dimensional cases of
OP3 in TP2 and OP1 in TP3. These two exceptions are
both characterized by a slight worsening of the COMDE
performance compared to the corresponding standard DE
with respect to the reported mean values, although this is
not accompanied by statistical significance.

Regarding their robustness, as it is expressed by the re-
ported standard deviations, OP3 can be distinguished as the
most robust operator, especially for higher dimensions. As
we can see in Table 5 for TP1, the COMDE version of OP3
has the smallest standard deviations among all operators of
both DE and COMDE for n > 600. In the case of n = 300,
its standard DE counterpart was the most robust, while for
COMDE, OP5 had the smallest standard deviation.

The same holds for TP2, as reported in Table 7, except the
case of n = 300, where OP3 exhibited the smallest standard

Table 12: Hypothesis testing for TP4.

Oper. Dim. Improvement p–value Decision
OP1 300 33.4% 4.1997e − 10 Reject

600 59.9% 3.0199e − 11 Reject
900 66.7% 3.0199e − 11 Reject

1200 69.5% 3.0199e − 11 Reject
OP2 300 70.5% 3.0199e − 11 Reject

600 79.3% 3.0199e − 11 Reject
900 83.7% 3.0199e − 11 Reject

1200 86.2% 3.0199e − 11 Reject
OP3 300 25.3% 3.6459e − 08 Reject

600 58.0% 3.0199e − 11 Reject
900 69.4% 3.0199e − 11 Reject

1200 73.1% 3.0199e − 11 Reject
OP4 300 92.2% 3.0199e − 11 Reject

600 96.6% 3.0199e − 11 Reject
900 96.7% 3.0199e − 11 Reject

1200 97.0% 3.0199e − 11 Reject
OP5 300 98.3% 3.0199e − 11 Reject

600 96.9% 3.0199e − 11 Reject
900 96.1% 3.0199e − 11 Reject

1200 95.6% 3.0199e − 11 Reject

deviations among all operators for both DE and COMDE.
For the rest dimensions of TP2, COMDE under OP3 was
the most robust. However, this is not the case for TP3 and
TP5, with OP3 achieving in many cases the best standard
deviations among all COMDE operators but not overall.

Summarizing the results, it is shown experimentally that
COMDE can be a very promising approach, producing for
all operators superior results than standard DE. There are
only two exceptions to this observation, namely the 300–
dimensional cases of OP3 in TP2 and OP1 in TP3. Both
these operators involve the best individual of the popula-
tion, which seems to be beneficial for the specific problems,
although this result is not statistically significant in a 95%
level. Nevertheless, in higher–dimensional cases even this
advantage was surpassed by COMDE, which has shown the
potential to occupy a salient place among the alternatives
for high–dimensional problems.

5. CONCLUSIONS
COMDE, an approach that combines cooperative with

Micro–DE was introduced and experimentally assessed on
widely used test problems for dimensions ranging from 300
up to 1200. The proposed approach was also compared to
the standard DE algorithm under the five most common
DE operators. Preliminary results are very encouraging, ex-
hibiting significant improvement in performance of all oper-
ators, especially as problem dimension increases.

Further research is needed to fully reveal the potential
of COMDE and identify possible drawbacks in cases where
typical cooperative approaches meet obstacles, such as the
case of problems with highly–correlated coordinate direc-
tions. Nevertheless, COMDE has shown to be a valuable
tool in high–dimensional cases regardless of the employed
operator. Different DE parameter settings shall also be con-
sidered in future works to determine possible effects on the
algorithm’s performance.
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Table 13: Results for TP5.
Oper. Dim. K Mean StD
OP1 300 1 1.5861e + 01 4.5127e − 01

60 1.3792e + 01 5.1525e − 01
600 1 1.7268e + 01 2.9403e − 01

120 1.3651e + 01 3.6977e − 01
900 1 1.7834e + 01 2.2379e − 01

180 1.3741e + 01 4.2847e − 01
1200 1 1.8119e + 01 1.4448e − 01

240 1.3794e + 01 3.0914e − 01
OP2 300 1 1.7617e + 01 2.0652e − 01

60 1.3949e + 01 6.2472e − 01
600 1 1.9150e + 01 9.8862e − 02

120 1.4605e + 01 3.6721e − 01
900 1 1.9587e + 01 8.6341e − 02

180 1.4902e + 01 3.2222e − 01
1200 1 1.9803e + 01 7.1190e − 02

240 1.5002e + 01 2.6469e − 01
OP3 300 1 1.2653e + 01 4.0916e − 01

60 1.1879e + 01 4.4926e − 01
600 1 1.4987e + 01 2.1141e − 01

120 1.1866e + 01 4.2328e − 01
900 1 1.5832e + 01 2.0624e − 01

180 1.1812e + 01 3.5390e − 01
1200 1 1.6472e + 01 2.2578e − 01

240 1.1767e + 01 2.7186e − 01
OP4 300 1 1.6207e + 01 2.6336e − 01

60 1.0769e + 01 1.0645e + 00
600 1 1.9011e + 01 9.2298e − 02

120 1.0726e + 01 7.9374e − 01
900 1 1.9504e + 01 9.6574e − 02

180 1.0997e + 01 5.4687e − 01
1200 1 1.9684e + 01 7.3283e − 02

240 1.0927e + 01 4.1879e − 01
OP5 300 1 2.0282e + 01 4.4779e − 02

60 6.6546e + 00 1.8917e + 00
600 1 2.0447e + 01 1.6909e − 02

120 8.3028e + 00 9.1099e − 01
900 1 2.0487e + 01 1.0475e − 02

180 9.4568e + 00 8.4387e − 01
1200 1 2.0506e + 01 1.0876e − 02

240 1.0048e + 01 5.1338e − 01
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