
Unified Particle Swarm Optimization
for Hadamard matrices of Williamson type

I. S. Kotsireas, C. Koukouvinos, K. E. Parsopoulos and M. N.
Vrahatis

Abstract. In this work we apply the recently proposed Unified Particle Swarm
Optimization (UPSO) method to the search for Hadamard matrices of the
Williamson type. The objective functions that arise from the classical Williamson
construction, are ideally suited for UPSO algorithms. This is the first time
that swarm intelligence methods are applied to this problem.

Mathematics Subject Classification (2000). 05B20, 13P10.

Keywords. Hadamard Matrices, Computational Algebra, Unified Particle Swarm
Optimization, metaheuristics, Hadamard equivalence.

1. Introduction

Hadamard matrices arise in Statistics and Combinatorics and have many applica-
tions in Engineering, Optical Communications, Cryptography and other areas. The
book [3] is a very readable and self-contained introduction to Hadamard matrices.

There are several well-known constructions for Hadamard matrices. Hadamard
matrices of Williamson type are typically made up of four square matrices satis-
fying certain algebraic conditions.

The Computational Algebra formalism developed in [7] allows us to apply
UPSO methods to the search for Hadamard matrices of the Williamson type. The
objective functions (OFs) that arise from the Williamson construction are directly
usable in UPSO algorithms.

This work is supported in part by an NSERC grant.

2 Kotsireas, Koukouvinos, Parsopoulos and Vrahatis

2. Hadamard matrices of Williamson type

The classical Williamson construction for Hadamard matrices is based on the 4×4
array

W =




A B C D

−B A −D C

−C D A −B

−D −C B A




(2.1)

which has the property

WWT = (A2 + B2 + C2 + D2)⊗ I4.

(here A, B, C, D are square matrices of order n and the symbol ⊗ denotes the
Kronecker product). When A, B, C, D are square circulant and symmetric (1,−1)
matrices of order n, then W turns out to be a Hadamard matrix of order 4n, i.e.
we have WWT = 4nI4n. See [4] or [17] for all the details.

2.1. Systems of polynomial equations arising from the four Williamson array

In this section we detail the four and eight Williamson arrays constructions for
Hadamard matrices and define the systems of polynomial equations arising from
these constructions. Let n be an odd positive integer with n ≥ 3 and let U be the
matrix of order n

U =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
1 0 0 . . . 0




which has the property Un = In. Following Williamson, [4], we will use the matrix
U to define the block matrices of order n in the four and eight Williamson arrays,
as polynomials in U with ±1 coefficients. Then the block matrices will commute
with each other. Moreover, by imposing symmetry condition on the coefficients,
the block matrices will be symmetric, in view of the fact that UT = U−1. In the
next two paragraphs we detail these ideas for the four and eight Williamson arrays
separately.

2.2. Four Williamson array construction

In the four Williamson array (2.1), define the four matrices A, B, C, D by poly-
nomials in U as follows:

A = a0In + a1U + · · · + an−1U
n−1

B = b0In + b1U + · · · + bn−1U
n−1

C = c0In + c1U + · · · + cn−1U
n−1

D = d0In + d1U + · · · + dn−1U
n−1

(2.2)

UPSO for Hadamard matrices of Williamson type 3

where the 4n coefficients a0, . . ., an−1, b0, . . ., bn−1, c0, . . ., cn−1, d0, . . ., dn−1

satisfy the additional symmetry conditions

an−i = ai, bn−i = bi, cn−i = ci, dn−i = di, i = 1, . . . , n− 1. (2.3)

Let m = n−1
2 . Then we see that we actually need only the 4(m + 1) = 2n + 2

coefficients a0, . . ., am, b0, . . ., bm, c0, . . ., cm, d0, . . ., dm to define the polynomials
in U , because the symmetry conditions (2.3) imply

a1 = an−1, a2 = an−2, . . . , am−1 = an−m+1, am = an−m

and the analogous conditions for the coefficients bi, ci and di. Now the matrix
identity WWT = 4nI4n can be stated as a system of m (resp. n−1

2) polynomial
quadratic equations in the 4(m + 1) (resp. 2n + 2) unknowns

w1 = 0, . . . , wm = 0,

supplemented by the 4(m + 1) (resp. 2n + 2) quadratic equations

a2
0 = 1, . . . , a2

m = 1︸ ︷︷ ︸
a′is

, b2
0 = 1, . . . , b2

m = 1︸ ︷︷ ︸
b′is

, c2
0 = 1, . . . , c2

m = 1︸ ︷︷ ︸
c′is

, d2
0 = 1, . . . , d2

m = 1︸ ︷︷ ︸
d′is

,

to account for the fact that the polynomials (2.2) are defined with ±1 coefficients.
Each of the m equations w1, . . . , wm contains the constant factor 2, m quadratic
monomials in the variables ai, m quadratic monomials in the variables bi, m qua-
dratic monomials in the variables ci and m quadratic monomials in the variables
di. For each i ranging from 1 to m, the equation wi contains the quadratic mono-
mials a0ai, b0bi, c0ci, d0, di. In particular, this means that the sum w1 + · · · + wm

contains the factors a0(a1 + · · · + am), b0(b1 + · · · + bm), c0(c1 + · · · + cm) and
d0(d1 + · · · + dm). For each i ranging from 1 to m, the equation wi contains
m − 1 quadratic monomials of the second elementary symmetric function in the
m variables a1, . . . , am (and the corresponding quadratic monomials of elementary
symmetric functions for the bi, ci and di variables). The structure of the indices
of the quadratic monomials for the a, b, c, d variables in each equation wi, is the
same. For illustration, we mention the general form of the first equation w1:

w1 = 2 +

(
m∑

i=1

ai−1ai

)
+

(
m∑

i=1

bi−1bi

)
+

(
m∑

i=1

ci−1ci

)
+

(
m∑

i=1

di−1di

)
= 0.

2.3. Eight Williamson array construction

The four Williamson array (2.1) can be interpreted as a matrix arising from the
real quaternion division algebra, see [7]. Using the real octonion division algebra,
one can construct two eight Williamson arrays, corresponding to the left and right
matrix representations of an octonion over the set of real numbers, see [7] for all
the details.

4 Kotsireas, Koukouvinos, Parsopoulos and Vrahatis

The matrix arising from the left matrix representation of an octonion over
the set of real numbers is

W =




A −B −C −D −E −F −G −H

B A −D C −F E H −G

C D A −B −G −H E F

D −C B A −H G −F E

E F G H A −B −C −D

F −E H −G B A D −C

G −H −E F C −D A B

H G −F −E D C −B A




.

The matrix arising from the right matrix representation of an octonion over
the set of real numbers is

W =




A −B −C −D −E −F −G −H

B A D −C F −E −H G

C −D A B G H −E −F

D C −B A H −G F −E

E −F −G −H A B C D

F E −H G −B A −D C

G H E −F −C D A −B

H −G F E −D −C B A




.

The above two eight Williamson arrays possess the property

WWT = (A2 + B2 + C2 + D2 + E2 + F 2 + G2 + H2)⊗ I8.

(here A, B, C, D, E, F , G, H are square matrices of order n and the symbol ⊗
denotes the Kronecker product).

By defining the eight matrices A, B, C, D E,F ,G,H by polynomials in U
and with the same symmetry conditions as before, one can use eight Williamson
arrays to construct Hadamard matrices.
Note: The four and eight Williamson arrays of the previous sections are in essence
orthogonal designs described in [3].

3. Unified Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population–based, stochastic optimiza-
tion algorithm [5]. Its dynamic is governed by fundamental laws encountered in
swarms in nature hence it is categorized as a swarm intelligence algorithm [6].

Similarly to other population–based algorithms, PSO exploits a population
of search points to probe the search space. In the context of PSO, the population

UPSO for Hadamard matrices of Williamson type 5

is called a swarm, while the search points are called particles. Each particle moves
in the search space with an adaptable velocity, recording the best position it has
ever visited in the search space. In minimization problems, such positions have the
lowest function values.

The adaptation of the velocity is based on information coming from the
particle itself, as well as, from the rest of the particles. More specifically, each
particle has a “neighborhood” that consists of some prespecified particles and the
best position ever attained by any member of the neighborhood is communicated
to the particle and influences its movement.

Assume the problem of minimizing an n–dimensional function,

min
X∈S

f(X), S ⊂ Rn.

Then, a swarm to tackle this problem consists of N particles,

S = {X1, X2, . . . , XN} ,

which are n–dimensional vectors, Xi = (xi1, xi2, . . . , xin)> ∈ S, i = 1, . . . , N . The
velocity, Vi = (vi1, vi2, . . . , vin)>, of the ith particle, as well as its best position,
Pi = (pi1, pi2, . . . , pin)> ∈ S, are also n–dimensional vectors.

The neighborhoods are usually defined based on the particles’ indices. The
most common neighborhood topology is the “ring” topology, where the neighbor-
hood of a particle consists of particles with neighboring indices. Thus, a neighbor-
hood of radius m of Xi is the set

Xi = {Xi−m, . . . , Xi, . . . , Xi+m},
where the particle X1 is assumed to follow immediately after XN .

Let gi denote the index of the particle that attained the best previous position
among all the particles in the neighborhood of Xi, i.e.,

f(Pgi) 6 f(Pj), ∀ j ∈ {i−m, . . . , i + m},
and let t be the iteration counter. Then, the velocity and position of Xi are updated
according to the equations [1, 16],

Vi(t + 1) = χ
[
Vi(t) + c1R1

(
Pi(t)−Xi(t)

)
+ c2R2

(
Pgi(t)−Xi(t)

)]
, (3.1)

Xi(t + 1) = Xi(t) + Vi(t + 1), (3.2)

where χ is a parameter called the constriction coefficient; c1, c2 are positive ac-
celeration parameters called cognitive and social parameter, respectively; and R1,
R2 are vectors with components uniformly distributed in the range [0, 1]. All vec-
tor operations in Eqs. (3.1) and (3.2) are performed componentwise. The best
positions are updated at each iteration according to,

Pi(t + 1) =
{

Xi(t + 1), if f
(
Xi(t + 1)

)
< f

(
Pi(t)

)
,

Pi(t), otherwise.

6 Kotsireas, Koukouvinos, Parsopoulos and Vrahatis

Clerc and Kennedy studied the stability of PSO, proposing values of its parameters
that promote convergence of the algorithm towards the most promising solutions
in the search space [1, 16].

The search procedure of a population–based algorithm such as PSO consists
of two main phases, exploration and exploitation. The former is responsible for
the detection of the most promising regions in the search space, while the latter
promotes convergence of the particles towards the best solution detected so far.
These two phases can take place either once or successively during the execution
of the algorithm.

There are two main variants of PSO, with respect to the number of parti-
cles that comprise the neighborhoods. In the global variant, the whole swarm is
considered as the neighborhood for every particle. On the other hand, in the local
variant, the neighborhood size is strictly smaller than the size of the swarm. The
global variant converges faster than the local one, since all particles are attracted
by the same best position. Therefore, it is distinguished for its exploitation ability.
On the other hand, the local variant has better exploration properties, since the
information regarding the best position of each neighborhood is gradually commu-
nicated to the rest of the particles through their neighbors in the ring topology.
Thus, the attraction towards a specific point is weaker, preventing the swarm from
getting trapped in suboptimal solutions. Proper selection of the neighborhood size
affects PSO’s trade–off between exploration and exploitation, albeit there is no
formal procedure to determine the optimal size.

Unified Particle Swarm Optimization (UPSO) was recently proposed as a
scheme that harnesses the local and global PSO variants, combining their explo-
ration and exploitation properties [11, 12, 13]. Let Xi be the ith particle of the
swarm, g be the index of the best particle in the whole swarm and gi be the index
of the best particle in the neighborhood of Xi, as described in the previous sec-
tion. Also, let Gi(t + 1) be the velocity update of Xi for the global PSO variant,
let Li(t + 1) be the velocity update of Xi for the local PSO variant, and t denote
the iteration counter. Then, from Eq. (3.1), it holds that,

Gi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t)−Xi(t)

)
+ c2r2

(
Pg(t)−Xi(t)

)]
, (3.3)

Li(t + 1) = χ
[
Vi(t) + c1r

′
1

(
Pi(t)−Xi(t)

)
+ c2r

′
2

(
Pgi(t)−Xi(t)

)]
. (3.4)

The aggregation of the search directions defined by Eqs. (3.3) and (3.4) results in
the main UPSO scheme [11],

Ui(t + 1) = uGi(t + 1) + (1− u)Li(t + 1), u ∈ [0, 1], (3.5)
Xi(t + 1) = Xi(t) + Ui(t + 1). (3.6)

The parameter u is called the unification factor and it balances the influence of the
global and local search directions. The standard global PSO variant is obtained by
setting u = 1 in Eq. (3.5), while u = 0 results in the standard local PSO variant.
All intermediate values of u ∈ (0, 1) define composite UPSO variants that combine
the exploration and exploitation properties of the global and local PSO variant.

UPSO for Hadamard matrices of Williamson type 7

Besides the basic UPSO scheme, a stochastic parameter can also be incorpo-
rated in Eq. (3.5) to enhance UPSO’s exploration capabilities [11]. Thus, depending
on which variant UPSO is mostly based, Eq. (3.5) becomes,

Ui(t + 1) = r3 uGi(t + 1) + (1− u)Li(t + 1), (3.7)

which is mostly based on the local variant, or,

Ui(t + 1) = uGi(t + 1) + r3 (1− u)Li(t + 1), (3.8)

which is mostly based on the global variant. The parameter r3 ∼ N (M,Σ) is a
normally distributed parameter with mean vector M and covariance matrix Σ . The
use of r3 imitates mutation in evolutionary algorithms. However, the mutation in
UPSO is biased towards directions that are consistent with the PSO dynamic, in
contrast to the pure random mutation used in evolutionary algorithms. Following
the assumptions of Matyas [8], a proof of convergence in probability was derived
for the UPSO variants of Eqs. (3.7) and (3.8) [11].

4. Results

In this section we report on the results we obtained using UPSO, in the 4 and 8
Williamson array constructions for Hadamard matrices.

Consider the following 36-variable OF, corresponding to n = 17 in the four
Williamson array,
OF =
|a0*a2+a1*a3+a2*a4+a3*a5+a4*a6+a5*a7+a6*a8+a7*a8
+b0*b2+b1*b3+b2*b4+b3*b5+b4*b6+b5*b7+b6*b8+b7*b8
+c0*c2+c1*c3+c2*c4+c3*c5+c4*c6+c5*c7+c6*c8+c7*c8
+d0*d2+d1*d3+d2*d4+d3*d5+d4*d6+d5*d7+d6*d8+d7*d8+2|
+
|a0*a1+a1*a2+a2*a3+a3*a4+a4*a5+a5*a6+a6*a7+a7*a8
+b0*b1+b1*b2+b2*b3+b3*b4+b4*b5+b5*b6+b6*b7+b7*b8
+c0*c1+c1*c2+c2*c3+c3*c4+c4*c5+c5*c6+c6*c7+c7*c8
+d0*d1+d1*d2+d2*d3+d3*d4+d4*d5+d5*d6+d6*d7+d7*d8+2|
+
|a0*a3+a1*a2+a1*a4+a2*a5+a3*a6+a4*a7+a5*a8+a6*a8
+b0*b3+b1*b2+b1*b4+b2*b5+b3*b6+b4*b7+b5*b8+b6*b8
+c0*c3+c1*c2+c1*c4+c2*c5+c3*c6+c4*c7+c5*c8+c6*c8
+d0*d3+d1*d2+d1*d4+d2*d5+d3*d6+d4*d7+d5*d8+d6*d8+2|
+
|a0*a4+a1*a3+a1*a5+a2*a6+a3*a7+a4*a8+a5*a8+a6*a7
+b0*b4+b1*b3+b1*b5+b2*b6+b3*b7+b4*b8+b5*b8+b6*b7
+c0*c4+c1*c3+c1*c5+c2*c6+c3*c7+c4*c8+c5*c8+c6*c7
+d0*d4+d1*d3+d1*d5+d2*d6+d3*d7+d4*d8+d5*d8+d6*d7+2|
+
|a0*a7+a1*a6+a1*a8+a2*a5+a2*a8+a3*a4+a3*a7+a4*a6

8 Kotsireas, Koukouvinos, Parsopoulos and Vrahatis

+b0*b7+b1*b6+b1*b8+b2*b5+b2*b8+b3*b4+b3*b7+b4*b6
+c0*c7+c1*c6+c1*c8+c2*c5+c2*c8+c3*c4+c3*c7+c4*c6
+d0*d7+d1*d6+d1*d8+d2*d5+d2*d8+d3*d4+d3*d7+d4*d6+2|
+
|a0*a8+a1*a7+a1*a8+a2*a6+a2*a7+a3*a5+a3*a6+a4*a5
+b0*b8+b1*b7+b1*b8+b2*b6+b2*b7+b3*b5+b3*b6+b4*b5
+c0*c8+c1*c7+c1*c8+c2*c6+c2*c7+c3*c5+c3*c6+c4*c5
+d0*d8+d1*d7+d1*d8+d2*d6+d2*d7+d3*d5+d3*d6+d4*d5+2|
+
|a0*a5+a1*a4+a1*a6+a2*a3+a2*a7+a3*a8+a4*a8+a5*a7
+b0*b5+b1*b4+b1*b6+b2*b3+b2*b7+b3*b8+b4*b8+b5*b7
+c0*c5+c1*c4+c1*c6+c2*c3+c2*c7+c3*c8+c4*c8+c5*c7
+d0*d5+d1*d4+d1*d6+d2*d3+d2*d7+d3*d8+d4*d8+d5*d7+2|
+
|a0*a6+a1*a5+a1*a7+a2*a4+a2*a8+a3*a8+a4*a7+a5*a6
+b0*b6+b1*b5+b1*b7+b2*b4+b2*b8+b3*b8+b4*b7+b5*b6
+c0*c6+c1*c5+c1*c7+c2*c4+c2*c8+c3*c8+c4*c7+c5*c6
+d0*d6+d1*d5+d1*d7+d2*d4+d2*d8+d3*d8+d4*d7+d5*d6+2|.

The OF contains the 36 binary variables
a0,...,a8,b0,...,b8,c0,...,c8,d0,...,d8

The seven solutions below were obtained with UPSO.
[1 1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 1
-1 1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1]

[-1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1
1 -1 1 1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1]

[1 -1 -1 1 -1 -1 -1 1 1 1 1 -1 1 1 1 -1 -1 -1
1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 1]

[1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 1 1
1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 -1 -1 1 -1 1]

[1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 1 1 -1 -1
-1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1]

[1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 1 1 1 -1
1 -1 -1 -1 1 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 -1]

[-1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 1 1
1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 1]

We also obtained solutions for values of n up to n = 25, for both the 4 and
8 Williamson arrays.

UPSO for Hadamard matrices of Williamson type 9

All the solutions we have obtained, are given in Maple format in the web
page http://www.cargo.wlu.ca/PSO4W8W/ to allow for easy and immediate ver-
ification. We gratefully acknowledge the use of the Shared Hierarchical Academic
Research Computing Network (SHARCnet) http://www.sharcnet.ca/ high per-
formance computing facilities.

5. Conclusion

In this work we use UPSO algorithms to tackle hard discrete optimization problems
arising in the search for Hadamard matrices of Williamson type. The results are
quite encouraging and we firmly believe that these algorithms constitute a very
promising avenue to explore, in connection with these problems.

References

[1] M. Clerc, J. Kennedy, The particle swarm–explosion, stability, and convergence in a
multidimensional complex space, IEEE Trans. Evol. Comput. 6 (1) (2002) 58–73.

[2] R. C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm
optimization, in: V. W. Porto, N. Saravanan, D. Waagen, A. E. Eiben (Eds.), Evo-
lutionary Programming, Vol. VII, Springer, 1998, pp. 611–616.

[3] A. V. Geramita and J. Seberry, Orthogonal designs. Quadratic forms and Hadamard
matrices, Lecture Notes in Pure and Applied Mathematics, 45, Marcel Dekker Inc.,
New York, 1979.

[4] M. Hall Jr., Combinatorial theory, 2nd ed. John Wiley & Sons Inc., New York, 1998.

[5] J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Proceedings IEEE
International Conference on Neural Networks, Vol. IV, IEEE Service Center, Piscat-
away, NJ, 1995, pp. 1942–1948.

[6] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers, 2001.

[7] I. S. Kotsireas and C. Koukouvinos, Constructions for Hadamard matrices of
Williamson type. Journal of Combinatorial Mathematics and Combinatorial Com-
puting, 59, 2006, pp. 17-32.

[8] J. Matyas, Random Optimization, Automatization and Remote Control 26 (1965)
244–251.

[9] K. E. Parsopoulos, M. N. Vrahatis, Initializing the particle swarm optimizer using
the nonlinear simplex method, in: A. Grmela, N. Mastorakis (Eds.), Advances in In-
telligent Systems, Fuzzy Systems, Evolutionary Computation, WSEAS Press, 2002,
pp. 216–221.

[10] K. E. Parsopoulos, M. N. Vrahatis, Recent approaches to global optimization prob-
lems through particle swarm optimization, Natural Computing 1 (2–3) (2002) 235–
306.

[11] K. E. Parsopoulos, M. N. Vrahatis, UPSO: A Unified Particle Swarm Optimization
Scheme, Lecture Series on Computer and Computational Sciences, Vol. 1, Proceed-
ings of the International Conference of Computational Methods in Sciences and

10 Kotsireas, Koukouvinos, Parsopoulos and Vrahatis

Engineering (ICCMSE 2004), VSP International Science Publishers, 2004, pp. 868–
873.

[12] K. E. Parsopoulos, M. N. Vrahatis, Unified Particle Swarm Optimization in Dynamic
Environments, Lecture Notes in Computer Science (LNCS), Vol. 3449, Springer Ver-
lag, 2005, pp. 590–599.

[13] K. E. Parsopoulos, M. N. Vrahatis, Unified Particle Swarm Optimization for Solv-
ing Constrained Engineering Optimization Problems, Lecture Notes in Computer
Science (LNCS), Vol. 3612, Springer Verlag, 2005, pp. 582–591.

[14] Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, in: Proceedings IEEE
Conference on Evolutionary Computation, IEEE Service Center, Anchorage, AK,
1998, pp. 69–73.

[15] Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization, in:
V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.), Evolutionary Program-
ming, Vol. VII, Springer, 1998, pp. 591–600.

[16] I. C. Trelea, The particle swarm optimization algorithm: Convergence analysis and
parameter selection, Information Processing Letters 85 (2003) 317–325.

[17] W. D. Wallis, A. P. Street and J. Seberry Wallis, Combinatorics: Room squares,
sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-
Verlag, Berlin, 1972.

I. S. Kotsireas
Wilfrid Laurier University
Department of Physics and Computer Science
75 University Avenue West
Waterloo, Ontario N2L 3C5
Canada
e-mail: ikotsire@wlu.ca

C. Koukouvinos
Department of Mathematics
National Technical University of Athens
Zografou 15773, Athens
Greece
e-mail: ckoukouv@math.ntua.gr

K. E. Parsopoulos
Computational Intelligence Laboratory (CILAB)
Department of Mathematics, University of Patras and
University of Patras Artificial Intelligence Research Center (UPAIRC),GR-26110 Patras
Greece
e-mail: kostasp@math.upatras.gr

M. N. Vrahatis
Computational Intelligence Laboratory (CILAB)
Department of Mathematics, University of Patras and
University of Patras Artificial Intelligence Research Center (UPAIRC),GR-26110 Patras
Greece
e-mail: vrahatis@math.upatras.gr

