
Brill Academic Publishers

P.O. Box 9000, 2300 PA Leiden,

The Netherlands

Lecture Series on Computer

and Computational Sciences
Volume 1, 2005, pp. 1-4

Fuzzy Cognitive Maps Learning using Memetic Algorithms

Y.G. Petalas1, E.I. Papageorgiou2, K.E. Parsopoulos1, P.P. Groumpos2,
and M.N. Vrahatis1

1Computational Intelligence Laboratory, Department of Mathematics,
University of Patras Artificial Intelligence Center(UPAIRC)

University of Patras, GR-26110 Patras, Greece.

2Department of Electrical and Computer Engineering,
Laboratory of Automation and Robotics,

University of Patras, GR-26500 Patras, Greece.

Abstract: Memetic Algorithms (MAs) are proposed for learning in Fuzzy Cognitive Maps
(FCMs). MAs are hybrid search schemes, which combine a global optimization algorithm
and a local search one. FCM’s learning is accomplished through the optimization of an
objective function with respect to the weights of the FCM. MAs are used to solve this
optimization task. The proposed approach is applied to a well-established process control
problem in industry and the results are promising.
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1 Introduction

Fuzzy Cognitive Maps (FCMs) are a soft computing methodology developed by Kosko as an ex-
pansion of cognitive maps which are widely used to represent social scientific knowledge [1]. They
belong to the class of neuro–fuzzy systems, which are able to incorporate human knowledge and
adapt it through learning procedures. FCMs are designed by experts through an interactive pro-
cedure of knowledge acquisition, and they have a wide field of application, including modeling
of complex and intelligent systems, decision analysis, and extend graph behavior analysis. They
have also been used for planning and decision–making in the fields of international relations and
social systems modeling, as well as in management science, operations research and organizational
behavior [1, 2].

An FCM consists of nodes–concepts, Ci, i = 1, . . . , N , where N is the total number of con-
cepts. Each node–concept represents a key–factor of the system, and it is characterized by a value
Ai ∈ [0, 1], i = 1, . . . , N . The concepts are interconnected with weighted arcs, which imply the
relations among them. Each interconnection between two concepts Ci and Cj has a weight Wij ,
which is proportional to the strength of the causal link between Ci and Cj . At each step, the value,
Ai, of the concept Ci is influenced by the values of the concepts–nodes connected to it, and it is

updated according to the scheme [2]: Ai(k +1) = f
(

Ai(k) +
∑n

j=1

j 6=i

WjiAj(k)
)

, where k stands for

the iteration counter; and Wji is the weight of the arc connecting the concept Cj to the concept
Ci. The function f is the sigmoid function.
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A few algorithms have been proposed for FCM learning [3]. The main task of the learning
procedure is to find a setting of the FCM’s weights, that leads the FCM to a desired steady state.
This is achieved through the minimization of a properly defined objective function.

We propose a new approach for FCM learning that is based on Memetic Algorithms (MAs) [4].
MAs are hybrid search schemes, integrating an evolutionary algorithm and a local search method,
and they have been used with success in many difficult optimization problems. Their efficiency
can be attributed to the exploitation of the advantages of both the global and the local search
schemes. Global search algorithms can explore the whole search space but they are not efficient
in locating the optimum of the objective function with high accuracy. On the other hand, local
search methods can compute the optimum with high accuracy if they are initialized in its basis of
attraction, but they are prone to getting stuck to local minima. MAs are used for the determination
of optimum weight matrices for the system through the minimization of a properly defined objective
function [3].

The rest of the paper is organized as follows: In Section 2, the proposed learning algorithm
is presented, while results from the application of the proposed method in a industrial control
problem are reported in Section 3. Section 4 concludes the paper.

2 The Proposed Approach

The main goal in FCM learning is to determine the values of the weights of the FCM that produce
a desired behavior of the system. The determination of the weights is of major significance and it
contributes towards the establishment of FCMs as a robust methodology. The desired behavior of
the system is characterized by output concept values that lie within desired bounds prespecified
by the experts.

The computation of the FCM’s weights is accomplished through the minimization of a problem–
dependent objective function. For this purpose, the following objective function was employed [3]:
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where H is the well–known Heaviside function and Amin
outi

, Amax
outi

, are bounds of the output concepts’
values. This function has been used with success in the past, combined with a swarm intelligence
algorithm, for FCM learning [3]. In the proposed approach, we use MAs to solve this optimization
problem.

The proposed MA, called MemeticPSO (MPSO), consists of the Particle Swarm Optimization
(PSO) algorithm as the global search component, and the Hooke and Jeeves (HJ) algorithm as
local search component. PSO is a stochastic global optimization algorithm and it has been applied
successfully for FCM’s learning [3]. More specifically, it belongs to the class of swarm intelligence

algorithms, which are inspired from the social dynamics and emergent behavior that arise in socially
organized colonies. A brief description of PSO is provided below.

Assume a D–dimensional search space, S ⊂ R
D , and a swarm consisting of N particles. Let

Xi = (xi1, xi2, . . . , xiD)> ∈ S, be the i–th particle and Vi = (vi1, vi2, . . . , viD)> ∈ S, be its velocity.
Let also the best previous position (i.e., the position that has the lowest function value) encountered
by the i–th particle in S be denoted by Pi = (pi1, pi2, . . . , piD)>. Assume gi to be the index of
the particle that attained the best previous position among all the particles in the neighborhood
of the i–th particle, and G to be the iteration counter. Then, the swarm is manipulated by the
equations [5]:

Vi(G + 1) = χ
[

Vi(G) + c1 r1

(

Pi(G) − Xi(G)
)

+ c2 r2

(

Pgi
(G) − Xi(G)

)

]

, (2)

Xi(G + 1) = Xi(G) + Vi(G + 1), (3)



Fuzzy Cognitive Maps Learning using Memetic Algorithms 3

Table 1: Pseudo code for the Memetic algorithm.
Input: N , χ, c1, c2, wmin, wmax (lower & upper bounds)

Step 1 Set t = 0.
Step 2 Initialize wi(t), vi(t) ∈ [wmin, wmax], pi(t)← wi(t), i = 1, . . . , N .
Step 3 Evaluate F (wi(t)). Determine the indices gi, i = 1, . . . , N .
Step 4 While (stopping criterion is not satisfied) Do

Step 5 Update the velocities vi(t + 1), i = 1, . . . , N , according to Eq. (2).
Step 6 Set wi(t + 1) = wi(t) + vi(t + 1), i = 1, . . . , N .
Step 7 Constrain each particle wi in [wmin, wmax].
Step 8 Evaluate f(wi(t + 1)), i = 1, . . . , N .
Step 9 If f(wi(t + 1)) < f(pi(t)) Then pi(t + 1)← wi(t + 1)

Else pi(t + 1)← pi(t).
Step 10 Update the indices gi.
Step 11 While (local search is applied) Do

Step 12 Choose a best position, pq(t + 1), q ∈ {1, . . . , N}.
Step 13 Apply local search on pq(t + 1) and obtain a new solution y.
Step 14 If F (y) < F (pq(t + 1)) Then pq(t + 1)← y.
Step 15 End While

Step 16 Set t = t + 1.
Step 17 End While

where i = 1, . . . , N ; χ is a parameter called constriction coefficient ; c1 and c2 are two parameters
called cognitive and social parameters, respectively; and r1, r2, are random vectors with compo-
nents uniformly distributed within [0, 1] (all vector operations in Eqs. (2) and (3) are assumed to
be performed componentwise).

HJ is a direct search algorithm that uses function evaluations solely, without computing any
derivative information [6]. Therefore, it can be applied in problems with non–differentiable or
discontinuous objective functions. A pseudocode of the proposed methodology is provided in
Table 1, where F denotes the objective function, and w denotes the matrix W of the FCM’s
weights, represented as a vector that contains its rows in turn.

3 Experimental Results

The proposed method has been applied to the industrial control problem investigated in [3]. The
ranges of the weights implied by the fuzzy regions, as they were suggested by experts, were: −0.50 6

W12 6 −0.30, −0.40 6 W13 6 −0.20, 0.20 6 W15 6 0.40, 0.30 6 W21 6 0.40, 0.40 6 W31 6 0.50,
−1.0 6 W41 6 −0.80, 0.50 6 W52 6 0.70, 0.20 6 W54 6 0.40. Since the consideration of all eight
constraints on the weights prohibits the detection of a suboptimal matrix, some of the constraints
were omitted. More specifically, the constraints for the weights W15, W52, and W54, for which,
the experts’ suggestions regarding their values varied widely, were omitted. The corresponding
weights were allowed to assume values in the range [−1, 0] or [0, 1], in order to avoid physically
meaningless weight matrices [3]. The results obtained through MPSO were compared with that
of PSO that are reported in [3]. We performed 100 independent experiments. The error goal for
the optimization problem was set to 10−8, and the swarm size of MPSO was set to 20. The HJ
algorithm was applied on the best particle of the swarm with probability 0.05 at each iteration. In
all cases, the local version of PSO was used, with neighborhood size 3. The performance of PSO
and MPSO is analyzed statistically in Table 2, with respect to the required number of function
evaluations. In Table 3, statistics regarding the weights are reported. The results suggest that
MPSO is a very promising approach for FCM learning.
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Table 2: Statistical analysis for the function evaluations required by PSO and MPSO.
Max Min Mean Stdev

PSO 760 240 491.20 104.16
MPSO 1071 40 315.51 155.07

Table 3: Statistical analysis for the weights obtained with PSO and MPSO.
PSO MPSO

Max Min Mean Stdev Max Min Mean Stdev

W12 −0.3000 −0.5000 −0.3369 0.0655 −0.3000 −0.5000 −0.3444 0.0705
W13 −0.2000 −0.3068 −0.2100 0.0231 −0.2000 −0.3000 −0.2165 0.0306
W15 1.0000 0.7163 0.902348 0.0900 1.0000 0.7166 0.9323 0.0789
W21 0.4000 0.3903 0.399828 0.0011 0.4000 0.3991 0.3999 0.0000
W31 0.5000 0.4843 0.4998 0.0015 0.5000 0.5000 0.5000 0.0000
W41 −0.8000 −0.8000 −0.8000 0.0000 −0.8000 −0.8000 −0.8000 0.0000
W52 1.0000 0.8272 0.9309 0.0619 1.0000 0.8224 0.9525 0.0594
W54 0.1591 0.1000 0.1064 0.0136 0.1614 0.1000 0.1068 0.0138

4 Conclusions

A new learning algorithm, which is based on MAs, was proposed for determining the weight matrix
of an FCM. MPSO proved to be very efficient, providing promising results. Future work will include
the application of MAs on more complex problems, as well as the investigation of different memetic
schemes for FCM learning.
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