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Abstract: We consider data fitting schemes that are based on different norms to determine
the parameters of curve-models that model landslides in dams. The Particle Swarm Opti-
mization method is employed to minimize the corresponding error norms. The method is
applied on real-world data with promising results.
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1 Introduction

A common problem in physics, earth sciences and engineering is the optimal fitting of a curve to
a set of observations of certain parameters versus time (or space). The observations are usually
contaminated by various types of errors. The usual procedure that is followed to solve such
problems is to test various empirically selected model-curves and estimate the parameters of the
curve that minimize the difference between the values obtained through the model and the observed
ones.

Traditionally, this task is accomplished using the well-known Least Squares Method (LSQR).
More specifically, linear or linearized equations are used and the sum of squares of differences
among observations and the corresponding model—curve values is minimized. Therefore, the prac-
titioner has to decide only regarding the most appropriate curve-model (e.g. polynomial, periodic,
exponential, mixed, etc.) such that an acceptable fit is obtained.

In some cases, however, the available data are noisy, unevenly distributed versus time, there is
no a priori knowledge of the variance—covariance matrix or they do not correspond to rather smooth
curves (for instance they include offsets, a usual case in tectonic and geotechnical studies [4]). In
such cases, the LSQR approach may not be successful, resulting in complex curve—models that
lack physical significance and ability to be incorporated to further modeling and analysis. In such
cases, the use of different data fitting approaches has been proved very useful [1].

LCorresponding author. E-mail: kostasp@math.upatras.gr
2E-mail: vkont@civil.upatras.gr

3E-mail: spithaQupatras.gr

4E-mail: papsimouli@upnet.gr

5E-mail: stirosQupatras.gr

SE-mail: vrahatis@math.upatras.gr



2 Parsopoulos, Kontogianni, Pytharouli, Psimoulis, Stiros and Vrahatis

Variation of the distance (points B1 B2 B3 B4 BS B6 B7 B8 BO Q12)

L B S L B S D B B T —T3
3000 ; Nodata O\ .
outlier |
2500 v /\’ B ]
E | 5://"//
vm— 5 / fwmer ]
§15m~ | /""‘—’ Ty BB
B 1907 ' /::4—-—‘—""# h
L ot 4 | —B5 |
: E .M
b 500 ™ k —“_—.n—-—-—'—‘-. -1
5 B 32
E 04 fonnes +— B0 |
| |4
- e g8
S e o LA B s s e 1 71 T T T
1977 1979 1981 1983 1985 1987 1989 1991 1993 1905 1997 19989 2001

Time

Figure 1: The record of observations for the Polyfyto Dam.

Evolutionary and Swarm Intelligence algorithms have been successfully applied on several data
fitting problems [5, 6]. Their ability to work using solely function values even for discontinuous
and non—differentiable functions renders them a promising alternative in cases where traditional
algorithms, such as LSQR, fail. The aim of this paper is to investigate alternative curve fitting
techniques based on the Particle Swarm Optimization (PSO) algorithm and three different norms
to cope with a real-life curve fitting problem from the field of Civil Engineering. Results are
reported and discussed.

Section 2 is devoted to the description of the problem, while the employed optimization algo-
rithm, PSQO, is briefly described in Section 3. Experimental results are reported and discussed in
Section 4.

2 Description of the Curve Fitting Problem and Models

The problem investigated here is the monitoring of a landslide of the Polyfyto Dam in the Ali-
akmonas river in north Greece. A record of observations has been collected in collaboration with
the Greek Public Power Corporation s.a.. The record consists of a large number of observations of
distance changes obtained by monitoring 7 control points, denoted as B1 — B7, on the landslide
relative to a stable reference station on stable ground, over a period of 20 years. The record is
depicted in Figure 1, along with observations for 3 auxiliary points, B8, B9 and (J12. As we can
see, the control point B2 exhibited the largest displacement.

The first step in the analysis of the landslide is the determination of a mathematical model,
which captures the pattern of the landslide movement and can be used to estimate its future
trends [7]. For this purpose, the movement of each control point was individually investigated. In
Figure 1 it is clear that almost all points are moving faster in early years, while their movement
tends to be stabilized in late years. This effect can be described using different mathematical
models, although, just a few models retain the physical meaning of the specific phenomenon. The
simplest model that could be used is a polynomial of degree four. However, it exhibits some upward
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and downward branches that do not fit the observations, and for this purpose, two types of an
exponential decay model were adopted,

Model 1: f@) =
Model 2: f@) =

A (1—-exp(-t/B))+C, (1)
A(l—-exp(-t/B))+ Kt+ C. (2)

The next step in the analysis is the determination of the unknown parameters A, B, C and K,
such that the error among the observations and the corresponding values provided by the model
is minimized. For the error measurement, several norms can be used. The most common choices
are the /1, £ and £,,—norms, which are defined as,

m m 1/2
lells = S fedl, ||e||2:<2|5,.|2) C el = max il

i=1 i=1

respectively, where m is the number of observations and ¢; = M; — O;, i = 1,...,m, with O; being
the ith observed value and M; be the corresponding value implied by the model.

The ¢;—norm is the most “fair” norm since it uses the absolute values of the errors. However, it
results in non—differentiable minimization problems, therefore, it cannot be used with traditional
gradient-based minimizers. On the other hand, the £s—norm results in differentiable minimization
problems but the assumed error values are not always consistent with the actual ones. For example,
an absolute error value equal to 10~3 becomes 1079, while an absolute error equal to 10? becomes
10%. The £,,—norm constitutes the most proper choice in cases where outliers that must be taken
seriously into consideration appear in the set of observations, since it minimizes the maximum
among all absolute errors.

The performance of LSQR for the determination of the unknown parameters A, B, C and K,
is rather poor with the deviation being larger at the edge of the curve where indeed a good fitting
is sought. This happens due to the /;—norm, on which LSQR is based. Thus, alternative fitting
techniques that use different norms are of great interest in order to provide more reliable results.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence optimization algorithm developed by
Eberhart and Kennedy [3]. It employs a population, called a swarm, S = {z1,...,zn}, of search
points, called particles, z; = (21, Zi2,--.,Tin) ', i = 1,..., N, which probe the search space,
S C R”, simultaneously. The algorithm works iteratively. Each particle is initialized to a random
position in the search space. Then, at each iteration, each particle moves with an adaptable velocity,
v; = (Vi1, V2, .. .,Vin) |, while retaining in a memory the best position, p; = (pi1,pi2,--.,Pin) ' € S,
it has ever visited in the search space. In minimization problems, best positions have lower function
values. The particle’s movement is also influenced by the experience of the rest particles, i.e., by
their best positions. This is performed through the concept of neighborhood. More specifically,
each particle is assigned a neighborhood which consists of some prespecified particles. Then,
the particles that comprise the neighborhood share their experience by exchanging information.
There are two main variants of PSO with respect to the number of particles that comprise the
neighborhoods. In the global variant, the whole swarm is considered as the neighborhood of each
particle, while, in the local variant, smaller neighborhoods are used. Neighboring particles are
determined based rather on their indices than their actual distance in the search space [6].

Let g; be the index of the best particle in the neighborhood of z;, i.e., the index of the particle
that attained the best position among all the particles of the neighborhood. The indices of the
particles are considered in a cyclic order, i.e., 1 is the index that follows after N. At each iteration,
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Table 1: Computed solutions for the two models.

Model Norm A B c K
2 2377.10 2447.27 236.68
Model 1 123 2391.74 2468.11 246.08
s 2397.33 2588.62 283.42
2 1626.50 1431.98 0.106 178.76
Model 2 25 1624.57 1464.39 0.106 187.87
s 1686.59 1582.49 0.096 202.47

the swarm is updated according to the equations [2, 8],

o= x [vgk) +ar (p,(k) - ﬂfﬁk)) + car (pg'f) - wz(k))] : (3)
m$k+1) _ xgk) i v§k+1)7 4)
where ¢ = 1,...,N; k is the iterations’ counter; x is a parameter called constriction factor that

controls the velocity’s magnitude; ¢; and ¢y are positive acceleration parameters, called cognitive
and social parameter, respectively; and 71, ro are random vectors that consist of random values
uniformly distributed in [0,1]. All vector operations in Egs. (3) and (4) are performed compo-
nentwise. A stability analysis of PSO, as well as recommendations regarding the selection of its
parameters are provided in [2, 8].

PSO has been applied on ¢;—norm errors—in—variables data fitting problems with very promising
results, exhibiting superior performance even than the well-known Trust Region methods [5].
Therefore it was selected for the error minimization in our problem using the ¢;, £ and £.,—norms.

4 Results and Discussion

The PSO algorithm was used for the determination of parameters of the two models defined in
Egs. (1) and (2), minimizing the error defined through the ¢;, ¢> and f,,—norms, which will be
denoted as L1, L2 and L3, respectively. We concentrated on the case of the control point B2,
which had the largest displacement in our set of observations. The data set for B2 consisted of
404 observations. For the PSO, the default parameters, x = 0.729 and ¢; = ¢; = 2.05 were used.
The swarm size was equal to 60 for Model 1 and 80 for Model 2. The algorithm was let to run for
5000 iterations. We conducted 100 independent experiments for each model and norm.

In all experiments, the same solutions (model parameters) were computed and they are reported
in Table 1. The absolute error for each observation was also recorded for the detected model
parameters. The mean value and the standard deviation of these absolute error values as well as
the typical error for a single observation,

2
50 =4/—=

m—n’

where m is the number of observations and n is the dimension of the problem were computed for
the three norms. For Model 1, the plot of the actual data along with the corresponding model
values for each norm, a boxplot with the distribution of the absolute error for the 404 observations
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Figure 2: Plot of the actual data along with the corresponding model values for each norm (left),
boxplot with the distribution of the absolute error for all observations for the computed model
parameters (center), and statistics of absolute error (right) for Model 1. Labels L1, L2 and L3
correspond to the norms £y, £» and £, respectively.
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Figure 3: Plot of the actual data along with the corresponding model values for each norm (left),
boxplot with the distribution of the absolute error for all observations for the computed model
parameters (center), and statistics of absolute error (right) for Model 2. Labels L1, L2 and L3
correspond to the norms ¢;, £» and £, respectively.

for the computed model parameters, as well as a bar plot with the mean value and standard
deviation of absolute error and the quantity S0, are depicted in Figure 2. Figure 3 reports the
corresponding graphs for Model 2. The boxplot produces a box and whisker plot for the sample
of 404 absolute error values. The box has lines at the lower quartile, median, and upper quartile
values. The whiskers are lines extending from each end of the box to show the extent of the rest
of the data. Outliers are data with values beyond the ends of the whiskers. Notches represent a
robust estimate of the uncertainty about the medians for box to box comparison. All displacement
units in figures are in millimeters (mm).

In the case of Model 1, the £;—norm exhibited the smallest mean absolute error, followed by
f> and .. The latter norm had the smallest standard deviation of absolute error, which implies
its robustness. Finally, the best value of S0 was obtained using the £s—norm. Model 2 provided a
far better fit, although the corresponding model is more complex and harder to be incorporated
in further analysis. The same comments with Model 1 can be made for the mean value, standard
deviation and S0, although the differences between the different norms are smaller than in the
case of Model 1. The ¢/, ,—norm is much better, especially at the edges of the intervals covered by
observations.

Concluding, the three different approaches through PSO using ¢1, £ and {.,—norms resulted
in an efficient scheme that optimizes the exponential decay models considered for the curve fitting
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problem of the Polyfyto Dam, providing further intuition on tackling similar problems. Further
work is needed toward the direction of estimating the future trends of the landslide.
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