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Abstract: We introduce Unified Particle Swarm Optimization, a new scheme that harnesses
the local and global variants of the standard Particle Swarm Optimization algorithm,
combining their exploration and exploitation abilities. Convergence in probability can be
proved for the new approach in unimodal cases and preliminary results justify its superiority
against the standard Particle Swarm Optimization.

Keywords: Optimization, Particle Swarm Optimization, Stochastic Algorithms, Swarm
Intelligence

Mathematics Subject Classification: 90C26, 90C30, 90C59

1 Introduction

Particle Swarm Optimization (PSO) is a stochastic, population-based optimization method. Up—
to—date it has been applied successfully on a plethora of test problems in diverse scientific fields [1,
5, 6, 7). Its efficiency can be attributed to the information exchange among the search points that
constitute the population. There are two main variants of PSO with respect to the information
exchange scheme that is used, each with different exploration and exploitation characteristics.
Practitioners usually select the most proper variant based on their experience as well as on the
special characteristics of the problem at hand. Unified Particle Swarm Optimization is a new
scheme that harnesses the two variants of PSO in a unified scheme that combines their exploration
and exploitation capabilities. Under assumptions, convergence in probability can be proved for the
new approach. Preliminary results on a widely used set of benchmark problems are indicative of
the new scheme’s efficiency.

2 Unified Particle Swarm Optimization

Emergent behavior in socially organized colonies constituted a great source of inspiration for com-
puter scientists. Ant colonies, bird flocks and fish schools that could tackle efficiently combinatorial
and numerical optimization problems were modeled and applied successfully on numerous bench-
mark and real-life problems, giving rise to the class of swarm intelligence algorithms [3].

PSO is a swarm intelligence optimization algorithm developed by Eberhart and Kennedy [3].
It employs a population called a swarm, S = {z1,..., 2N}, of search points called particles, z; =
(%i1,Tio,- - Tin) ', 4 = 1,..., N, which probe the search space, S C R", simultaneously. The
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algorithm works iteratively. Each particle is initialized to a random position in the search space.
Then, at each iteration, each particle moves with an adaptable velocity, v; = (vi1,Vi2, ..., Vin) ',
while retaining in a memory the best position, p; = (pi1,Piz;---,Pin)| € S, it has ever visited
in the search space. In minimization problems, best positions have lower function values. The
particle’s movement is also influenced by the experience of the rest particles, i.e., by their best
positions. This is performed through the concept of neighborhood. More specifically, each particle
is assigned a neighborhood which consists of some prespecified particles. Then, the particles that
comprise the neighborhood share their experience by exchanging information. There are two main
variants of PSO with respect to the number of particles that comprise the neighborhoods. In the
global variant, the whole swarm is considered as the neighborhood of each particle, while, in the
local variant, smaller neighborhoods are used. Neighboring particles are determined based rather
on their indices than their actual distance in the search space.

Let g; be the index of the best particle in the neighborhood of z;, i.e., the index of the particle
that attained the best position among all the particles of the neighborhood. The particles are
considered in a ring topology. Thus, their indices are considered in a cyclic order, i.e., 1 is the
index that follows after N. At each iteration, the swarm is updated according to the equations [1, 7],

o = x [%W +ar (pﬁk) - wgk)) +car2 (pé'f) - wﬁk))] ; (1)
=l e, ©)
where ¢ = 1,..., N; k is the iterations’ counter; x is a parameter called constriction factor that

controls the velocity’s magnitude; ¢; and ¢y are positive acceleration parameters, called cognitive
and social parameter, respectively; and ry, ro are random vectors that consist of random values
uniformly distributed in [0,1]. All vector operations in Egs. (1) and (2) are performed compo-
nentwise. A stability analysis of PSO, as well as recommendations regarding the selection of its
parameters are provided in [1, 7].

The performance of a population—based algorithm depends on its ability to perform global
search of the search space (exploration) as well as more refined local search (exploitation). Proper
balance between these two characteristics result in enhanced performance. In the global variant
of PSO, all particles are attracted by the same overall best position, converging faster toward
specific points. Thus, it has better exploitation abilities. On the other hand, in the local variant,
the information of the best position of each neighborhood is communicated slowly to the other
particles of the swarm through their neighbors. Therefore, the attraction to specific best positions
is weaker, hindering the swarm from getting trapped in locally optimal solutions. Thus, the local
variant of PSO has better exploration ability. Proper selection of the neighborhood’s size affects the
trade—off between exploration and exploitation. The selection of the most proper neighborhood
size is an open problem. In practice, it is up to the practitioner and it is based solely on his
experience.

Unified Particle Swarm Optimization (UPSQO) is a new scheme that harnesses the global and
the local variant of PSO, thereby combining their exploration and exploitation capabilities. Let
g,?’““) denote the velocity update of the ith particle, x;, in the global PSO variant, while £§k+1)
denotes the corresponding velocity update for the local variant. Then, according to Eq. (1),

gz.(’““) = X [vz(k) +cir (p,(k) - a:E'“)) + cor2 (pg'“) - mﬁk))] ) 3)

£§k+1) = [Uz(k) +err) (pz(k) - :cgk)) + corh (Péf) - xgk))] J (4)

where k denotes the iteration number; g is the index of the best particle of the whole swarm (global
variant); and g; is the index of the best particle in the neighborhood of z; (local variant). These



870 K.E. Parsopoulos and M.N. Vrahatis

two search directions can be combined in a single equation, resulting in the main UPSO scheme,

UEHD = gD 4 (1 =) gD (5)
mgkﬂ) = mgk)—FUi(kH), (6)

where u € [0,1] is a parameter called the unification factor, which determines the influence of the
global and local components in Eq. (5). For v = 1, Eq. (5) is equivalent to the global PSO variant,
while for u = 0 it is equivalent to the local PSO variant. For all intermediate values, u € (0, 1), we
obtain composite variants of PSO that combine the exploration and exploitation characteristics of
its global and local variant.

UPSO can be further enhanced by incorporating a stochastic parameter in Eq. (5) that imi-
tates the mutation of evolutionary algorithms, however, it is directed toward a direction which is
consistent with the PSO dynamics. Thus, Eq. (5) can be written as,

U =y u g 4+ (1 — ) £FY, (7)
which is mostly based on the local variant or, alternatively,
U =Gt s (1) £, ®)

which is mostly based on the global variant, where r3 ~ N(u,02I) is a normally distributed
parameter, and [ is the identity matrix.

A proof of convergence in probability can be given for the schemes of Egs. (7) and (8). The proof
follows the analysis of Matyas [4] for stochastic optimization algorithms. Assume that F': S - R
is a unimodal objective function, xopt is its unique minimizer in S, and Fopy = F(zopt). Also,
let mgk) be the ith particle of the swarm and pgk) be its best position in the kth iteration. The
proof does not take into consideration the index i, therefore we will refer to them as z(*) and p(*®),
respectively. The level set of F' at a constant value, K, is defined as G[K]| = {z : F(z) < K}. We
assume that G[K] # 0, for all K > F,,. Let A®HD = (1 —¢) £+ Bl+1) — o, G+ - and
f(2) be the probability distribution of r3 B*), with rs ~ N (u,02I). The choice of the Normal
distribution as the probability distribution of r3, guarantees that f(z) # 0, for all z, although the
proof holds for any choice of probability distribution for r3, as long as this relation holds. We
define as a successful step of UPSO at iteration k, the fact that F (z(**)) < F (p(¥)) — ¢, for a

prescribed € > 0. The probability of a successful step from z(¥) is given by

Pr(z) = /G[F(p)_s] f(z —z)dz.

Then, based on the analysis of Matyas [4], the following theorem is straightforwardly proved:

Theorem 1 Let F(z) have a unique minimum in S, G[K| # 0, for all K > Fop, and f(z) # 0
for all z. Then, at least one sub—sequence of best positions, {p(k) }, of any particle, x, of the swarm
in UPSO tends in probability to xopt.

Proof. Let 6(z) = {z : o(z,z) < &}, & > 0, be the d—neighborhood of a point z. We will prove
that for any 6 > 0 it holds that,

i 2 {0 (5 20) >3} =i P[5 ¢t} =0,

i.e., the probability that the distance g (p(k),xopt) > 0, or equivalently that p(¥) ¢ §(zopt), tends
to zero. If we denote by Fs the minimum value of F' on the boundary of §(zopt), we shall have
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Fs > Fop. We can now define ¢ = ¢(d) such that 0 < €(0) < F5 — Fopt. For all previous best
positions, p ¢ 6(Zept), of the particle under consideration, the inequality F'(p) — & > Fypy, is valid.
Furthermore, from the assumptions of the theorem, G[F(p) — €] is a non—empty region. Since
f(z) > 0 for all z, there will exist an a > 0, such that Pr(x) > «, i.e., the probability of a
successtul step from z is positive (although in some cases it may become very small).

Let F (z) = F (piV) be the initial function value of z and p, respectively (recall that the ini-
tial position and the initial best position of a particle coincide). We denote 7 = (F (pV)) — F) /e,
and m = |7], i.e., m is the largest integer less than 7. From the design of the PSO and UPSO
algorithm, if even m + 1 steps turn out to be successful, then all the subsequent points of the
sequence {p(} lie in 0(zopy). Consequently, the probability P {p¥) ¢ &(zop¢)} is less than or
equal to the probability that the number of successful steps does not exceed m, i.e.,

k
P{p® ¢ s(wop) } < P {Zyu) < m} :

i=1

where, y(& = 1, if there was a successful step in iteration i, and y(Y = 0, otherwise. The latter
probability increases with a decrease in the probability of successful steps, and since Pp(x) > a,
it obeys the well-known Newton’s theorem (on the binomial probability distribution),

k m
P {Zy(i) < m} < z (f)a’(l _ a)kfi’
=1 1=0

where k is the number of steps (iterations) taken. Further, when k > 2m and a < 0.5,

Z (E)a"(l —a)f 7t < (m+ 1)(:)(1 —a)f = mn:-!lk(k— Dk—2)---(k—m+1)(1—-a)

1
=0

m+1
m!

< Em(1—a)k.

Consequently, P {o(p®), zop;) > 6} < ZELE™ (1 — )k, Thus, for a > 0, it is clear that,

lim &™(1 —a)k =0,
k— o0
and the theorem is proved. B
We must note that the best position p of the particle x may be replaced by the overall best
position of the whole swarm, with minor modifications in the proof.

3 Experimental Results and Discussion

The performance of UPSO was investigated on the test set used by Trelea in [7], and it consists
of the Sphere, Rosenbrock, Rastrigin, and Griewank function in 30 dimensions, as well as the
Schaffer’s function in 2 dimensions. The test functions are denoted as Fy, F», F3, Fy, and Fj,
respectively. For comparison purposes, the PSO configuration reported in [7] was also adopted
here. Specifically, two sets of parameters were used, denoted as Set 1 and Set 2, respectively. Set 1
consists of x = 0.6 and ¢; = ¢2 = 2.833, which is the equivalent of the set a = 0.6 and b = 1.7 in [7],
and Set 2 consists of x = 0.729, ¢; = ¢ = 2.05, which is the equivalent of the set a = 0.729 and
b =1.494 in [7]. The maximum number of iterations was 10000. The swarm was initialized in the
range [—100, 100]3° for the Sphere function, [-30, 30]*° for the Rosenbrock function, [-5.12,5.12]3°
for the Rastrigin function, [—600, 600]3° for the Griewank function, and [—100, 100]? for Schaffer’s
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Table 1: Results for UPSO. Success rates (in parenthesis) and expected number of function eval-
uations are reported.

Success Rates & Expected Number of Function Evaluations
u=0.9 u=0.1
np=0 nw=1 np=0 nw=1
N Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
F (Sphere). Best value reported in [2, 7] is (1.00)10320
15 (1.00)3078 (1.00)3754 (1.00)3981  (1.00)5268  (1.00)2892  (1.00)3658  (1.00)3876  (1.00)5401
30 (1.00)6588 (1.00)6924  (1.00)6852  (1.00)8807  (1.00)6278  (1.00)7011  (1.00)6579  (1.00)8427
60 (1.00)12174 (1.00)14679 (1.00)11370 (1.00)14238 (1.00)12771 (1.00)14640 (1.00)11433 (1.00)14202
F5 (Rosenbrock). Best value reported in [2, 7] is (0.50)15930
15 (1.00)2138 (1.00)2413  (1.00)4950 (0.95)10451  (1.00)2193  (1.00)2570 (1.00)3656 (1.00)10333
30 (1.00)4385 (1.00)4835  (1.00)6765 (1.00)17714  (1.00)4223  (1.00)5330  (1.00)8601 (1.00)11466
60 (1.00)8505 (1.00)9936 (1.00)12186 (1.00)16626  (1.00)8040  (1.00)9765 (1.00)15450 (1.00)14688
F3 (Rastrigin). Best value reported in [2, 7] is (0.90)4667
15 (0.90)16541 (1.00)8412  (1.00)4373 (1.00)11315  (1.00)3820 (1.00)2889  (1.00)6846  (1.00)7506
30 (1.00)8766 (1.00)7233  (1.00)8744 (1.00)11673  (1.00)5805  (1.00)9294  (1.00)8196 (1.00)10256
60 (1.00)11475 (1.00)11640 (1.00)15882 (1.00)19437  (1.00)8433 (1.00)10293 (1.00)14013 (1.00)17934
Fy (Griewank). Best value reported in [2, 7] is (1.00)9390
15 (1.00)3161 (1.00)3275 (1.00)4157 (1.00)5473 (1.00)3312 (1.00)3620 (1.00)4343 (1.00)5383
30 (1.00)6507 (1.00)7229  (1.00)6914  (1.00)8114  (1.00)6009  (1.00)6870  (1.00)6516  (1.00)8300
60 (1.00)11844 (1.00)14019 (1.00)10725 (1.00)13230 (1.00)12150 (1.00)14640 (1.00)10839 (1.00)13458
F5 (Schaffer). Best value reported in [2, 7] is (0.75)6440
15 (0.90)24153 (0.85)20927 (0.95)21922 (0.95)37092 (1.00)37790 (1.00)18591 (1.00)36664 (0.95)19234
30 (1.00)16716 (1.00)19437 (1.00)22254 (1.00)36020 (1.00)25433 (1.00)26211 (1.00)29874 (1.00)22680
60 (1.00)25425 (1.00)24072 (1.00)21531 (1.00)19203 (1.00)33411 (1.00)20115 (1.00)21456 (1.00)22764

function, while the corresponding error goals were 0.01, 100, 100, 0.1, and 10~® [7]. For each
function, 20 experiments were performed, using three different swarm sizes, 15, 30, and 60. The
particles were allowed to move anywhere in the search space without constraints on their velocity.
Regarding the configuration of UPSO, two cases were investigated, namely the case of Eq. (8) with
unification factor v = 0.9, which is closer to the global PSO variant used in [7], and Eq. (7) with
u = 0.1, which is closer to the local PSO variant. For both cases, two different configurations of the
distribution of r3 were considered, namely, one with mean value p = 0, and one with mean value
p = 1. The standard deviation of r3 was ¢ = 0.01 in all cases, to avoid wide deterioration of the
PSO dynamics. The neighborhood radius for the determination of the local PSO search direction,
L;, in Egs. (7) and (8), was 1, i.e., the neighbors of the ith particle, x;, were the particles z;_1
and z;y1. This selection was made in order to take full advantage of the properties of the local
version, since the larger the neighborhoods the closer is the local variant to the global one.

For each parameter configuration and test function, the success rate of UPSO, namely the
fraction of the experiments in which the error goal was achieved, as well as the corresponding
expected number of function evaluations, defined as (Number of Particles)x (Average Number
of Iterations)/(Success Rate) [7], were recorded and they are reported in Table 1. The results
were very promising. The success rate never fell under 0.90 (i.e., 90%), while (in most cases)
the expected number of function evaluations was smaller than the values reported in [7] and [2].
UPSO achieved success rates of 100% even in cases where the plain PSO had very low success
rates. For example, in the cases of F4 and F5 and a swarm of 15 particles, the plain PSO with the
parameters of Set 1 had a success rate of just 0.35 and 0.45, respectively, as reported in [7], while
UPSO’s success rate was higher than 0.90 for any set of parameters. Furthermore, the success rate
and the lowest expected number of function evaluations for the test functions F;—F5, as reported
in [7], was (1.0)10320, (0.50)15930, (0.90)4667, (1.00)9390, (0.75)6440, respectively. In UPSO, the
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corresponding numbers were (1.00)2892, (1.00)2138, (1.00)2889, (1.00)3161, and (1.00)16716 (for
each case the lowest expected number of function evaluations is bold faced in the table). We must
notice that in the case of Fj, the number 6440 reported in [7] corresponds to a success rate equal
to 0.75, while the number 16716 of UPSO corresponds to a success rate equal to 1.00.

Regarding the different configurations of UPSQO, the version of Eq. (7) with u = 0.1 and p =0
had the better overall performance, probably due to the better exploration ability of the local
PSO variant, which is favored in this scheme. Moreover, the Set 1 proposed by Trelea in [7]
outperformed the (most popular) Set 2. Also, UPSO with p = 0 outperformed that with p = 1,
in most problems.

Further experiments were performed using the plain UPSO scheme of Eq. (5), both in static
and dynamic optimization problems, revealing that the values v = 0.5 and v = 0.2 result in
enhanced performance of the algorithm. The mathematical properties behind this effect are still
under investigation, along with possible correlations between the UPSO scheme and PSO variants
with adaptive neighborhood size.

4 Conclusions

A Unified Particle Swarm Optimization (UPSO) that aggregates the local and the global variant
of PSO in a unified scheme has been introduced. The proposed approach seems to exploit the
good properties of both variants and preliminary experiments on the test set used in [7] justify
its efficiency. Further investigation is required to analyze the dynamics of UPSO. A self-adaptive
scheme that will exploit knowledge of the characteristics of the objective function, as well as the
performance of the algorithm, to control the unification factor is currently under development,
along with an analysis of its convergence rates.
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