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Abstract— Periodic orbits of nonlinear mappings play a central
role in the study of dynamical systems. Traditional gradient–
based algorithms, such as the Newton–family algorithms, have
been widely applied for the detection of periodic orbits, through
the minimization of a properly defined objective function. How-
ever, in the case of discontinuous/nondifferentiable mappings and
mappings with poorly behaved partial derivatives, the gradient–
based approach is not valid. In such cases, stochastic optimization
algorithms have proved to be a valuable tool. In this paper, a
new approach for computing periodic orbits through Particle
Swarm Optimization, is introduced. The results indicate that
the algorithm is robust and efficient. Moreover, the method can
be combined with established techniques, such as Deflection, to
detect several periodic orbits of a mapping. Finally, the minor
effort which is required for the implementation of the proposed
approach, renders it an efficient alternative for computing peri-
odic orbits of nonlinear mappings.

I. I NTRODUCTION

Nonlinear mappings can be used to model conservative or
dissipative dynamical systems [1]–[13]. Central role in the
analysis of such mappings is played by points, which are
invariant under the mapping, calledfixed pointsor periodic
orbits [13]. A point

X = (x1, . . . , xn)> ∈ Rn,

is calledfixed pointof a mapping

Φ(X) =
(
Φ1(X), . . . , Φn(X)

)> : Rn → Rn,

if Φ(X) = X, and it is called afixed point of orderp, or a
periodic orbit of periodp, if

X = Φp(X) ≡ Φ(Φ(. . . (Φ(X)) . . .))︸ ︷︷ ︸
p times

. (1)

Detecting periodic orbits of nonlinear mappings is one of the
most challenging problems of nonlinear science, since analytic
expressions for evaluating periodic orbits can be given only if
the mapping is a polynomial of low degree and the period is
low. Traditional methods, such as the Newton–family methods
and related classes of algorithms, often fail, as they are affected
by the mapping evaluations assuming large values in the
neighborhood ofsaddle–hyperbolicperiodic orbits, which are

unstable in the linear approximation. Generally, the failure
of these methods can also be attributed to the nonexistence
of derivatives or poorly behaved partial derivatives in the
neighborhood of the fixed points.

Swarm Intelligencemethods are stochastic optimization,
machine learning and classification systems, that model in-
telligent behavior. They are intimately related to the Evolu-
tionary Computation field, which consists of algorithms that
are motivated from, and roughly based on, biological genetics
and natural selection. A common characteristic of all these
algorithms, is the exploitation of a population of search points
that probe the search space simultaneously. Particle Swarm
Optimization (PSO) belongs to the category of Swarm Intelli-
gence methods. The dynamic of the population resembles the
collective behavior and self–organization of socially intelligent
organisms [14]. The individuals of the population exchange
information and benefit from their discoveries as well as the
discoveries of the other companions, while exploring promis-
ing areas of the search space. In the minimization context,
such areas posses low function values.

In this paper, a new efficient numerical method for com-
puting periodic orbits of nonlinear mappings is introduced.
This method is based on the minimization of a nonnegative
objective function through PSO. The objective function is
constructed so that its global minimizers are also periodic
orbits of a specific periodp, of the original mapping. Thus,
detecting the global minimizers of the objective function
implies the periodic orbits of the specific period. To detect
several periodic orbits of the desired type, the Deflection
technique is applied.

The rest of the paper is organized as follows: the PSO
algorithm is briefly described in Section II. In Sections III and
IV, the Deflection technique, for detecting several minimizers
of a function, as well as the proposed approach for the
detection of periodic orbits, are described, respectively. The
experimental results are reported in Section V, and conclusions
are derived in Section VI.



II. T HE PARTICLE SWARM OPTIMIZATION ALGORITHM

PSO is a stochastic machine learning optimization algo-
rithm [14]–[17]. The ideas that underlie PSO are inspired not
by the evolutionary mechanisms encountered in natural selec-
tion, but rather by the social dynamics of flocking organisms,
such as swarms, which are governed by fundamental rules
like nearest–neighbor velocity matching and acceleration by
distance [15], [17].

PSO is a population based algorithm, i.e., it exploits a
population of individuals to probe promising regions of the
search space simultaneously. In this context, the population
is called swarm and the individuals (i.e., the search points)
are calledparticles. Each particle moves with an adaptable
velocity within the search space, and retains a memory of the
best position it ever encountered, i.e., the position of the search
space that possesses the lowest function value so far. In the
global variant of PSO, the best position ever attained by all
individuals of the swarm is communicated to all the particles.
In the local variant, each particle is assigned to a neighborhood
consisting of a prespecified number of particles. In this case,
the best position ever attained by the particles that comprise
the neighborhood is communicated among them [17]. The
present paper, considers the global variant of PSO only.

Assume an–dimensional search space,S ⊂ Rn, and a
swarm consisting ofN particles. Each particle is in effect
a n–dimensional vector,

Xi = (xi1, xi2, . . . , xin)> ∈ S, i = 1, . . . , N.

The velocities of the particles are alson–dimensional vectors,

Vi = (vi1, vi2, . . . , vin)>, i = 1, . . . , N.

The best previous position encountered by thei–th particle is
a point inS, denoted by

Pi = (pi1, pi2, . . . , pin)> ∈ S.

Assumeg to be the index of the particle that attained the best
previous position among all the individuals of the swarm, i.e.

f(Pg) 6 f(Pi), i = 1, . . . , N,

wheref is the objective function under consideration. Then,
the swarm is manipulated according to the equations [18]:
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where i = 1, 2, . . . , N ; χ is a parameter calledconstriction
factor; c1 and c2 are two fixed, positive parameters called
cognitiveandsocialparameter respectively;r1, r2, are random
numbers uniformly distributed in the interval[0, 1]; and t,
stands for the counter of iterations. Alternatively, the following

relation can be used for the velocity’s update, instead of
Eq. (2) [19]–[21]:
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wherew is a parameter calledinertia weight. Both the con-
striction factor and the inertia weight are used as mechanisms
to control and adjust the magnitude of the velocities, to
alleviate the problem of swarm explosion and divergence [22].
Often, a thresholdVmax on the absolute value of the velocity,
is incorporated, in addition to the aforementioned parameters.

The inertia weight,w, in Eq. (4), is employed to manipulate
the impact of the previous history of velocities on the current
velocity. Therefore,w resolves the trade–off between the
global (wide–ranging) and local (nearby) exploration ability
of the swarm. A large inertia weight encourages global ex-
ploration (moving to previously not encountered areas of the
search space), while a small one promotes local exploration,
i.e., fine–tuning the current search area. A suitable value for
w provides the desired balance between the global and local
exploration ability of the swarm, and consequently improves
the effectiveness of the algorithm. Experimental results suggest
that it is preferable to initialize the inertia weight to a large
value, giving priority to global exploration of the search space,
and gradually decrease it, so as to obtain refined solutions [20],
[21]. This finding is intuitively very appealing. In conclusion,
an initial value ofw around1 and a gradual decline towards
0 is considered a proper choice forw. On the other hand, the
value of the constriction factor is typically obtained through
the formula [18]:

χ =
2κ

|2− φ−
√

φ2 − 4φ| , (5)

for φ > 4, where φ = c1 + c2, and κ = 1. Different
configurations ofχ, as well as a theoretical analysis of the
derivation of Eq. (5), can be found in [18]. The constriction
factor version of PSO has proved to be considerably faster
than the inertia weight one.

Proper fine–tuning of the parametersc1 and c2, results
in faster convergence and alleviation of local minima. An
extended study of the acceleration parameterc, in the primary
version of PSO, is provided in [23]. As default values,c1 =
c2 = 2 have been proposed, but experimental results indicate
that alternative configurations, depending on the problem at
hand, can produce superior performance [16], [18], [24].

The swarm and the velocities are randomly initialized,
following a uniform distribution, within the search space.
However, more sophisticated initialization techniques can en-
hance the overall performance of the algorithm [16], [25]. For
uniform random initialization in a multidimensional search
space, a Sobol Sequence Generator can be used [26].

III. D ETECTING FURTHER M INIMIZERS THROUGH

DEFLECTION

PSO is able to detect one, in general arbitrary, minimizer of
the objective function, per run. However, in some applications,



several minimizers of the objective function are required.
Restarting the algorithm does not guarantee the detection of
a different minimizer. In such cases, theDeflectiontechnique
can be used. This technique consists of a transformation of the
objective functionf , once a minimizerX∗

i , i = 1, . . . , nmin,
has been detected [27]:

F (X) = Ti(X; X∗
i , λi)−1f(X), (6)

with
Ti(X; X∗

i , λi) = tanh(λi‖X −X∗
i ‖), (7)

whereλi, i = 1, . . . , nmin, are nonnegative relaxation param-
eters, andnmin is the number of the detected minimizers.
The transformed function has exactly the same minimizers
with the original f , with the exception ofX∗

i . Alternative
configurations of the parameterλ result in different shapes of
the transformed function. For larger values ofλ the impact of
the Deflection technique on the objective function is relatively
mild. On the other hand, using0 < λ < 1 results in a
function F with considerably larger function values in the
neighborhood of the deflected minimizer. The effect of the
Deflection procedure on the functionf(x) = cos2(x) + 0.1,
at the pointx∗ = π

2 , is illustrated in Fig. 1
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Fig. 1. The effect of the Deflection procedure on the functionf(x) =
cos2(x) + 0.1, at the pointx∗ = π

2
, for λ = 1 (up), andλ = 0.5 (down).

Note the change in the scaling of the two figures.

A point to notice is that the Deflection technique should not
be used on its own on a functionf , whose global minimum is
zero. The reason is that the transformed function,F , of Eq. (6),
will also have zero value at the deflected global minimizer,
since f will be equal to zero at such points. This problem
can be easily alleviated by takinĝf = f + c, where c >
0 is a constant, instead off . The function f̂ possesses all
the information regarding the minimizers off , but the global
minimum is increased from zero toc. The value ofc does not
affect the performance of the algorithm and, thus, if there is
no information regarding the global minimum off , it can be
selected arbitrarily large.

IV. T HE PROPOSEDAPPROACH

Let

Φ(X) =
(
Φ1(X), . . . , Φn(X)

)> : Rn → Rn,

be a nonlinear mapping,

X = (x1, . . . , xn)> ∈ Rn,

be a periodic orbit of periodp of Φ, andΘn = (0, . . . , 0)> be
the origin ofRn. Then, by definition, the following relation
holds:

Φp(X) = X ⇒ Φp(X)−X = Θn ⇒



Φp
1(X)

...
Φp

n(X)


−




x1

...
xn


 =




0
...
0


 ⇒





Φp
1(X)− x1 = 0,

...
Φp

n(X)− xn = 0.

(8)

We can define, now, an objective functionf ,

f(X) =
n∑

i=1

(Φp
i (X)− xi)

2
, (9)

which is nonnegative, and its global minimizers, for which
f(X) = 0, are periodic orbits of periodp of the mappingΦ.
Thus, minimizingf is equivalent to computing the periodic
orbits of periodp of Φ.

The shape of the objective functionf depends heavily on
the mappingΦ. If Φ is continuous and differentiable, then the
minimization can be effectively performed through gradient–
based techniques. Many applications, however, involve discon-
tinuous/nondifferentiable mappings. In such cases, stochastic
optimization algorithms, that require function values solely,
can be applied.

According to the proposed approach, the objective function
f is minimized through the PSO algorithm. Possible discon-
tinuities of f do not affect its convergence. In Figs. 2 and 3
the phase plot as well as the contour plot of the obtained
function f for the 2–dimensional H́enon map, are exhibited,
for cosα = 0.24 and cosα = 0.8 respectively, while the 3–
dimensional plot of the obtainedf for the Standard Map, as
well as its contour plot is displayed in Fig. 4 (the definitions of
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Fig. 2. Phase plot of the H́enon map forcos α = 0.24 (up) and the contour
plot of the corresponding objective function forp = 5 (down). Darker lines
denote lower function values.

the aforementioned mappings are given in Section V). In the
latter case, the multitude of discontinuities, precludes the use
of a deterministic optimization algorithm for the minimization
of f .

Let X∗ be a global minimizer off and, thus, periodic orbit
of period p of Φ. The stability of X∗ can be determined
through established techniques [28], [29]. The several types
of an unstable orbit are exhibited and discussed in [29].The
restp− 1 periodic orbits of the same period and type can be
obtained throughp − 1 subsequent iterations of the mapping
Φ on X∗. Periodic orbits of the same period, but different
stability type, can be obtained by applying the Deflection
technique on the already detected periodic orbits, and then
apply the PSO algorithm on the deflected function. The
proposed algorithm is described in pseudocode in Table I.

A periodic orbit of period 1 is also periodic orbit of any
period p > 1. The problem of detecting periodic orbits of
period 1, instead of periodic orbits of the desired period, can
also be alleviated through the application of Deflection on such
a periodic orbit, as soon as it is detected.
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Fig. 3. Phase plot of the H́enon map forcos α = 0.8 (up) and the contour
plot of the corresponding objective function forp = 1 (down). Darker lines
denote lower function values.

V. EXPERIMENTAL RESULTS

In this section, the performance of PSO, is investigated on
different test problems. Theconstriction factorversion of PSO
has been used. In previous work, theinertia weight version
was used with also promising results in some of the test
problems presented here, though the required computational
time was larger [30]. This choice was based solely on the faster
convergence rates that characterize it, as well as the promising
results attained through it. Default optimal values of the PSO’s
parameters, which are used widely in the literature, have been
used:χ = 0.729, c1 = c2 = 2.05. As stopping criterion of
the algorithm, the detection of the global minimum of the
objective function, with an accuracy of10−10, has been used.
The swarm’s size is problem dependent, thus, it has been set
to different values regarding the problem at hand. Moreover,
whenever Deflection has been used, the objective function has
been subjected to a “lift” by a parameterc = 1, to alleviate its
disability to work properly on functions with global minimum
equal to zero, as it has been described in Section III. For each
test problem, periodic orbits of different periods as well as the
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corresponding required number of iterations are reported.
TEST PROBLEM 1. [1], [6], [7] (Hénon 2–dimensional map)
This mapping is defined by the following equation:

Φ(X) =
(

cosα − sin α
sinα cos α

)(
x1

x2 − x2
1

)
⇔

{
Φ1(X) = x1 cosα− (x2 − x2

1) sin α,
Φ2(X) = x1 sin α + (x2 − x2

1) cos α,

where α ∈ [0, π] is the rotation angle. The corresponding
phase plots forcos α = 0.24 and cosα = 0.8, as well as
the contour plot of the obtained objective function forp = 5
in the first case and forp = 1 in the latter case, in[−1, 1]2,
are displayed in Figs. 2 and 3, respectively.

The objective function forcos α = 0.8 andp = 1 has two
global minimizers, one at the origin, and another in a narrow
channel at the right part of the contour plot, which corresponds
to a hyperbolic fixed point [1]. Due to the shape of its basin of
attraction, it is difficult to detect the latter fixed point through
a deterministic algorithm, unless an initial point is selected in
its close vicinity. The proposed technique has been applied on

TABLE I

THE PROPOSED ALGORITHM.

Input: MappingΦ, periodp, desired number of deflectionsK.
Step 1 Set the stopping flag,SF← 0, and the counter,k ← 0.
Step 2 While (SF= 0) Do

Apply PSO
Step 3 If (PSO detected a solutionX1) Then

Compute all points of the same type and period,
X2, . . . , Xp, by iterating the map.

Step 4 If (k < K) Then
Apply Deflection onX1, . . . , Xp, and set
the counterk ← k + 1.

Else
Set SF← 1

End If
Else

Write “No further solution was detected”
Set SF← 1

End If
End While

Step 5 Report all detected solutions (if any).

TABLE II

PERIODIC ORBITS OF THEHÉNON MAP.

cosα Period Periodic Orbit Iterations
0.8 1 ( 0.6666755407, 0.2222243088)> 56

1 ( 0.0000147632, 0.0000051785)> 46
0.24 1 ( 0.0000064371, 0.0000043425)> 55

5 ( 0.5696231776, 0.1622612843)> 54
5 ( 0.5672255008, −0.1223401431)> 47

11 (−0.4817107655, 0.6091676453)> 57
43 ( 0.2576802556, 0.0196850254)> 61
97 ( 0.2310634711, 0.3622185202)> 59

131 ( 0.4173023935, 0.0842137784)> 58
149 ( 0.2232720401, 0.2588270953)> 68

this mapping for the detection of both fixed points. After the
detection of the first (which can be any of the two fixed points),
Deflection is applied and a new run starts on the deflected
function. In all experiments the swarm size has been equal
to 150. Periodic orbits of different periods, detected through
the proposed technique, as well as the corresponding required
number of iterations, are reported in Table II.
TEST PROBLEM 2. [31] (Standard Map) This mapping is
discontinuous and it is defined by the following equation:

{
Φ1(X) =

(
x1 + x2 − k

2π sin(2πx1)
)

mod 1
2 ,

Φ2(X) =
(
x2 − k

2π sin(2πx1)
)

mod 1
2 ,

wherek = 0.9, and

y mod
1
2

=





(y mod 1)− 1, if (y mod 1) > 1
2 ,

(y mod 1) + 1, if (y mod 1) < − 1
2 ,

(y mod 1), otherwise.

PSO has been applied on this mapping, using the same
parameters as for the Hénon mapping, and results are reported
in Table III.
TEST PROBLEM 3. [32] (Gingerbreadman Map) This nondif-
ferentiable mapping is defined by the following equations:

{
Φ1(X) = 1− x2 + |x1|,
Φ2(X) = x1,



TABLE III

PERIODIC ORBITS OF THESTANDARD MAP.

Period Periodic Orbit Iterations
1 ( 0.0000045887, 0.0000096912)> 23
1 (−0.5000026466, 0.0000120344)> 59
1 ( 0.4999933014, 0.0000017242)> 58
3 (−0.4999915291, −0.2868650976)> 53
3 (−0.2131328591, 0.2868633426)> 71
3 (−0.0000024632, −0.3684546911)> 116
5 (−0.2923354168, −0.2923810215)> 132
5 (−0.2924003042, 0.1541390546)> 140
5 ( 0.3283008215, −0.3434730122)> 62
5 (−0.4150743537, 0.3422455741)> 57

TABLE IV

PERIODIC ORBITS OF THEGINGERBREADMAN MAP.

Period Periodic Orbit Iterations
1 ( 1.0000108347, 1.0000061677)> 73
5 (−1.0000047942, 3.0000114057)> 71
5 ( 3.0000036048, 0.9999987183)> 82
6 ( 0.3844633827, 0.7140403542)> 1

and its phase plot, as well as the contour plot of the corre-
sponding objective function, forp = 5, are displayed in Fig. 5.

Each point of the interior of the central hexagon, which
is displayed in the phase plot of Fig. 5, is a periodic orbit
of period 6. There is also a unique periodic orbit of period
p = 1. The proposed technique has been applied in the range
[−4, 8]2 and results are reported in Table IV. Note that periodic
orbits of period6 have been detected in a single iteration,
since the population is uniformly initialized in the range under
consideration, and almost always there are points generated in
the interior of the central hexagon.
TEST PROBLEM 4. [33] (Predator–Pray Map) This mapping is
defined by the following equations:

{
Φ1(X) = αx1(1− x1)− x1x2,
Φ2(X) = βx1x2,

where α = 3.6545 and β = 3.226 [34]. The proposed
technique has been applied in the range[−2, 2]2 and results
are reported in Table V.
TESTPROBLEM 5. [35] (Lorenz Map) This mapping is defined
by the following equations:





Φ1(X) = σ(x2 − x1),
Φ2(X) = rx1 − x2 − x1x3,
Φ3(X) = x1x2 − bx3,

TABLE V

PERIODIC ORBITS OF THEPREDATOR–PRAY MAP.

Period Periodic Orbit Iterations
1 (0.7263613548, 0.0000047179)> 69
1 (0.3099830255, 1.5216605764)> 51
1 (0.0000008620, 0.0000033184)> 56
2 (0.8756170073, −0.0000020728)> 61
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Fig. 5. Phase plot of the Gingerbreadman map (up) and the contour plot of
the corresponding objective function forp = 5 (down). Darker lines denote
lower function values.

whereσ, r, and b, are the system’s parameters. Lorenz took
σ = 10, b = 8

3 . For the parameterr, the valuer = 28 has been
used [34]. There is a unique periodic orbit of periodp = 1,
in the range[−9, 9]3. Applying the proposed technique, the
periodic orbit

X1
1 = (0.0000000203, −0.0000001703, −0.0000026306)>,

is computed after 135 iterations.
TEST PROBLEM 6. [36] (Rössler Map) This mapping is
defined by the following equations:





Φ1(X) = −(x1 + x2),
Φ2(X) = x1 + ax2,
Φ3(X) = b + x3(x1 − c),

where a, b, and c, are the system’s parameters. The values
a = b = 0.2 and c = 5.7 have been used [34]. Unlike the
Lorenz map, the fixed point is not at the origin, but at the
point

X1
1 = (−0.0132365558, −0.0165516360, 0.0297928545)>,

and it has been computed after 115 iterations.



TEST PROBLEM 7. [1], [12], [37] (Hénon 4–dimensional
symplectic map) This 4–dimensional map is an extension of
the H́enon 2D map to the complex case:




Φ1(X)
Φ2(X)
Φ3(X)
Φ4(X)


 =

(
R(α) O
O R(α)

)



x1

x2 − x2
1 + x2

3

x3

x4 − 2x1x3


 ,

whereα is the rotation angle, andR(α), O, are defined as [1]:

R(α) =
(

cos α − sin α
sin α cosα

)
, O =

(
0 0
0 0

)
.

This map can also be generalized to a symplectic map with
two frequencies,α1 andα2, as follows:



Φ1(X)
Φ2(X)
Φ3(X)
Φ4(X)


 =

(
R(α1) O
O R(α2)

)



x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3


 .

The proposed technique has been applied forα =
cos−1(0.24), with a swarm of size400. Results are reported
in Table VI.
TEST PROBLEM 8. [10], [38] This 6–dimensional map is the
n = 3 case of the standard maps studied by Kantz and
Grassberger, and it is defined by the following equations:
8
>>>>>>>>>>>><
>>>>>>>>>>>>:

x′1 = x1 + x′2
x′2 = x2 + K

2π
sin(2πx1)− β

2π
{sin[2π(x5 − x1)]+

sin[2π(x3 − x1)]}
x′3 = x3 + x′4
x′4 = x4 + K

2π
sin(2πx3)− β

2π
{sin[2π(x1 − x3)]+

sin[2π(x5 − x3)]}
x′5 = x5 + x′6
x′6 = x6 + K

2π
sin(2πx5)− β

2π
{sin[2π(x3 − x5)]+

sin[2π(x1 − x5)]}

(mod 1).

All variables are given(mod 1), so xi ∈ [0, 1), for i =
1, . . . , 6. For β = 0, the map gives three uncoupled standard
maps, while forβ 6= 0 the maps are coupled and influence each
other. In our experiments,β = K = 1. Results are reported
in Table VII.

VI. CONCLUSIONS

The Particle Swarm Optimization method has been applied
to detect periodic orbits of nonlinear mappings. The technique
is based on the consideration of the problem of detecting
periodic orbits, as a global minimization problem, through a
proper nonnegative objective function. The global minimizers
of this function coincide with the periodic orbits of a specific
period. In contrast to traditional approaches, Newton–family
methods, the method is capable of computing periodic orbits
of nondifferentiable/discontinuous mappings.

Preliminary results on well–known and widely used nonlin-
ear mappings indicate that PSO is efficient. Periodic orbits
of different periods have been obtained rapidly. Moreover,
the algorithm is easily implemented in a few lines and it
can be combined with the Deflection technique, to avoid the
computation of already detected periodic orbits.

In the experiments reported in the previous section, the
global variant of the constriction factor version of PSO
has been applied. The inertia weight variant may also be
successfully used, although experience indicates that for the
specific task this variant exhibits worse convergence rates. The
algorithm may become even faster if a particle is initialized
close to an orbit. As previously mentioned, the method does
not require derivatives and, thus, it can be applied even in
pathological cases characterized by discontinuities or lack
of derivative information. Using the absolute value instead
of the squares in Eq. (9) results in a function, for which
other methods (such as the Newton–family methods) fail. The
periodic orbits and the computational load reported, are rather
indicative, and they are reported to support the claim that the
method is efficient. PSO is a stochastic algorithm and this
implies that slightly different performance may be achieved,
even if the algorithm is initialized with the same initial swarm
and velocities. The swarms used in the experiments have been
large, but this is inevitable since high accuracy (10−10) is
desired.

Further research will consider techniques to improve the
convergence properties of the algorithm in high–dimensional
cases where high accuracy is desired, as well as hybrid
algorithms from combinations of PSO with other powerful
methods, such as the generalized Bisection [1], [39], which
posses strong theoretical properties.
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