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Abstract— Periodic orbits of nonlinear mappings play a central unstablein the linear approximation. Generally, the failure
role in the study of dynamical systems. Traditional gradient- of these methods can also be attributed to the nonexistence

based algorithms, such as the Newton—family algorithms, have o gerjvatives or poorly behaved partial derivatives in the
been widely applied for the detection of periodic orbits, through . . .
neighborhood of the fixed points.

the minimization of a properly defined objective function. How-
ever, in the case of discontinuous/nondifferentiable mappings and
mappings with poorly behaved partial derivatives, the gradient— Swarm Intelligencemethods are stochastic optimization,
based approach is not valid. In such cases, stochastic optimization machine learning and classification systems, that model in-
algorithms have proved to be a valuable tool. In this paper, a ig|ligent behavior. They are intimately related to the Evolu-

new approach for computing periodic orbits through Particle . . . . . .
SwarmppOptimization, ispintrgdﬁced. The results in%licate that tionary Computation field, which consists of algorithms that

the algorithm is robust and efficient. Moreover, the method can are motivated from, and roughly based on, biological genetics
be combined with established techniques, such as Deflection, toand natural selection. A common characteristic of all these
detect several periodic orbits of a mapping. Finally, the minor algorithms, is the exploitation of a population of search points

effort which is required for the implementation of the proposed 4t probe the search space simultaneously. Particle Swarm
approach, renders it an efficient alternative for computing peri-

odic orbits of nonlinear mappings. Optimization (PSO) belongs.to the category Qf Swarm Intelli-
gence methods. The dynamic of the population resembles the
I. INTRODUCTION collective behavior and self—organization of socially intelligent

Nonlinear mappings can be used to model conservative @ganisms [14]. The individuals of the population exchange
dissipative dynamicai systems [1]_[13] Central role in th@formation and benefit from their discoveries as well as the
anaiysis of such mappings is piayed by pointsy which ai‘%scoveries of the other Companions, Whlle (_BX[_)Iori_ng promiS'
invariant under the mapping, calldiked pointsor periodic INng areas of the search space. In the minimization context,

orbits [13]. A point such areas posses low function values.
X =(z1,...,2,)" €R", In this paper, a new efficient numerical method for com-
is calledfixed pointof a mapping puting periodic orbits of nonlinear mappings is introduced.
. This method is based on the minimization of a nonnegative
P(X) = (®1(X),...,P,(X)) :R"—R", objective function through PSO. The objective function is

constructed so that its global minimizers are also periodic
orbits of a specific periogh, of the original mapping. Thus,
detecting the global minimizers of the objective function
X =dP(X) = (d(...(9(X))...)). (1) implies the periodic orbits of the specific period. To detect
several periodic orbits of the desired type, the Deflection
technique is applied.

Detecting periodic orbits of nonlinear mappings is one of the
most challenging problems of nonlinear science, since analyticThe rest of the paper is organized as follows: the PSO
expressions for evaluating periodic orbits can be given onlyafgorithm is briefly described in Section Il. In Sections Ill and
the mapping is a polynomial of low degree and the period ¥, the Deflection technique, for detecting several minimizers
low. Traditional methods, such as the Newton—family methodé a function, as well as the proposed approach for the
and related classes of algorithms, often fail, as they are affectimtection of periodic orbits, are described, respectively. The
by the mapping evaluations assuming large values in thgperimental results are reported in Section V, and conclusions
neighborhood ofaddle—hyperboliperiodic orbits, which are are derived in Section VI.

if ®(X) = X, and it is called dixed point of orderp, or a
periodic orbit of periodp, if

p times



1. THE PARTICLE SWARM OPTIMIZATION ALGORITHM relation can be used for the velocity’s update, instead of

PSO is a stochastic machine learning optimization algg-q' (2) [191-21)

rithm [14]-[17]. The ideas that underlie PSO are inspired not V"9 = v ® ¢/ (Pi(“ - Xi(”) ¥
by the evolutionary mechanisms encountered in natural selec- ® ®
tion, but rather by the social dynamics of flocking organisms, + caro (Pg - X; >7 4)

such as swarms, which are governed by fundamental rulggere ) is a parameter callethertia weight Both the con-
like nearest-neighbor velocity matching and acceleration yiction factor and the inertia weight are used as mechanisms
distance [15], [17]. . o ~ to control and adjust the magnitude of the velocities, to
PSO is a population based algorithm, i.e., it exploits fjeviate the problem of swarm explosion and divergence [22].
population of individuals to probe promising regions of th@)ften, a threshold/,,,., on the absolute value of the velocity,
search space simultaneously. In this context, the populatighncorporated, in addition to the aforementioned parameters.
is calledswarmand the individuals (i.e., the search points) The inertia weightw, in Eq. (4), is employed to manipulate
are calledparticles Each particle moves with an adaptablgnhe impact of the previous history of velocities on the current
velocity within the search space, and retains a memory of thg|ocity. Therefore,w resolves the trade—off between the
best position it ever encountered, i.e., the position of the sea@hbaﬂ (wide—ranging) and local (nearby) exploration ability
space that possesses the lowest function value so far. In §a&he swarm. A large inertia weight encourages global ex-
global variant of PSO, the best position ever attained by glioration (moving to previously not encountered areas of the
individuals of the swarm is communicated to all the particlegegrch space), while a small one promotes local exploration,
In thelocal variant, each particle is assigned to a neighborho@d | fine—tuning the current search area. A suitable value for
consisting of a prespecified number of particles. In this casg.provides the desired balance between the global and local
the best position ever attained by the particles that Compr@@ploration ability of the swarm, and consequently improves
the neighborhood is communicated among them [17]. Th&e effectiveness of the algorithm. Experimental results suggest
present paper, considers the global variant of PSO only.  that it is preferable to initialize the inertia weight to a large
Assume an—dimensional search spac, C R", and a value, giving priority to global exploration of the search space,
swarm consisting ofV particles. Each particle is in effectand gradually decrease it, so as to obtain refined solutions [20],
a n—dimensional vector, [21]. This finding is intuitively very appealing. In conclusion,
an initial value ofw around1 and a gradual decline towards
0 is considered a proper choice far On the other hand, the
value of the constriction factor is typically obtained through
the formula [18]:

T .
Vi = (vi1,vi2y ., Vin) , i=1,...,N. 2%

Yo — V@4l
for ¢ > 4, where ¢ = c¢; + ¢o, and k = 1. Different
configurations ofy, as well as a theoretical analysis of the

P; = (pi1, pios - -+ Din) | € S. derivation of Eq. (5), can be found in [18]. The constriction
factor version of PSO has proved to be considerably faster
Assumeyg to be the index of the particle that attained the begiian the inertia weight one.
previous position among all the individuals of the swarm, i.e. Proper fine—tuning of the parameters and c,, results
) in faster convergence and alleviation of local minima. An
f(By) < f(R), i=1,...,N, extended study of the acceleration parametén the primary

where f is the objective function under consideration. Theﬁ/'ersmn of PSO, is provided in [23]. As default values,=

. . . . ¢y = 2 have been proposed, but experimental results indicate
the swarm is manipulated according to the equations [18]: . . ; .
that alternative configurations, depending on the problem at

T .
Xi= (xa1, Ti2, .., Tin) €8, i=1,...,N.

The velocities of the particles are alsedimensional vectors,

®)

The best previous position encountered by ihh particle is
a point in S, denoted by

hand, can produce superior performance [16], [18], [24].
Vi(tH) = X <Vft> +eim (Pi(t) - Xf”) + The swaprm and thF()a veIoF():ities are ra[ndgm[ly ]inEtiaI]ized,
following a uniform distribution, within the search space.
+ care (Pg(t) - Xf”)), (2) However, more sophisticated initialization techniques can en-
hance the overall performance of the algorithm [16], [25]. For
X = Xy, (3)  uniform random initialization in a multidimensional search
) _ . space, a Sobol Sequence Generator can be used [26].
wherei = 1,2,...,N; x is a parameter calledonstriction
factor; ¢; and ¢, are two fixed, positive parameters called !/l DETECTING FURTHER MINIMIZERS THROUGH
cognitiveandsocial parameter respectively;, r», are random DEFLECTION
numbers uniformly distributed in the intervd, 1]; and ¢, PSO is able to detect one, in general arbitrary, minimizer of

stands for the counter of iterations. Alternatively, the followinthe objective function, per run. However, in some applications,



several minimizers of the objective function are required. A point to notice is that the Deflection technique should not
Restarting the algorithm does not guarantee the detectionbefused on its own on a functigf) whose global minimum is
a different minimizer. In such cases, tbeflectiontechnique zero. The reason is that the transformed functioyef Eq. (6),
can be used. This technique consists of a transformation of thidl also have zero value at the deflected global minimizer,
objective functionf, once a minimizetX, i = 1,...,nm,, Since f will be equal to zero at such points. This problem
has been detected [27]: can be easily alleviated by taking = f + ¢, wherec >
y 1 0 is a constant, instead of. The functionf possesses all
F(X) =Ty(X; X7, )7 (X)), (6)  the information regarding the minimizers ¢f but the global
with minimum is increased from zero to The value ofc does not
Ty(X; X7, A) = tanh(\]| X — X7|)), @ affe_ct the p_erformanc_e of the algorlth_m_and, thu_s, if there is
no information regarding the global minimum ¢f it can be
where);, i = 1,...,nmin, are nonnegative relaxation paramselected arbitrarily large.
eters, andn,,;, is the number of the detected minimizers.
The transformed function has exactly the same minimizers
with the original f, with the exception ofX;. Alternative Let
configurations of the parameterresult in different_shapes of B(X) = ((I)l(X), o @n(X))T :R" — R",
the transformed function. For larger values)othe impact of
the Deflection technique on the objective function is relativelge a nonlinear mapping,
mild. On the other hand, usin@ < A < 1 results in a X = (21 . )T c R™
function I with considerably larger function values in the o ’
neighborhood of the deflected minimizer. The effect of thige a periodic orbit of periog of ®, and®,, = (0,...,0)T be
Deflection procedure on the functiof(z) = cos?(x) + 0.1, the origin of R”. Then, by definition, the following relation

IV. THE PROPOSEDAPPROACH

at the pointz* = 7, is illustrated in Fig. 1 holds:
PP(X)=X=>PP(X)-X =0, =>
° : — Original function (I)T(X) 1 0
4.5F [ Deflection .
: - : = : 1=
a
PP (X n 0
LX) @
3r - . ‘I)f(X)*Il =0,
Kost : : (8)
w i
ol ] PP (X) -z, =0,
15¢ 1 We can define, now, an objective functigin
PO = (@) — @), 9)
i=1
-1 0 L 28 4 5 6 which is nonnegative, and its global minimizers, for which
10 ‘ — : f(X) =0, are periodic orbits of periog of the mapping®.

— Original function

ol S P Deflection Thus, minimizing f is equivalent to computing the periodic

orbits of periodp of ®.
The shape of the objective functigh depends heavily on
- the mapping®. If ® is continuous and differentiable, then the
6/ 1 minimization can be effectively performed through gradient—
based techniques. Many applications, however, involve discon-
tinuous/nondifferentiable mappings. In such cases, stochastic
optimization algorithms, that require function values solely,
. can be applied.
2r P . 1 According to the proposed approach, the objective function
f is minimized through the PSO algorithm. Possible discon-
tinuities of f do not affect its convergence. In Figs. 2 and 3
the phase plot as well as the contour plot of the obtained
function f for the 2—dimensional Ehon map, are exhibited,
Fig.2 1. The effect of the *Deﬂiction procedure on the functiti) = for cosa = 0.24 andcosa = 0.8 respectively, while the 3—
Kl(z)ste(gtctze—i_c?\;r;gag itrr:eihzmsr(]:zlingzo?’trfgrtvi\/oﬁ‘iglu(rljeps).’ andA = 0.3 (dowm) dimenSi_Onal plot of the_ Ob_taineﬂ fo_r th_e Standard Map, as
well as its contour plot is displayed in Fig. 4 (the definitions of

F(X)
(&2
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Fig. 2. Phase plot of the &hon map forcos a = 0.24 (up) and the contour Fig. 3. Phase plot of the &hon map forcos « = 0.8 (up) and the contour
plot of the corresponding objective function fpr= 5 (down). Darker lines plot of the corresponding objective function fpr= 1 (down). Darker lines
denote lower function values. denote lower function values.

the aforementioned mappings are given in Section V). In the V. EXPERIMENTAL RESULTS

latter case, the multitude of discontinuities, precludes the usqp, this section, the performance of PSO, is investigated on
of a deterministic optimization algorithm for the minimizatiornyiterent test problems. Thepnstriction factorversion of PSO
of f. has been used. In previous work, timertia weight version

Let X* be a global minimizer off and, thus, periodic orbit was used with also promising results in some of the test
of period p of ®. The stability of X* can be determined problems presented here, though the required computational
through established techniques [28], [29]. The several typgse was larger [30]. This choice was based solely on the faster
of an unstable orbit are exhibited and discussed in [29]. Tenvergence rates that characterize it, as well as the promising
restp — 1 periodic orbits of the same period and type can hesults attained through it. Default optimal values of the PSO’s
obtained throughp — 1 subsequent iterations of the mappingarameters, which are used widely in the literature, have been
® on X*. Periodic orbits of the same period, but differengsed: y = 0.729, ¢; = ¢, = 2.05. As stopping criterion of
stability type, can be obtained by applying the Deflectiofhe algorithm, the detection of the global minimum of the
technique on the already detected periodic orbits, and ﬂ‘@lﬁiecti\/e function, with an accuracy @0—'°, has been used.
apply the PSO algorithm on the deflected function. Thehe swarm’s size is problem dependent, thus, it has been set
proposed algorithm is described in pseudocode in Table I. to different values regarding the problem at hand. Moreover,

A periodic orbit of period 1 is also periodic orbit of anywhenever Deflection has been used, the objective function has
period p > 1. The problem of detecting periodic orbits ofbeen subjected to a “lift” by a parametee 1, to alleviate its
period 1, instead of periodic orbits of the desired period, calisability to work properly on functions with global minimum
also be alleviated through the application of Deflection on suelgual to zero, as it has been described in Section Ill. For each
a periodic orbit, as soon as it is detected. test problem, periodic orbits of different periods as well as the



TABLE |
THE PROPOSED ALGORITHM

Input: Mapping®, periodp, desired number of deflectiorfs.
Step 1 Setthe stopping flagSF— 0, and the counters < 0.
Step 2 While (SF=0) Do
Apply PSO
Step 3 If (PSO detected a solutiak;) Then
Compute all points of the same type and period,
Xa,...,Xp, by iterating the map.
Step 4 If (k< K) Then
Apply Deflection onXy, ..., X}, and set
the counterk — k + 1.
Else
SetSF— 1
End If
Else
Write “No further solution was detected”
SetSF+— 1
End If
End While
Step 5 Report all detected solutions (if any).

TABLE Il
PERIODIC ORBITS OF THEHENON MAP.

cosa  Period Periodic Orbit Iterations
0.8 1 ( 0.6666755407, 0.2222243088) T 56
1 ( 0.0000147632, 0.0000051785) T 46
0.24 1 ( 0.0000064371, 0.0000043425) T 55
5 ( 0.5696231776, 0.1622612843) T 54
5 ( 0.5672255008, 70.1223401431)T 47
11 (—0.4817107655, 0.6091676453) T 57
43  ( 0.2576802556, 0.0196850254) T 61
97 ( 0.2310634711, 0.3622185202) T 59
131 ( 0.4173023935, 0.0842137784) T 58
149 ( 0.2232720401, 0.2588270953) T 68

05

Fig. 4. 3-dimensional plot (up) and contour plot (down) of the objective

function f for the Standard Map and perigd= 5. Darker lines denote lower . . . . .
function values. this mapping for the detection of both fixed points. After the

detection of the first (which can be any of the two fixed points),
Deflection is applied and a new run starts on the deflected

corresponding required number of iterations are reported. function. In all experiments the swarm size has been equal
TEST PROBLEM 1. [1], [6], [7] (Hénon 2—dimensional map)to 150. Periodic orbits of different periods, detected through

This mapping is defined by the following equation: the proposed technique, as well as the corresponding required
number of iterations, are reported in Table .

B(X) = ( cosa —sina ) ( 1 ) )@ TEST PROBLEM 2. [31] (Standard Map) This mapping is

sin o cos o Lo — Xy discontinuous and it is defined by the following equation:
&, (X) =21 cosa — (w3 — 22)sinc, ®1(X) = (z1 + 22 — 2= sin(27z1)) mod 1,
®y(X) = x1sina + (w2 — 22) cos ®5(X) = (z2 — 2= sin(27rzq)) mod 3,
where o € [0,7] is the rotation angle. The correspondingvherek = 0.9, and
phase plots forcosa = 0.24 and cosa = 0.8, as well as (ymod1)—1, if (ymodl)> 2,
the contour plot of the obtained objective function foe= 5 y mod} ={ (ymod1)+1, if (ymodl)< 327
in the first case and fop = 1 in the latter case, if—1,1]?, 2 (ymod1), otherwise ?

are displayed in Figs. 2 and 3, respectively.
The objective function forosa = 0.8 andp = 1 has two
global minimizers, one at the origin, and another in a narr

channel at the right part of the contour plot, which corresponifs Table Ill- _ _ .
to a hyperbolic fixed point [1]. Due to the shape of its basin g EST PROBLEM 3. [32] (Gingerbreadman Map) This nondif-

attraction, it is difficult to detect the latter fixed point througlﬁeremi""bIe mapping is defined by the following equations:
a deterministic algorithm, unless an initial point is selected in { O (X)=1—x2+ |21],

PSO has been applied on this mapping, using the same
Rprameters as for the#don mapping, and results are reported

its close vicinity. The proposed technique has been applied on Oy (X) = a4,



TABLE Il

8
PERIODIC ORBITS OF THESTANDARD MAP.
Period Periodic Orbit Iterations 6
1 ( 0.0000045887, 0.0000096912) T 23
1 (—0.5000026466, 0.0000120344) T 59
1 ( 0.4999933014, 0.0000017242) T 58 4r
3 (—0.4999915291, —0.2868650976) 53
3 (—0.2131328591, 0.2868633426) " 71
3 (—0.0000024632, —0.3684546911)" 116 2r
5 (—0.2923354168, —0.2923810215) " 132
5 (—0.2924003042, 0.1541390546) " 140 ol
5 ( 0.3283008215, —0.3434730122)7 62
5 (—0.4150743537, 0.3422455741) 7 57
_2,
TABLE IV
PERIODIC ORBITS OF THEGINGERBREADMAN MAP. -4
-4
Period Periodic Orbit Iterations 8
1 ( 1.0000108347, 1.0000061677) " 73
5 (—1.0000047942, 3.0000114057)T 71 I
5 ( 3.0000036048, 0.9999987183) 82 6
6 ( 0.3844633827, 0.7140403542)T 1
4,
and its phase plot, as well as the contour plot of the corre- 2t
sponding objective function, fgr = 5, are displayed in Fig. 5.
. . . . 07
Each point of the interior of the central hexagon, which
is displayed in the phase plot of Fig. 5, is a periodic orbit
of period 6. There is also a unique periodic orbit of period 2
p = 1. The proposed technique has been applied in the range

[—4, 8]% and results are reported in Table IV. Note that periodic 4, = 5 5 . . 8
orbits of period6 have been detected in a single iteration,

since the population is uniformly initialized in the range undetig. 5. Phase plot of the Gingerbreadman map (up) and the contour plot of
consideration, and almost always there are points generatefi;moffl:ﬁigggd\i/f;?uggjective function fpr= 5 (down). Darker lines denote
the interior of the central hexagon. ’

TESTPROBLEM 4. [33] (Predator—Pray Map) This mapping is

defined by the following equations: ,
whereo, r, andb, are the system’s parameters. Lorenz took

{ Q1(X) = azi (1 —z1) — 2122, o =10, b= 3. For the parameter, the valuer = 28 has been
Oy(X) = 129, used [34]. There is a unique periodic orbit of peripd= 1,
where o = 3.6545 and 8 = 3.226 [34]. The proposed in t_he_rangg[79,9]5. Applying the proposed technique, the
technique has been applied in the rarige, 2)? and results Periodic orbit

are reported in Table V. Xll — (0‘0000000203’

TESTPROBLEM 5. [35] (Lorenz Map) This mapping is defined. ) _
by the following equations: is computed after 135 iterations.

TEST PROBLEM 6. [36] (Rossler Map) This mapping is

P4 (X) = o2z — 71), defined by the following equations:
@2(}() =TrTry — T2 — T1T3,
(I)g(X) :l’lxz—b$3, (I)I(X) = _($1+$2)5

Dy (X) = 1 + axa,

O3(X) =b+ x3(x1 — ),
where a, b, and ¢, are the system’s parameters. The values
a =0b= 0.2 andc = 5.7 have been used [34]. Unlike the

—0.0000001703,  —0.0000026306) T,

TABLE V
PERIODIC ORBITS OF THEPREDATOR-PRAY MAP.

Period Periodic Orbit lterations Lorenz map, the fixed point is not at the origin, but at the
1 (0.7263613548, 0.0000047179) T 69 point
1 (0.3099830255, 1.5216605764) T 51
1 (0.0000008620, 0.0000033184) T 56 X{ = (-0.0132365558, —0.0165516360, 0.0297928545)7,
2 (0.8756170073, —0.0000020728)" 61

and it has been computed after 115 iterations.



TEST PROBLEM 7. [1], [12], [37] (Hénon 4—dimensional

In the experiments reported in the previous section, the

symplectic map) This 4-dimensional map is an extension global variant of the constriction factor version of PSO

the HEnon 2D map to the complex case:

(I)l(X) I

Po(X) | _ ( R(a) O ) Ty — 2% + 2}
$3(X) O  R(a) T3 ’
4(X) T4 — 21173

wherea is the rotation angle, anB(«), O, are defined as [1]

(mom) o-(3Y)

0 0

—sina
Ccos &

Ccos &
sin «

R(«)

has been applied. The inertia weight variant may also be
successfully used, although experience indicates that for the
specific task this variant exhibits worse convergence rates. The
algorithm may become even faster if a particle is initialized
close to an orbit. As previously mentioned, the method does
not require derivatives and, thus, it can be applied even in
- pathological cases characterized by discontinuities or lack
of derivative information. Using the absolute value instead
of the squares in Eqg. (9) results in a function, for which
other methods (such as the Newton—family methods) fail. The

This map can also be generalized to a symplectic map wRgriodic orbits and the computational load reported, are rather

two frequenciesq; andas,, as follows:

‘bl(X) X1
(IDQ(X) _ < R(Otl) (@) > T2 + IE% — Zg
@3(X) o @) R(O[g) I3
@4(X) Ty — 2(L‘1$3

The proposed technique has been applied for =
cos~1(0.24), with a swarm of sizel00. Results are reporte
in Table VI.

TESTPROBLEM 8. [10], [38] This 6-dimensional map is the - e )
3 case of the standard maps studied by Kantz aﬁagorlthms from combinations of PSO with other powerful

n
Grassberger, and it is defined by the following equations:

) = x1+ah
xh, = a2+ % sin(27z1) — %{sin[%r(xs —xz1)]+
sin[2m(z3 — z1)]}
xh = w3+l
Ty = x4+ % sin(2mw3) — %{sin[%r(ml —x3)]+  (mod 1).
sin[27(z5 — z3)]}
§ zp = x5+ g
x5 = w6+ % sin(27ws) — %{sin[?ﬂ'(a}g —x5)|+
- sin[2m(z1 — x5)]}
All variables are givenlmod 1), sox; € [0,1), for i =
1,...,6. For 8 = 0, the map gives three uncoupled stand

maps, while for3 # 0 the maps are coupled and influence each

other. In our experiments; = K = 1. Results are reporte
in Table VII.

VI. CONCLUSIONS

indicative, and they are reported to support the claim that the
method is efficient. PSO is a stochastic algorithm and this
implies that slightly different performance may be achieved,
even if the algorithm is initialized with the same initial swarm
and velocities. The swarms used in the experiments have been
large, but this is inevitable since high accuradp{°) is
desired.

g Further research will consider techniques to improve the

convergence properties of the algorithm in high—dimensional

cases where high accuracy is desired, as well as hybrid

methods, such as the generalized Bisection [1], [39], which
posses strong theoretical properties.
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