
Initializing the Particle Swarm Optimizer Using the
Nonlinear Simplex Method

K.E. PARSOPOULOS, M.N. VRAHATIS
Department of Mathematics

University of Patras
University of Patras Artificial Intelligence Research Center (UPAIRC)

GR-261.10 Patras
GREECE

{kostasp, vrahatis}@math.upatras.gr http://www.math.upatras.gr/~{kostasp, vrahatis}

Abstract: - Initialization of the population in Evolutionary Computation algorithms is an issue of ongoing
research. Proper initialization may help the algorithm to explore the search space more efficiently and detect
better solutions. In this paper, the Nonlinear Simplex Method is used to initialize the swarm of the Particle
Swarm technique. Experiments for several well-known benchmark problems imply that better convergence
rates and success rates can be achieved by initializing the swarm this way.

Key-Words: - Particle Swarm, Nonlinear Simplex Method, Optimization

1 Introduction
Evolutionary Computation (EC) algorithms provide
solutions to many hard optimization problems that
are very difficult to cope with using the traditional
Gradient based methods, due to their nature that may
imply discontinuities of the search space, non-
differentiable objective functions, imprecise
arguments and function values. The main advantage
of these algorithms is the usage of a population of
potential solutions that explore the search space
simultaneously, exchanging information among
them and using only function values and not
derivatives of the objective function.
 The most well-known paradigm of EC
algorithms are the Genetic Algorithms (GA) that are
used widely, especially in engineering and industrial
applications [1, 2, 3]. According to the GA’s theory,
the population is binary encoded and genetic
operators, inspired by the human DNA evolution
procedures, are applied to the population in order to
evolve it and thus explore the search space
efficiently. Several other ideas (Evolutionary
Programming [4], Evolution Strategies [5, 6],
Genetic Programming [7]) are inspired by the GAs
and they are widely applied exhibiting significant
results in several scientific fields.
 Recently, a new research field arised, called
Swarm Intelligence (SI). SI argues that intelligent
human cognition derives from the interaction of
individuals in a social environment and that the
main ideas of sociocognition can be effectively
applied to develop stable and efficient algorithms for
optimization tasks [8]. Ant Colony Optimization

(ACO) is the most well known SI algorithm and is
mainly used for Combinatorial Optimization tasks,
exhibiting very interesting results in experiments as
well as in real life applications [9, 10].
 The Particle Swarm Optimization (PSO)
technique is an SI technique, which is mainly used
for Continuous Optimization tasks and has been
originally developed by R.C. Eberhart and J.
Kennedy [8, 11]. In this technique, the population of
potential solutions is called swarm and it explores
the search space simulating the movement of a
“birds’ flock” while searching for food, where
global exchange of information among all
individuals, which are called particles, takes place
and each particle can profit from the discoveries of
the rest of the swarm. PSO has been proved to be
very efficient algorithm in solving hard optimization
problems and engineering applications, including
neural networks training and Human Tremor
analysis. Many variants and techniques have been
developed to improve further its performance [8, 12,
13, 14, 15, 16].
 The initialization of the swarm is usually done
using a uniform distribution over the search space,
but this is not always the best way. In another
approach a Sobol sequence generator is used to
generate the initial swarm in order to be uniformly
distributed over multidimensional search spaces
[14]. Proper initialization of the swarm seems to
help PSO to explore efficiently the search space and
detect solutions of better quality.
 In this paper, the Nonlinear Simplex Method
developed by J.A. Nelder and R. Mead [17] is used

to initialize the swarm of the PSO technique.
Experimental results for many well-known test
functions imply that this is a very promising way of
initialization and that it can significantly improve
the convergence rates and in some cases the success
rate of the PSO. In the next section, the Nonlinear
Simplex Method is described. In Section 3 the PSO
technique is briefly analyzed and in Section 4 the
proposed algorithm is described and applied in
several test functions. The paper closes with some
conclusions and ideas for further work in Section 5.

2 The Nonlinear Simplex Method
The Nonlinear Simplex Method (NSM) was
developed by J.A. Nelder and R. Mead [17] for
function minimization tasks. It needs only function
evaluations and there is no need for derivatives
computation. In general the NSM is considered as
the best method if the figure of merit is “get
something to work quickly”, especially when noisy
problems are considered, and has a geometrical
naturalness, which makes it delightful to work
through [18].
 A D-dimensional simplex is a geometrical figure
consisting of D+1 vertices (D-dimensional points)
and all their interconnecting segments, polygonal
faces etc. Thus, in two dimensions, a simplex is a
triangle, while in three dimensions it is a
tetrahedron. In general, we consider only simplexes
that are non-degenerated, i.e., that enclose a finite
inner D-dimensional volume. If any vertex of such a
simplex is taken as the origin, then the rest D
vertices define vector directions that span the D-
dimensional vector space.
 The NSM starts with an initial simplex and takes
a series of steps where the vertex of the simplex
with the highest function value is mostly moved
through the opposite face of the simplex to a lower
point. If this is possible, then the simplex is
expanded in one or another direction to take larger
steps. When the method reaches a “valley floor”, the
simplex is contracted in the transverse direction in
order to ooze down the valley or it can be contracted
in all directions, pulling itself in around its lowest
point. A subroutine implementing NSM in Fortran
77 is given in [18]. The possible moves of a simplex
are shown in Fig.1.
 When applied to function minimization
problems, the NSM is usually restarted at a
minimizer that has already been found by the
technique, in order to make sure that the stopping
criteria have not been fooled by a single anomalous
step. Thus, an initial simplex is generated using the

found minimizer as one of its vertices and
generating the rest D points randomly. Then the
algorithm is applied as usual to that simplex. The
restart is not expected computationally expensive,
since the algorithm had already converged to one of
the initial simplex vertices before restarted.

 high

low
Simplex at the beginning of step

(a). Reflection

(b). Reflection and expansion

(c). Contraction

(d). Multiple contraction

Fig.1. Possible outcomes for a step in the NSM.
The simplex initially is a tetrahedron (top). At
the next step it can be (a) a reflection away
from the high point, (b) a reflection and
expansion away from the high point, (c) a
contraction along one dimension from the high
point, or (d) a contraction along all dimensions
toward the lowest point.

The convergence properties of the NSM are in
general poor (for a convergence proof of a modified
version see [19]) but in many applications it has
been a very useful method, especially in cases of
noisy functions and problems with imprecise data. A

more efficient variant of the NSM can be found in
[19]. In the next section, the PSO technique is
described and discussed.

3 The Particle Swarm Optimization
Technique
As already mentioned in the Introduction, that PSO
is an Evolutionary Technique (more precisely a
Swarm Intelligence technique) but it differs
significantly from the GAs. In PSO, there are no
DNA inspired operators applied on the swarm.
Instead, each particle is assumed to “fly” over the
search space in order to find promising regions of
the landscape and adjusts its own “flying” according
to its “flying” experience as well as the experience
of the other particles. The promising regions are
characterized by lower function values in the simple
function minimization case.
 There are many variants of the PSO technique
developed so far. In our experiments a version of the
algorithm derived by adding an inertia weight to the
original PSO dynamics [20] has been used and this
version is described in the following paragraphs.
 Assuming that the search space is D-dimensional,
we denote by Xi = (xi1, xi2,..., xiD) the ith particle of
the swarm and by Pi = (pi1, pi2,..., piD) the best
position it ever had into the search space, i.e., the
position with the smallest function value. Let g be
the index of the best particle in the swarm, i.e., the
particle with the smallest function value, and Vi =
(vi1, vi2, ..., viD) the velocity (position change) of the
ith particle.
 Then, the swarm is manipulated according to the
equations

vid = w vid + c1 r1 (pid – xid) + c2 r2 (pgd – xid), (1)
xid = xid + χvid (2)

where d=1,2,...,D; i=1,2,...,N and N is the size of
the population; w is the inertia weight; c1 and c2 are
two positive constants; r1 and r2 are two random
values into the range [0,1], and χ is a constriction
factor used to control the magnitude of the velocity
(in unconstrained problems it is usually set equal to
one).
 The first equation is used to calculate the ith

particle’s new velocity and it takes into
consideration three main terms: the particle’s
previous velocity, the distance of the particle’s
current position from its own best position, and the
distance of the particle’s current position from the
swarm’s best experience (position of the best
particle). Then, the particle moves to a new position

according to the second equation. The performance
of each particle is measured using a predefined
fitness function, which, in general, is problem
dependent.
 The inertia weight w plays an important role for
the convergence behaviour of the technique. It is
used to control the impact of the previous history of
velocities to the current velocity of each particle,
regulating this way the trade-off between the global
and local exploration abilities of the swarm, since
large values of w facilitate global exploration of the
search space (visiting new regions) while small
values facilitate local exploration, i.e., fine-tuning
the current search area. Thus, it is better to use large
values of w at the first steps of the algorithm and
gradually decrease it during the optimization in
order to perform more refined search of the already
detected promising regions.
 From the above discussion it is obvious that PSO
resembles, to some extent, the mutation operator of
GAs, but since each particle is guided by its own
experience and the best experience of the whole
swarm, we could say that PSO performs “mutation
with conscience”, as pointed out in [20].
 The initialization of the swarm is considered as
an issue of crucial importance for the PSO’s
performance and thus it is an issue of ongoing
research. Usually the particles are uniformly
distributed over the search space either by using a
simple uniform distribution or by using a Sobol
sequence generator. In the next section a new way to
initialize the swarm is proposed and promising
experimental results are exhibited.

4 The Proposed Algorithm and
Experimental Results
Providing the initial swarm with some extra
information concerning the position of the
promising regions into the search space is generally
considered as important help for the PSO algorithm,
since it may lead to faster convergence and better
quality of the solutions provided by the algorithm.
The main idea presented in this paper is the usage of
the NSM for the generation of the initial swarm.
 Suppose that we start with an initial simplex into
the D-dimensional search space, the D+1 vertices of
the simplex will be the first D+1 particles of the
swarm. Then, we apply the NSM Method for N-
(D+1) steps, where N is the desired size of the
swarm. At each step we assume the new vertex
provided by the single NSM step as a new particle
and we add it into the swarm. Thus, the initial
swarm is provided with the information of the good

regions that possess each particle as a vertex of the
NSM simplex in each step. The algorithm is not
computationally expensive, since for each particle of
the initial swarm one function evaluation is done,
which is inevitable even if we use a randomly
distributed initial swarm. Furthermore, the
experimental results that are presented and discussed
in the following paragraphs imply that the
convergence rate of the PSO is improved and in
some cases the success rate of the algorithm is
dramatically increased.

The test functions on which the proposed
algorithm has been tested, as well as the dimension
of each one and the corresponding reference are
given in Table 1.

Function Name Dimension Reference
Banana Valley 2 [23]

Branin 2 [3]
Six-hump Camel 2 [3]

DeJong 2 [22]
FreuNSMein-Roth 2 [21]
GolNSMein-Price 2 [3]

Grienwangk 2 [22]
Levy No.3 2 [24]
Levy No.5 2 [24]

Helical Valley 3 [21]
6D Hyper-Ellipsoid 6 [22]

6D Rastrigin 6 [22]
6D Watson 6 [21]

9D Hyper-Ellipsoid 9 [22]

Table 1. The test functions used, their
dimensions and corresponding references.

Function
Name

Swarm’s
Size

Initial
Interval

Banana Valley 20 [-10,10]
Branin 20 [-5,5]

Six-hump Camel 20 [-10,10]
DeJong 20 [-5,5]

FreuNSMein-Roth 20 [-5,5]
GolNSMein-Price 20 [-10,10]

Grienwangk 20 [-10,10]
Levy No.3 30 [-2,2]
Levy No.5 20 [-5,5]

Helical Valley 30 [-0.5,0.5]
6D Hyper-Ellipsoid 50 [-6,6]

6D Rastrigin 60 [-0.5,0.5]
6D Watson 60 [-1,1]

9D Hyper-Ellipsoid 50 [-5,5]

Table 2. The test functions used, the
corresponding swarm’s sizes and the initial
intervals for the NSM.

For all test functions 100 experiments have been
done and the desired accuracy is 10-3. The swarm’s
size as well as the interval in which the NSM has
been initialized are different for each test function
and they are given in Table 2.
The maximum number of PSO iterations is 150 for
all runs and c1 = c2 = 5. The inertia weight w was
initially set to 1.2 and gradually decreased toward
0.4.

Function
Name

Mean Func. Eval. Impr.
(%)NS-PSO PSO

Banana Valley 1362.4 1466.4 7.1 %
Branin 971.2 1193.6 18.6 %

Six-hump Camel 1064 1154 7.8 %
DeJong 796.4 1019.2 21.9 %

FreuNSMein-Roth 1286.4 1392.4 7.6 %
GolNSMein-Price 1246 1327.6 6.1 %

Grienwangk 704.8 1075.2 34.4 %
Levy No.3 3097.2 3418.8 9.4 %
Levy No.5 2689.2 2820 4.6 %

Helical Valley 1965 2022 2.8 %
6D Hyper-Ellipsoid 3099 3344 7.3 %

6D Rastrigin 5568 6540 14.9 %
6D Watson 5064 5253.6 3.6 %

9D Hyper-Ellipsoid 3704 3924 5.6 %

Table 3. The mean number of function evaluations for
100 runs for each test function and the corresponding
improvement percentage. The proposed algorithm is
denoted as NS-PSO.

Function
Name

Mean Iterations Impr.
(%)NS-PSO PSO

Banana Valley 67.12 72.32 7.2 %
Branin 47.56 58.68 19 %

Six-hump Camel 52.2 56.7 7.9 %
DeJong 38.82 49.96 22.3 %

FreuNSMein-Roth 63.32 68.62 7.7 %
GolNSMein-Price 61.3 65.38 6.2 %

Grienwangk 34.24 52.76 35.1 %
Levy No.3 102.24 112.96 9.5 %
Levy No.5 88.64 93 4.7 %

Helical Valley 64.5 66.4 2.9 %
6D Hyper-Ellipsoid 60.98 65.88 7.4 %

6D Rastrigin 91.8 108 15 %
6D Watson 83.4 86.76 3.7 %

9D Hyper-Ellipsoid 73.08 77.48 5.7 %

Table 4. The mean number of PSO iterations for 100
runs for each test function and the corresponding
improvement percentage. The proposed algorithm is
denoted as NS-PSO.

 In Table 3, the mean function evaluations for
each test function, as well as the corresponding

improvement percentage are given, while in Table 4
the mean number of PSO iterations and the
corresponding percentage are given. In both Tables
3 and 4, the proposed algorithm is denoted as NS-
PSO.
We shall note here that in the case of the 6-
dimensional Rastrigin function, the plain PSO has
failed to find the global minimizer in 68% of the
cases, while the proposed algorithm has failed only
in 16% of the runs. In the Levy No. 3 case the
success rate of plain PSO is 75%, while for the
proposed algorithm it is 98%. Furthermore, the
NSM initialization of the swarm seems to help PSO
more in the cases where the bounds of the initial
interval are away from the global minimizer. These
cases are usually difficult for the PSO technique and
result in bad convergence rates and success rates.

5 Conclusions and Further Work
A new idea for initializing the swarm in the PSO
technique is presented and experimental results in
several test functions are given.
 Preliminary results imply that the proposed
algorithm can help the PSO to detect faster the
promising regions of the search space. Each particle
of the initial swarm (except the three first which are
randomly selected) is generated performing NSM
steps as a vertex of the simplex used. Thus, it
possesses an inherent information that guides the
swarm in the rest of the optimization faster to the
most promising regions. Sometimes it helps even in
detecting the global minimizer in cases where the
PSO would otherwise fail. The algorithm is not
computationally expensive and both NSM and PSO
are easily implemented.
 Further work includes more sophisticated ways
of initialization using the NSM and the development
of hybrid versions of PSO, where the main ideas of
NSM are applied as operators to the swarm during
the optimization.

References:
[1] A.S. Fraser, Simulation of genetic systems by

automatic digital computers, Australian Journal
of Biological Science, Vol.10, 1957, pp. 484-
499.

[2] J.H. Holland, Adaptation in Natural and
Artificial Systems, The MIT Press, 1975.

[3] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer,
1999.

[4] L.J. Fogel, Evolutionary programming in
perspective: the topdown view, in J. Zurada, R.

Marks II, and C. Robinson (Eds.),
Computational Intelligence: Imitating Life, 1994,
pp. 135-146.

 [5] I. Rechenberg, Evolution Strategy, in J. Zurada,
R. Marks II, and C. Robinson (Eds.),
Computational Intelligence: Imitating Life, 1994,
pp. 147-159.

[6] H.-P. Schwefel, On the evolution of
evolutionary computation, in J. Zurada, R. Marks
II, and C. Robinson (Eds.), Computational
Intelligence: Imitating Life, 1994.

[7] J.R. Koza, Genetic Programming: On the
Programming of Computers by Means of
Natural Selection, The MIT Press, 1992.

[8] J. Kennedy, R.C. Eberhart, Swarm Intelligence,
Morgan Kaufmann, 2001.

[9] M. Dorigo, G. Di Caro, The Ant Colony
Optimization Meta-Heuristic, in D. Corne, M.
Dorigo, and F. Glover (Eds.), New Ideas in
Optimization, 1999.

[10] E. Bonabeau, C. Meyer, Swarm Intelligence: A
Whole New Way to Think About Business,
Harvard Business Review, Vol.79, No.5, 2001,
pp. 106-114.

[11] R.C. Eberhart, J. Kennedy, A new optimizer
using Particle Swarm theory, Proc. Sixth
International Symposium on Micro Machine and
Human Science, Nagoya, Japan, 2001, pp. 39-43.

[12] K.E. Parsopoulos, V.P. Plagianakos, G.D.
Magoulas, M.N. Vrahatis, Improving the Particle
Swarm Optimizer by Function “Stretching”, in
N. Hadjisavvas and P.M. Pardalos (Eds.),
Advances in Convex Analysis and Global
Optimization, 2001, pp. 445-457, Kluwer
Academic Publishers.

[13] K.E. Parsopoulos, V.P. Plagianakos, G.D.
Magoulas, M.N. Vrahatis, Stretching Technique
for Obtaining Global Minimizers through
Particle Swarm Optimization, Proc. Particle
Swarm Optimization Workshop, Indianapolis
(IN), USA, 2001, pp. 22-29.

[14] K.E. Parsopoulos, M.N. Vrahatis, Modification
of the Particle Swarm Optimizer for Locating All
the Global Minima, in V. Kurkova, N.C. Steele,
R. Neruda, and M. Karny (Eds.), Artificial
Neural Nets and Genetic Algorithms, 2001, pp.
324-327, Springer.

[15] K.E. Parsopoulos, M.N. Vrahatis, Particle
Swarm Optimizer in Noisy and Continuously
Changing Environments, in M.H. Hamza (Ed.),
Artificial Intelligence and Soft Computing, 2001,
pp. 289-294, IASTED/ACTA Press.

[16] K.E. Parsopoulos, E.C. Laskari, M.N. Vrahatis,
Solving l1 Norm Errors-in-Variables Problems
Using Particle Swarm Optimization, in M.H.

Hamza (Ed.), Artificial Intelligence and
Applications, 2001, pp. 185-190, IASTED/
ACTA Press.

[17] J.A. Nelder, R. Mead, A simplex method for
function minimization, Computer Journal,
Vol.7, 1965, pp. 308-313.

[18] W.H. Press, S.A. Teukolsky, W.T. Vetterling,
B.P. Flannery, Numerical Recipes, Cambridge
University Press, 1992.

[19] V. Torczon, On the convergence of the
multidirectional search algorithm, SIAM Journal
of Optimization, Vol.1, 1996, pp. 123-145.

[20] R.C. Eberhart, Y. Shi, Evolving artificial neural
networks, Proc. International Conference on
Neural Networks and the Brain, Beijing, China,
1998, pp. 5-13.

[21] J.J. More, B.S. Garbow, K.E. Hillstrom,
Testing Unconstrained Optimization Software,
ACM Transactions on Mathematical Software,
Vol.7, 1965, pp. 308-313.

[22] R. Storn, K. Price, Differential Evolution – A
Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, Journal
of Global Optimization, Vol.11, 1997, pp. 341-
359.

[23] D.A. Pierre, Optimization Theory and
Applications, Dover Publications, 1986.

[24] A. Levy, A. Montalvo, S. Gomez, A. Galderon,
Topics in Global Optimization, (Lecture Notes in
Mathematics No. 909), Springer-Verlag, 1981.

	K.E. PARSOPOULOS, M.N. VRAHATIS
	University of Patras
	Function Name
	Dimension
	Function
	Name
	Swarm’s Size
	Function
	NS-PSO
	PSO

	Function
	NS-PSO
	PSO

