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Abstract: -  Initialization of the population in Evolutionary Computation algorithms is an issue of ongoing 
research. Proper initialization may help the algorithm to explore the search space more efficiently and detect  
better solutions. In this paper, the Nonlinear Simplex Method is used to initialize the swarm of the Particle 
Swarm technique. Experiments for several well-known benchmark problems imply that better convergence 
rates and success rates can be achieved by initializing the swarm this way.
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1   Introduction
Evolutionary Computation (EC) algorithms provide 
solutions to many hard optimization problems that 
are very difficult to cope with using the traditional 
Gradient based methods, due to their nature that may 
imply  discontinuities  of  the  search  space,  non-
differentiable  objective  functions,  imprecise 
arguments and function values. The main advantage 
of these algorithms is the usage of a population of 
potential  solutions  that  explore  the  search  space 
simultaneously,  exchanging  information  among 
them  and  using  only  function  values  and  not 
derivatives of the objective function.
     The  most  well-known  paradigm  of  EC 
algorithms are the Genetic Algorithms (GA) that are 
used widely, especially in engineering and industrial 
applications [1, 2, 3]. According to the GA’s theory, 
the  population  is  binary  encoded  and  genetic 
operators,  inspired  by  the  human  DNA  evolution 
procedures, are applied to the population in order to 
evolve  it  and  thus  explore  the  search  space 
efficiently.  Several  other  ideas  (Evolutionary 
Programming  [4],  Evolution  Strategies  [5,  6], 
Genetic Programming [7]) are inspired by the GAs 
and  they  are  widely  applied  exhibiting  significant 
results in several scientific fields.
     Recently,  a  new research field arised,  called 
Swarm Intelligence  (SI).  SI  argues  that  intelligent 
human  cognition  derives  from  the  interaction  of 
individuals  in  a  social  environment  and  that  the 
main  ideas  of  sociocognition  can  be  effectively 
applied to develop stable and efficient algorithms for 
optimization  tasks  [8].  Ant  Colony  Optimization 

(ACO) is the most well known SI algorithm and is 
mainly used for Combinatorial  Optimization tasks, 
exhibiting very interesting results in experiments as 
well as in real life applications [9, 10].
     The  Particle  Swarm  Optimization  (PSO) 
technique is an SI technique, which is mainly used 
for  Continuous  Optimization  tasks  and  has  been 
originally  developed  by  R.C.  Eberhart  and  J. 
Kennedy [8, 11]. In this technique, the population of 
potential solutions is called  swarm and it  explores 
the  search  space  simulating  the  movement  of  a 
“birds’  flock”  while  searching  for  food,  where 
global  exchange  of  information  among  all 
individuals,  which are called  particles,  takes place 
and each particle can profit from the discoveries of 
the rest of the swarm. PSO has been proved to be 
very efficient algorithm in solving hard optimization 
problems  and  engineering  applications,  including 
neural  networks  training  and  Human  Tremor 
analysis.  Many variants  and techniques  have been 
developed to improve further its performance [8, 12, 
13, 14, 15, 16].
     The initialization of the swarm is usually done 
using a uniform distribution over the search space, 
but  this  is  not  always  the  best  way.  In  another 
approach  a  Sobol  sequence  generator  is  used  to 
generate the initial swarm in order to be uniformly 
distributed  over  multidimensional  search  spaces 
[14].  Proper  initialization  of  the  swarm  seems  to 
help PSO to explore efficiently the search space and 
detect solutions of better quality.
     In this paper, the Nonlinear Simplex Method 
developed by J.A. Nelder and R. Mead [17] is used 



to  initialize  the  swarm  of  the  PSO  technique. 
Experimental  results  for  many  well-known  test 
functions imply that this is a very promising way of 
initialization  and  that  it  can  significantly  improve 
the convergence rates and in some cases the success 
rate of the PSO. In the next section, the Nonlinear 
Simplex Method is described. In Section 3 the PSO 
technique is  briefly analyzed and in Section 4 the 
proposed  algorithm  is  described  and  applied  in 
several test functions. The paper closes with some 
conclusions and ideas for further work in Section 5.

2   The Nonlinear Simplex Method
The  Nonlinear  Simplex  Method  (NSM)  was 
developed  by  J.A.  Nelder  and  R.  Mead  [17]  for 
function minimization tasks. It needs only function 
evaluations  and  there  is  no  need  for  derivatives 
computation. In general the NSM is considered as 
the  best  method  if  the  figure  of  merit  is  “get 
something to work quickly”, especially when noisy 
problems  are  considered,  and  has  a  geometrical 
naturalness,  which  makes  it  delightful  to  work 
through [18].
     A D-dimensional simplex is a geometrical figure 
consisting of  D+1 vertices  (D-dimensional  points) 
and  all  their  interconnecting  segments,  polygonal 
faces etc. Thus, in two dimensions, a simplex is a 
triangle,  while  in  three  dimensions  it  is  a 
tetrahedron. In general, we consider only simplexes 
that are  non-degenerated,  i.e.,  that enclose a finite 
inner D-dimensional volume. If any vertex of such a 
simplex  is  taken  as  the  origin,  then  the  rest  D 
vertices  define  vector  directions  that  span  the  D-
dimensional vector space.
     The NSM starts with an initial simplex and takes 
a  series  of  steps  where  the  vertex  of  the  simplex 
with  the  highest  function  value  is  mostly  moved 
through the opposite face of the simplex to a lower 
point.  If  this  is  possible,  then  the  simplex  is 
expanded in one or another direction to take larger 
steps. When the method reaches a “valley floor”, the 
simplex is contracted in the transverse direction in 
order to ooze down the valley or it can be contracted 
in all directions, pulling itself in around its lowest 
point.  A subroutine implementing NSM in Fortran 
77 is given in [18]. The possible moves of a simplex 
are shown in Fig.1. 
     When  applied  to  function  minimization 
problems,  the  NSM  is  usually  restarted  at  a 
minimizer  that  has  already  been  found  by  the 
technique,  in order to make sure that  the stopping 
criteria have not been fooled by a single anomalous 
step. Thus, an initial simplex is generated using the 

found  minimizer  as  one  of  its  vertices  and 
generating  the  rest  D points  randomly.  Then  the 
algorithm is applied as usual  to that  simplex.  The 
restart  is  not  expected  computationally  expensive, 
since the algorithm had already converged to one of 
the initial simplex vertices before restarted.

    high

low
Simplex at the beginning of step

(a). Reflection

(b). Reflection and expansion

(c). Contraction

(d). Multiple contraction

Fig.1. Possible outcomes for a step in the NSM. 
The simplex initially is a tetrahedron (top). At 
the  next  step  it  can  be  (a)  a  reflection  away 
from  the  high  point,  (b)  a  reflection  and 
expansion  away  from  the  high  point,  (c)  a 
contraction along one dimension from the high 
point, or (d) a contraction along all dimensions 
toward the lowest point.

The  convergence  properties  of  the  NSM  are  in 
general poor (for a convergence proof of a modified 
version  see  [19])  but  in  many  applications  it  has 
been  a  very useful  method,  especially  in  cases  of 
noisy functions and problems with imprecise data. A 



more efficient variant of the NSM can be found in 
[19].  In  the  next  section,  the  PSO  technique  is 
described and discussed.

3   The Particle Swarm Optimization 
Technique
As already mentioned in the Introduction, that PSO 
is  an  Evolutionary  Technique  (more  precisely  a 
Swarm  Intelligence  technique)  but  it  differs 
significantly  from the  GAs.  In  PSO,  there  are  no 
DNA  inspired  operators  applied  on  the  swarm. 
Instead, each particle is assumed to “fly” over the 
search space in order to find promising regions of 
the landscape and adjusts its own “flying” according 
to its “flying” experience as well as the experience 
of  the  other  particles.  The  promising  regions  are 
characterized by lower function values in the simple 
function minimization case. 
     There are many variants of the PSO technique 
developed so far. In our experiments a version of the 
algorithm derived by adding an inertia weight to the 
original PSO dynamics [20] has been used and this 
version is described in the following paragraphs.
     Assuming that the search space is D-dimensional, 
we denote by  Xi = (xi1, xi2,..., xiD) the  ith particle of 
the  swarm  and  by  Pi =  (pi1,  pi2,...,  piD) the  best 
position it  ever had into the search space, i.e.,  the 
position with the smallest function value. Let  g be 
the index of the best particle in the swarm, i.e., the 
particle with the smallest function value, and  Vi = 
(vi1, vi2, ..., viD) the velocity (position change) of the 
ith  particle. 
     Then, the swarm is manipulated according to the 
equations

vid = w vid + c1 r1 (pid – xid) + c2 r2 (pgd – xid), (1)
xid = xid + χvid (2)

where  d=1,2,...,D;  i=1,2,...,N and  N is the size of 
the population; w is the inertia weight; c1 and c2 are 
two  positive  constants;  r1 and  r2 are  two  random 
values into the range [0,1],  and  χ is a constriction 
factor used to control the magnitude of the velocity 
(in unconstrained problems it is usually set equal to 
one).
     The first  equation is  used to  calculate  the  ith 

particle’s  new  velocity  and  it  takes  into 
consideration  three  main  terms:  the  particle’s 
previous  velocity,  the  distance  of  the  particle’s 
current position from its own best position, and the 
distance of the particle’s current position from the 
swarm’s  best  experience  (position  of  the  best 
particle). Then, the particle moves to a new position 

according to the second equation. The performance 
of  each  particle  is  measured  using  a  predefined 
fitness  function,  which,  in  general,  is  problem 
dependent. 
     The inertia weight w plays an important role for 
the  convergence  behaviour  of  the  technique.  It  is 
used to control the impact of the previous history of 
velocities  to  the  current  velocity  of  each  particle, 
regulating this way the trade-off between the global 
and local  exploration abilities of  the swarm, since 
large values of w facilitate global exploration of the 
search  space  (visiting  new  regions)  while  small 
values  facilitate  local  exploration,  i.e.,  fine-tuning 
the current search area. Thus, it is better to use large 
values of  w at  the first  steps of the algorithm and 
gradually  decrease  it  during  the  optimization  in 
order to perform more refined search of the already 
detected promising regions.
     From the above discussion it is obvious that PSO 
resembles, to some extent, the mutation operator of 
GAs, but  since each particle is  guided by its  own 
experience  and  the  best  experience  of  the  whole 
swarm, we could say that PSO performs “mutation 
with conscience”, as pointed out in [20].
     The initialization of the swarm is considered as 
an  issue  of  crucial  importance  for  the  PSO’s 
performance  and  thus  it  is  an  issue  of  ongoing 
research.  Usually  the  particles  are  uniformly 
distributed over the search space either by using a 
simple  uniform  distribution  or  by  using  a  Sobol 
sequence generator. In the next section a new way to 
initialize  the  swarm  is  proposed  and  promising 
experimental results are exhibited.

4    The  Proposed  Algorithm  and 
Experimental Results
Providing  the  initial  swarm  with  some  extra 
information  concerning  the  position  of  the 
promising regions into the search space is generally 
considered as important help for the PSO algorithm, 
since it  may lead to faster convergence and better 
quality of the solutions provided by the algorithm. 
The main idea presented in this paper is the usage of 
the NSM for the generation of the initial swarm.
     Suppose that we start with an initial simplex into 
the D-dimensional search space, the D+1 vertices of 
the  simplex  will  be  the  first  D+1 particles  of  the 
swarm.  Then,  we  apply  the  NSM Method for  N-
(D+1) steps,  where  N is  the  desired  size  of  the 
swarm.  At  each  step  we  assume  the  new  vertex 
provided by the single NSM step as a new particle 
and  we  add  it  into  the  swarm.  Thus,  the  initial 
swarm is provided with the information of the good 



regions that possess each particle as a vertex of the 
NSM  simplex  in  each  step.  The  algorithm is  not 
computationally expensive, since for each particle of 
the  initial  swarm one function evaluation is  done, 
which  is  inevitable  even  if  we  use  a  randomly 
distributed  initial  swarm.  Furthermore,  the 
experimental results that are presented and discussed 
in  the  following  paragraphs  imply  that  the 
convergence  rate  of  the  PSO  is  improved  and  in 
some  cases  the  success  rate  of  the  algorithm  is 
dramatically increased.

The  test  functions  on  which  the  proposed 
algorithm has been tested, as well as the dimension 
of  each  one  and  the  corresponding  reference  are 
given in Table 1.

Function Name Dimension Reference
Banana Valley 2 [23]

Branin 2 [3]
Six-hump Camel 2 [3]

DeJong 2 [22]
FreuNSMein-Roth 2 [21]
GolNSMein-Price 2 [3]

Grienwangk 2 [22]
Levy No.3 2 [24]
Levy No.5 2 [24]

Helical Valley 3 [21]
6D Hyper-Ellipsoid 6 [22]

6D Rastrigin 6 [22]
6D Watson 6 [21]

9D Hyper-Ellipsoid 9 [22]

Table  1.  The  test  functions  used,  their 
dimensions and corresponding references.

Function 
Name

Swarm’s 
Size

Initial
Interval

Banana Valley 20 [-10,10]
Branin 20 [-5,5]

Six-hump Camel 20 [-10,10]
DeJong 20 [-5,5]

FreuNSMein-Roth 20 [-5,5]
GolNSMein-Price 20 [-10,10]

Grienwangk 20 [-10,10]
Levy No.3 30 [-2,2]
Levy No.5 20 [-5,5]

Helical Valley 30 [-0.5,0.5]
6D Hyper-Ellipsoid 50 [-6,6]

6D Rastrigin 60 [-0.5,0.5]
6D Watson 60 [-1,1]

9D Hyper-Ellipsoid 50 [-5,5]

Table  2.  The  test  functions  used,  the 
corresponding  swarm’s  sizes  and  the  initial 
intervals for the NSM.

For  all  test  functions  100  experiments  have  been 
done and the desired accuracy is 10-3. The swarm’s 
size as well as the interval in which the NSM has 
been initialized are different for each test function 
and they are given in Table 2.
The maximum number of PSO iterations is 150 for 
all runs and  c1 = c2 =  5. The inertia weight  w was 
initially set  to 1.2 and gradually decreased toward 
0.4. 

Function 
Name

Mean Func. Eval. Impr. 
(%)NS-PSO PSO

Banana Valley 1362.4 1466.4 7.1 %
Branin 971.2 1193.6 18.6 %

Six-hump Camel 1064 1154 7.8 %
DeJong 796.4 1019.2 21.9 %

FreuNSMein-Roth 1286.4 1392.4 7.6 %
GolNSMein-Price 1246 1327.6 6.1 %

Grienwangk 704.8 1075.2 34.4 %
Levy No.3 3097.2 3418.8 9.4 %
Levy No.5 2689.2 2820 4.6 %

Helical Valley 1965 2022 2.8 %
6D Hyper-Ellipsoid 3099 3344 7.3 %

6D Rastrigin 5568 6540 14.9 %
6D Watson 5064 5253.6 3.6 %

9D Hyper-Ellipsoid 3704 3924 5.6 %

Table 3. The mean number of function evaluations for 
100 runs for each test function and the corresponding 
improvement  percentage.  The  proposed  algorithm  is 
denoted as NS-PSO.

Function 
Name

Mean Iterations Impr. 
(%)NS-PSO PSO

Banana Valley 67.12 72.32 7.2 %
Branin 47.56 58.68 19 %

Six-hump Camel 52.2 56.7 7.9 %
DeJong 38.82 49.96 22.3 %

FreuNSMein-Roth 63.32 68.62 7.7 %
GolNSMein-Price 61.3 65.38 6.2 %

Grienwangk 34.24 52.76 35.1 %
Levy No.3 102.24 112.96 9.5 %
Levy No.5 88.64 93 4.7 %

Helical Valley 64.5 66.4 2.9 %
6D Hyper-Ellipsoid 60.98 65.88 7.4 %

6D Rastrigin 91.8 108 15 %
6D Watson 83.4 86.76 3.7 %

9D Hyper-Ellipsoid 73.08 77.48 5.7 %

Table 4. The mean number of PSO iterations for 100 
runs  for  each  test  function  and  the  corresponding 
improvement  percentage.  The  proposed  algorithm  is 
denoted as NS-PSO.

     In Table 3, the mean function evaluations for 
each  test  function,  as  well  as  the  corresponding 



improvement percentage are given, while in Table 4 
the  mean  number  of  PSO  iterations  and  the 
corresponding percentage are given. In both Tables 
3 and 4, the proposed algorithm is denoted as NS-
PSO.
We  shall  note  here  that  in  the  case  of  the  6-
dimensional  Rastrigin function,  the plain PSO has 
failed to  find the global  minimizer  in 68% of  the 
cases, while the proposed algorithm has failed only 
in  16% of  the  runs.  In  the  Levy  No.  3  case  the 
success  rate  of  plain  PSO  is  75%,  while  for  the 
proposed  algorithm  it  is  98%.  Furthermore,  the 
NSM initialization of the swarm seems to help PSO 
more in  the  cases  where the  bounds of  the  initial 
interval are away from the global minimizer. These 
cases are usually difficult for the PSO technique and 
result in bad convergence rates and success rates.

5   Conclusions and Further Work
A new idea for initializing the swarm in the PSO 
technique is  presented and experimental  results  in 
several test functions are given.
     Preliminary  results  imply  that  the  proposed 
algorithm  can  help  the  PSO  to  detect  faster  the 
promising regions of the search space. Each particle 
of the initial swarm (except the three first which are 
randomly  selected)  is  generated  performing  NSM 
steps  as  a  vertex  of  the  simplex  used.  Thus,  it 
possesses  an  inherent  information  that  guides  the 
swarm in the rest of the optimization faster to the 
most promising regions. Sometimes it helps even in 
detecting the global  minimizer  in cases where the 
PSO  would  otherwise  fail.  The  algorithm  is  not 
computationally expensive and both NSM and PSO 
are easily implemented.
     Further work includes more sophisticated ways 
of initialization using the NSM and the development 
of hybrid versions of PSO, where the main ideas of 
NSM are applied as operators to the swarm during 
the optimization.
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