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Abstract - This paper investigates the ability of

the Particle Swarm Optimization (PSO) method to

cope with minimax problems through experiments

on well{known test functions. Experimental results

indicate that PSO tackles minimax problems e�ec-

tively. Moreover, PSO alleviates di�culties that

might be encountered by gradient{based methods,

due to the nature of the minimax objective function,

and potentially lead to failure. The performance of

PSO is compared with that of other established ap-

proaches, such as the Sequential Quadratic Program-

ming (SQP) method and a recently proposed Smooth-

ing Technique; conclusions are derived.

I. INTRODUCTION

In general, the minimax problem can be de�ned as

min
x

f(x); (1)

where

f(x) = max
i=1;:::;m

fi(x); (2)

with fi(x) : S � R
n ! R, i = 1; : : : ;m. Such problems

are encountered in numerous optimal control, engineering

design, discrete optimization, Chebyshev approximation

and game theory applications [7], [8], [34].

Speci�cally, in Chebyshev approximation, given a func-

tion g : Y (0) � R
m ! R, the Chebyshev approximate pz

of g in pn solves the following minimax problem [34]:

min
z

max
y2Y (0)

(g(y)� pz(y))
2:

In game theory, a game is de�ned as a triple (Y; Z; k)

where Y , Z, denotes the spaces of strategies for player I

and II, respectively, and k is a real{valued pay{o� func-

tion of y 2 Y and z 2 Z. Under natural conditions, the

optimal strategies for both players solve the saddle point

problem [34]:

min
z2Z

max
y2Y

k(y; z) = max
y2Y

min
z2Z

k(y; z):

In numerous engineering design problems, one is inter-

ested in minimizing the largest eigenvalue of an n � n

symmetric matrix{valued function A(y) of a variable y

in Rn . Thus, if �i(y), i = 1; : : : ; n, is the i{th eigenvalue

of A(y) and by setting f(i; n) = �i(y), then the following

minimax problem is obtained [34]:

min
y2Y (0)

max
i=1;:::;n

f(i; y):

Another example is error minimization in the manufac-

turing of electronic parts, with a prespeci�ed tolerance.

Speci�cally, suppose that when a state z is speci�ed, the

process actually produces the state y+z for some y in the

tolerance set Z and let �(y+z) measure the resulting dis-

tortion. Since y is not known in advance, the worst{case

distortion should be minimized, leading to the minimax

problem [34]:

min
z2Z

max
y2Y

�(y + z):

Moreover, a nonlinear programming problem, with in-

equality constraints, of the form

minF (x);

subject to gi(x) > 0; i = 2; : : : ;m; (3)

can be transformed into the following minimax problem

min
x

max
16i6m

fi(x);

f1(x) = F (x);

fi(x) = F (x) � �igi(x);

�i > 0; (4)

for 2 6 i 6 m. It has been proved that for su�ciently

large �i, the optimum point of the minimax problem,

coincides with the optimum point of the nonlinear pro-

gramming problem [2].

In addition to the above, numerous other applications

involve solving minimax problems, justifying the ongo-

ing interest for the development of techniques that can
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cope e�ciently with it. However, the nature of the mini-

max objective function f(x) of Eq. (1), may pose di�cul-

ties in the process of solving minimax problems. Specif-

ically, at points where fj(x) = f(x) for two or more

values of j 2 f1; : : : ;mg, the �rst partial derivatives of

f(x) are discontinuous, even if all the functions fi(x),

i = 1; : : : ;m, have continuous �rst partial derivatives.

This di�culty cannot be addressed directly by the well{

known and widely used gradient{based methods, and

several techniques have been proposed to cope with it [6],

[21], [22]. Moreover, globally optimal solutions are fre-

quently not only desirable but also indispensable.

Sequential Quadratic Programming (SQP) is a com-

mon gradient{based approach for solving minimax prob-

lems. Starting from an initial approximation of the solu-

tion, a Quadratic Programming (QP) problem is solved

at each iteration of the SQP method, yielding a direc-

tion in the search space. To this direction, a vector is

obtained through line search, in order to produce a su�-

cient decrease of a merit function. This point is consid-

ered the new approximation of the solution. Smoothing

Techniques work in a very similar manner. Following

this approach, a smoothing function, sometimes called

the Exponential Penalty Function or Aggregate Function,

is used to approximate the objective function f(x) of

Eq. (1), [4], [5], [18], [19]. The smoothing function is

minimized through a gradient{based technique with line

search. Under strict conditions, line search ensures the

global convergence of the algorithm. Recently, a new

smoothing function has been proposed in [33], and a

quadratic approximation of this function is solved using

a gradient{based method with line search.

Gradient{based methods, such as SQP and Smoothing,

perform, in general, local minimization. Thus, the qual-

ity of the obtained minimizer is heavily dependent on the

initial approximation (starting point) of the solution, un-

less the objective function is convex, twice di�erentiable,

and line search is used. Moreover, derivatives informa-

tion for the objective function is required, and, thus, if

the derivatives are not analytically available, they need to

be approximated using �nite di�erences. Unfortunately,

in most applications, the only available information re-

garding the objective function, is its value. Besides, the

objective function might be discontinuous. In such cases,

gradient{based methods encounter grave di�culties in

the process of obtaining satisfactory solutions.

Evolutionary and Swarm Intelligence algorithms are

stochastic optimization methods that exploit algorith-

mic mechanisms similar to natural evolution and social

behavior respectively. They can cope with problems

that involve discontinuous objective functions and dis-

joint search spaces. In contrast to gradient{based meth-

ods they do not require derivatives information for the

objective function, but only its value; and the search is

performed simultaneously by many search points [17],

[30]. Thus, they are considered as a good and e�cient

alternative for general global optimization problems.

In this contribution, the PSO's ability to tackle mini-

max problems is investigated and its performance is com-

pared with that of the SQP algorithm. The rest of the

paper is organized as follows: in Sections II and III the

workings of the PSO method, the SQP, and Smoothing

Techniques are briey exposed. In Section IV experimen-

tal results for well{known test problems are exhibited and

Section V is devoted to conclusions.

II. PARTICLE SWARM OPTIMIZATION

PSO is a Swarm Intelligence method for global opti-

mization. It di�ers from other well{known Evolutionary

Algorithms (EA) [3], [9], [13], [17], [30], in that no op-

erators, inspired by evolutionary procedures, are applied

on the population to generate new promising solutions.

Instead, in PSO, each individual, named particle, of the

population, called swarm, adjusts its trajectory toward

its own previous best position, and toward the previous

best position attained by any member of its topological

neighborhood [15]. In the global variant of PSO, the

whole swarm is considered as the neighborhood. Thus,

global sharing of information takes place and the parti-

cles pro�t from the discoveries and previous experience

of all other companions during the search for promising

regions of the landscape. For example, in the single{

objective minimization case, such regions possess lower

function values than other, visited previously.

Several variants of the PSO technique have been pro-

posed so far, following Eberhart and Kennedy's pioneer-

ing work [9], [10], [16], [17]. In our experiments, three

global versions of PSO were investigated. All three ver-

sions are de�ned using the same equations, described in

the following paragraph [17].

First, let us de�ne the notation adopted in this pa-

per: assuming that the search space is D{dimensional,

the i-th particle of the swarm is represented by the D{

dimensional vector Xi = (xi1; xi2; : : : ; xiD) and the best

particle of the swarm, i.e. the particle with the lowest

function value, is denoted by index g. The best previ-

ous position (i.e. the position giving the best function

value) of the i-th particle is recorded and represented by

Pi = (pi1; pi2; : : : ; piD), and the position change (veloc-

ity) of the i-th particle is Vi = (vi1; vi2; : : : ; viD).

The particles are manipulated according to the follow-

ing equations (the superscripts denote the iteration num-

ber):

vn+1
id

= wvn
id
+ c1r

n

i1
(pn

id
� xn

id
) + c2r

n

i2
(pn

gd
� xn

id
); (5)
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xn+1
id

= xn
id
+ � vn+1

id
; (6)

where d = 1; 2; : : : ; D; N is the swarm's size; i =

1; 2; : : : ; N ; � is a constriction factor used to control and

constrict velocities; w is the inertia weight; c1 and c2
are two positive constants, called the cognitive and so-

cial parameter respectively; rn
i1

and rn
i2

are two random

numbers uniformly distributed within the range [0; 1].

Eq. (5) is used to calculate the i-th particle's new veloc-

ity, at each iteration. Three terms are taken into consid-

eration. The �rst term, wvn
id
, is the particle's previous

velocity weighted by the inertia weight w. The second

term, (pn
id
� xn

id
), is the distance between the particle's

best previous position, and its current position. Finally,

the third term, (pn
gd
� xn

id
), is the distance between the

swarm's best experience, and the i-th particle's current

position. The parameters c1r
n

i1
, c2r

n

i2
, provide random-

ness that makes the technique less predictable yet more

exible [15]. Eq. (6) provides the new position of the

i-th particle, adding its new velocity, to its current posi-

tion. In general, the performance of each particle is mea-

sured according to a �tness function, which is problem{

dependent. In optimization problems, the �tness func-

tion is usually the objective function under consideration.

The role of the inertia weight w is crucial for the PSO's

convergence behavior. The inertia weight is employed to

control the impact of the previous history of velocities on

the current velocity. Thus, the parameter w regulates the

trade{o� between the global (wide{ranging) and the local

(nearby) exploration abilities of the swarm. A large in-

ertia weight facilitates global exploration (searching new

areas), while a small one tends to facilitate local explo-

ration, i.e. �ne{tuning the current search area. A proper

value for the inertia weight w provides balance between

the global and local exploration ability of the swarm, and,

thus contributes to improved convergence rates. Experi-

mental results suggest that it is better to initially set the

inertia to a large value, in order to promote the global

exploration of the search space, and gradually decrease

it to obtain re�ned solutions [31]. Our approach incorpo-

rates a time{decreasing inertia weight. The initial pop-

ulation, as well as the velocities, can be generated either

randomly or using a Sobol sequence generator [29], which

ensures that the D-dimensional vectors will be uniformly

distributed within the search space. Some variants of

PSO impose a maximum allowed velocity Vmax to pre-

vent the swarm from explosion. Thus, if vn+1
id

> Vmax in

Eq. (5), then vn+1
id

= Vmax [17].

PSO resembles, to some extent, EA. Although it does

not rely on a direct recombination operator, the recombi-

nation concept is represented by the stochastic movement

of each particle toward its own previous position, as well

as toward the global best position of the entire swarm or

its neighborhood's best position, depending on the vari-

ant of the PSO used [11]. Moreover, PSO's mutation{like

behavior is directional, due to the velocity of each parti-

cle, with a kind of momentum built in. In other words,

PSO is considered as performing mutation with a \con-

science", as pointed out by Eberhart and Shi [11].

The PSO technique has proved to be very e�ective

in solving global optimization problems, in static, noisy

and, continuously changing environments, [23]{[26], ex-

hibiting competitive results with Evolutionary Algo-

rithms [1]. Moreover, it copes e�ciently with Multiob-

jective Optimization problems [27].

III. THE SQP ALGORITHM AND THE

SMOOTHING TECHNIQUE

The SQP algorithm starts from an initial point x0 and

an initial approximation of the Hessian matrix of the ob-

jective function, and it consists of three main stages: up-

dating of the Hessian; solving of a QP problem; and line

search for obtaining a new potential solution.

Thus, at each iteration, a positive de�nite quasi{

Newton approximation of the Hessian is calculated. In

our experiments, the BFGS method was used for that

purpose. Thus, the Hessian update is de�ned as

Hn+1 = Hn +
qnq

>

n

q>
n
sn
�

H>

n
Hn

s>
n
Hnsn

; (7)

where sn = xn+1 � xn, and qn = rf(xn+1). After the

calculation of the new approximation of the Hessian, the

following QP problem is solved in z:

min
z

q(z) =
1

2
z>Hz + c>z: (8)

The solution, zn, of the QP problem, is used to �nd a

new potential solution,

xn+1 = xn + �nzn; (9)

where the step length �n is determined through line

search.

Recently, an interesting Smoothing Technique has been

proposed in [33] for solving minimax problems. It uses

the smoothing function

f(x; �) = � ln

mX
i=1

exp

�
fi(x)

�

�
; (10)

to approximate the objective function f(x). This func-

tion is considered a good approximation of f(x) in the

sense that f(x) 6 f(x; �) 6 f(x) + � lnm, for � > 0, as

it is mentioned in [33].

The proposed method solves a quadratic approxima-

tion of f(x; �) for decreasing values of �. The global
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convergence of the algorithm is ensured, under condi-

tions, using Armijo's line{search procedure [28], [32].

A point x� is a stationary point to the minimax prob-

lem de�ned in Eq. (1), if there exists a vector y� =

(y�
1
; : : : ; y�

m
) such that

mX
j=1

y�
j
rfj(x

�) = 0; (11)

y�
j
> 0; j = 1; : : : ;m;

P
m

j=1
y�
j
= 1; (12)

y�
j
= 0; if fj(x

�) < maxff1(x
�); : : : ; fm(x

�)g: (13)

Related to the above, the following theorem has been

proved:

Theorem 1 ([7], [33]) If x� is a local minimum to the

problem de�ned in Eq. (1), then it is a stationary point

that satis�es Eqs. (11){(13). Conversely, assume that

f(x) is convex, then if x� is a stationary point, x� is a

global minimum to the minimax problem.

For an extended theoretical presentation of the afore-

mentioned aspects, as well as the convergence properties

of the Smoothing Technique, refer to [33]. Theoretical

aspects of the SQP algorithm are reported in [12], [14].

IV. EXPERIMENTAL RESULTS

Three variants of PSO were used in the experiments:

one with inertia weight and without constriction fac-

tor, denoted as PSO-In; one with constriction factor and

without inertia weight, denoted as PSO-Co; and one with

both constriction factor and inertia weight, denoted as

PSO-Bo.

The performance of the three variants of PSO was in-

vestigated on several test problems de�ned in [6], [20],

[30] and [33]. For all experiments, the maximum num-

ber of allowed function evaluations was set to 20000; the

desired accuracy was 10�4; the constriction factor � was

set equal to 0:729; the inertia weight w gradually de-

creased from 1 towards 0:1; c1 = c2 = 2; and Vmax = 4.

The aforementioned values for all PSO's parameters are

considered default values, and they are widely used in

the relevant literature [17]. There was no preprocessing

stage that might yield more suitable values for the param-

eters. For each test problem, 30 experiments were per-

formed, starting with a swarm and velocities uniformly

distributed within the range [�50; 50]D, where D is the

dimension of the corresponding search space.

For the experiments using the SQP approach, the

advanced algorithms implemented in the Optimization

Toolbox, Ver. 2, of Matlab cwere used with the same ac-

curacy and maximum number of function evaluations as

for PSO. For each test problem, 30 experiments starting

from a random initial point within the range [�50; 50]D

were performed.

For both approaches, the number of successes, as well

as the mean value, the median and the standard devia-

tion of the required number of function evaluations, were

recorded. Failure to �nd the solution, implies that the

algorithm was not capable of �nding the global minimum

and the corresponding minimizer, with the desired accu-

racy, in the maximum allowed number of iterations.

Four test functions de�ned in [33] were considered.

The �rst two (denoted as F1 and F2), are both 2{

dimensional, involving 3 functions fi(x), and they are

de�ned as follows:

min
x

F1(x);

F1(x) = maxffi(x)g; i = 1; 2; 3;

f1(x) = x2
1
+ x4

2
;

f2(x) = (2� x1)
2 + (2� x2)

2;

f3(x) = 2 exp(�x1 + x2);

and

min
x

F2(x);

F2(x) = maxffi(x)g; i = 1; 2; 3;

f1(x) = x4
1
+ x2

2
;

f2(x) = (2� x1)
2 + (2� x2)

2;

f3(x) = 2 exp(�x1 + x2):

The swarm's size was 20 in both cases. The other 2

test problems (denoted as F3 and F4) taken from [33],

have the general form of Eq. (3) and they are solved

after transforming them to minimax problems, following

Eq. (4). They are de�ned as follows:

F3(x) = x2
1
+ x2

2
+ 2x2

3
+ x2

4
� 5x1 � 5x2 � 21x3 + 7x4;

g2(x) = �x2
1
� x2

2
� x3

3
� x2

4
� x1 + x2 � x3 + x4 + 8

g3(x) = �x2
1
� 2x2

2
� x2

3
� 2x2

4
+ x1 + x4 + 10;

g4(x) = �x2
1
� x2

2
� x2

3
� 2x1 + x2 + x4 + 5;

and,

F4(x) = (x1 � 10)2 + 5(x2 � 12)2 + 3(x4 � 11)2 + x4
3
+

+10x6
5
+ 7x2

6
+ x4

7
� 4x6x7 � 10x6 � 8x7;

g2(x) = �2x2
1
� 3x4

3
� x3 � 4x2

4
� 5x5 + 127;

g3(x) = �7x1 � 3x2 � 10x2
3
� x4 + x5 + 282;

g4(x) = �23x1 � x2
2
� 6x2

6
+ 8x7 + 196;

g5(x) = �4x2
1
� x2

2
+ 3x1x2 � 2x2

3
� 5x6 + 11x7:

These problems are four and seven dimensional with

m = 4, and m = 5, respectively. The swarm's size was

20 and 50 respectively. Note that, although the swarm's

size was increased in the latter case, the maximum num-

ber of function evaluations remained equal to 20000.
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Furthermore, two minimax problems de�ned in [30]

were considered. The �rst is 2{dimensional (we will refer

it as F5), and the second is 10{dimensional (referred as

F6), and they are de�ned as follows:

min maxfjx1 + 2x2 � 7j; j2x1 + x2 � 5jg;

and

min maxfjxijg; 1 6 i 6 10:

The swarm's size for F5 was 20, while for F6 it was 50,

while the maximum number of function evaluations re-

mained �xed, at 20000.

Four other test problems were selected from [20] to

further investigate the performance of PSO. The name

of each problem, its dimension, and the number of fi(x)

functions involved, are reported in Table I. The swarm's

TABLE I

DIMENSION AND NUMBER OF FUNCTIONS fi(x)

FOR THE TEST PROBLEMS F7{F10.

Function Dimension # fi(x)

F7 (SPIRAL) 2 2

F8 (POLAK6) 4 4

F9 (WONG1) 7 5

F10 (OET6) 4 21

size for the test problems F7, F8, F10 was 20, while for F9
was 50, with maximum number of function evaluations

equal to 20000 in all cases.

The results for all test problems are reported in Ta-

ble II. At this point it is important to note that the

solutions obtained by PSO for the test problems F3
and F4, are better than the solutions obtained through

the Smoothing Technique, reported in [33], in the sense

that they satisfy all the constraints of the corresponding

nonlinear programming problem, while the solutions ob-

tained using the Smoothing Technique do not satisfy the

constraints g2(x) for F3, and g5(x) for F4, respectively.

V. CONCLUSIONS

The ability of PSO to tackle minimax problems was

investigated. Experimental results indicate that PSO

is e�ective in solving minimax problems. Although in

less complex problems it was outperformed by the much

faster SQP method, in most cases, it exhibited higher

success rates. The fact that in cases where SQP failed in

all experiments, PSO had success rates higher than 90%

(test problems F4, F8 and F9), is impressive. Compari-

son of the results obtained in some test problems, with

the results obtained using the Smoothing Technique, re-

ported in [33], indicate that the quality of the solutions

given by PSO was in many cases superior than that of

smoothing.

TABLE II

SUCCESS RATE, MEAN NUMBER, STANDARD

DEVIATION, AND MEDIAN OF FUNCTION

EVALUATIONS, FOR ALL THE TEST PROBLEMS.

Function Method Succ. Mean St.D. Median

F1 PSO-In 30/30 6012.0 1186.9 5780

PSO-Co 30/30 2348.0 1542.8 1850

PSO-Bo 29/30 2296.6 3449.8 1370

SQP 24/30 4044.5 8116.6 56

F2 PSO-In 30/30 5612.0 409.9 5740

PSO-Co 30/30 1693.3 282.7 1700

PSO-Bo 30/30 1534.0 166.7 1510

SQP 18/30 8035.7 9939.9 61

F3 PSO-In 30/30 5124.0 545.8 5120

PSO-Co 30/30 1142.6 260.4 1080

PSO-Bo 30/30 1022.0 220.9 990

SQP 30/30 135.5 21.1 132

F4 PSO-In 29/30 10526.6 2649.7 7750

PSO-Co 30/30 5150.0 1509.7 3000

PSO-Bo 28/30 5161.6 4286.9 2500

SQP 0/30 20000.0 0.0 20000

F5 PSO-In 30/30 5588.6 349.0 5620

PSO-Co 30/30 1673.3 225.5 1680

PSO-Bo 30/30 1432.0 108.3 1440

SQP 30/30 140.6 38.5 133

F6 PSO-In 30/30 15398.3 1152.6 15250

PSO-Co 30/30 10511.6 634.7 10600

PSO-Bo 28/30 7016.6 3563.7 6100

SQP 30/30 611.6 200.6 549

F7 PSO-In 30/30 2534.0 814.8 2600

PSO-Co 29/30 1790.0 3484.5 1060

PSO-Bo 30/30 1244.6 1154.0 950

SQP 10/30 15684.0 7302.4 20000

F8 PSO-In 30/30 3422.0 2250.8 3170

PSO-Co 30/30 1026.6 1003.4 780

PSO-Bo 29/30 1428.0 3523.8 750

SQP 0/30 20000.0 0.0 20000

F9 PSO-In 29/30 10306.6 2826.4 9775

PSO-Co 30/30 5660.0 1522.8 5325

PSO-Bo 27/30 5371.6 4999.2 3700

SQP 0/30 20000.0 0.0 20000

F10 PSO-In 24/30 7336.0 6616.4 4220

PSO-Co 22/30 7882.0 8484.1 1730

PSO-Bo 17/30 9366.6 9488.2 1970

SQP 22/30 4886.5 8488.4 229

Regarding the di�erent variants of PSO, the one which

utilized only constriction factor (PSO-Co) performed

better in terms of the cases where it achieved success rate

100% (8 problems, instead of 7 for PSO-In) and it was

always faster than PSO-In. The variant in which both in-

ertia weight and constriction factor were used, was faster

than the other two variants, but had the worst success

rates among all of them.

Moreover, PSO is very easily implemented and does

not require gradient information. Thus, it is una�ected

by discontinuities of the objective function, that cannot
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be addressed by the gradient{based methods.

Thus, PSO can be considered as a good alternative for

solving minimax problems, in cases where the gradient{

based techniques fail. If the problem under consideration

is a \black{box", and only function values are provided,

then using PSO for tackling it, or �nding a good approx-

imation of the solution through PSO, and then continue

with a faster gradient{based method, such as SQP or

Smoothing, may be the proper choice.
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