
Particle Swarm Optimization for Integer

Programming
E.C. Laskari, K.E. Parsopoulos and M.N. Vrahatis

Department of Mathematics,
University of Patras Arti�cial Intelligence Research Center (UPAIRC),

GR-26110 Patras, Greece
felena, kostasp, vrahatisg@math.upatras.gr

Abstract - The investigation of the performance of

the Particle Swarm Optimization (PSO) method in

Integer Programming problems, is the main theme

of the present paper. Three variants of PSO are

compared with the widely used Branch and Bound

technique, on several Integer Programming test prob-

lems. Results indicate that PSO handles e�ciently

such problems, and in most cases it outperforms the

Branch and Bound technique.

I. INTRODUCTION

A remarkably wide variety of problems can be rep-
resented as discrete optimization models [17]. An im-
portant area of application concerns the e�cient man-
agement of a limited number of resources so as to in-
crease productivity and/or pro�t. Such applications are
encountered in Operational Research problems such as
goods distribution, production scheduling, and machine
sequencing. There are applications in mathematics to
the subjects of combinatorics, graph theory and logic.
Statistical applications include problems of data analy-
sis and reliability. Recent scienti�c applications involve
problems in molecular biology, high energy physics and
x{ray crystallography. A political application concerns
the division of a region into election districts [17]. Cap-
ital budgeting, portfolio analysis, network and VLSI cir-
cuit design, as well as automated production systems are
some more applications in which Integer Programming
problems are met [17].
Yet another, recent, and promising application is the

training of neural networks with integer weights, where
the activation function and weight values are con�ned
in a narrow band of integers. Such neural networks are
better suited for hardware implementations compared to
real weight ones [26].
The Unconstrained Integer Programming problem can

be de�ned as

min
x

f(x); x 2 S � Z
n; (1)

where Z is the set of integers, and S is a not necessar-
ily bounded set, which is considered as the feasible re-
gion. Maximization of Integer Programming problems
is very common in the literature, but we will consider
only the minimization case, since a maximization prob-
lem can be easily transformed to a minimization problem
and vice versa. The problem de�ned in Eq. (1) is often
called \All{Integer Programming Problem", since all the
variables are integers, in contrast to the \Mixed{Integer
Programming Problem", where some of the variables are
real.
Optimization techniques developed for real search

spaces can be applied on Integer Programming problems
and determine the optimum solution by rounding o� the
real optimum values to the nearest integer [17], [28]. One
of the most common deterministic approaches for tack-
ling Integer Programming problems, is the Branch and
Bound (BB) technique [10], [18], [28]. According to this
technique, the initial feasible region is split into several
sub{regions. For each one of these sub{regions, a con-
strained sub{problem is solved, treating the integer prob-
lem as a continuous one. The procedure is repeated until
the real variables are �xed to integer values.
Evolutionary and Swarm Intelligence algorithms are

stochastic optimization methods that involve algorithmic
mechanisms similar to natural evolution and social be-
havior respectively. They can cope with problems that
involve discontinuous objective functions and disjoint
search spaces [7], [14], [30]. Genetic Algorithms (GA),
Evolution Strategies (ES), and the Particle Swarm Op-
timizer (PSO) are the most common paradigms of such
methods. GA and ES draw from principles of natural
evolution which are regarded as rules in the optimization
process. On the other hand, PSO is based on simula-
tion of social behavior. Early approaches in the direction
of Evolutionary Algorithms for Integer Programming are
reported in [8], [11].
In GA, the potential solutions are encoded in binary

bit strings. Since the integer search space, of the prob-

0-7803-7282-4/02/$10.00 ©2002 IEEE

lem de�ned in Eq. (1), is potentially not bounded, the
representation of a solution using a �xed length binary
string is not feasible [29]. Alternatively, ES can be used,
by embedding the search space Zn into Rn and truncat-
ing the real values to integers. However, this approach is
not always e�cient due to the existence of features of ES,
which contribute to the detection of real valued minima
with arbitrary accuracy. These features are not always
needed in integer spaces, since the smallest distance of
two points, in `1{norm, is equal to 1 [29].
This paper aims to investigate, the performance of the

PSO method on Integer Programming problems. The
truncation of real values to integers seems not to a�ect
signi�cantly the performance of the method, as the ex-
perimental results indicate. Moreover, PSO outperforms
the BB technique for most test problems.
The rest of the paper is organized as follows: in Section

II, the PSO method is described. In Section III, the BB
algorithm is brie
y exposed. In Section IV, the experi-
mental results are reported, and conclusions are reported
in Section V.

II. THE PARTICLE SWARM

OPTIMIZATION METHOD

PSO is a Swarm Intelligence method for global opti-
mization. It di�ers from other well{known Evolution-
ary Algorithms (EA) [2], [4], [7], [14], [30]. As in EA,
a population of potential solutions is used to probe the
search space, but no operators, inspired by evolution pro-
cedures, are applied on the population to generate new
promising solutions. Instead, in PSO, each individual,
named particle, of the population, called swarm, adjusts
its trajectory toward its own previous best position, and
toward the previous best position attained by any mem-
ber of its topological neighborhood [12]. In the global
variant of PSO, the whole swarm is considered as the
neighborhood. Thus, global sharing of information takes
place and the particles pro�t from the discoveries and
previous experience of all other companions during the
search for promising regions of the landscape. For ex-
ample, in the single{objective minimization case, such
regions possess lower function values than others, visited
previously.
Several variants of the PSO technique have been pro-

posed so far, following Eberhart and Kennedy [4], [13],
[14]. In our experiments, three di�erent global versions
of PSO were investigated. They are all de�ned using the
equations, described in the following paragraph [14].
First, let us de�ne the notation adopted in this pa-

per: assuming that the search space is D{dimensional,
the i-th particle of the swarm is represented by the D{
dimensional vector Xi = (xi1; xi2; : : : ; xiD) and the best

particle of the swarm, i.e. the particle with the smallest
function value, is denoted by index g. The best previ-
ous position (i.e. the position giving the lowest function
value) of the i-th particle is recorded and represented as
Pi = (pi1; pi2; : : : ; piD), and the position change (veloc-
ity) of the i-th particle is Vi = (vi1; vi2; : : : ; viD).
The particles are manipulated according to the follow-

ing equations (the superscripts denote the iteration):

V n+1

i
= wV n

i
+ c1r

n

i1(P
n

i
�Xn

i
) +

+c2r
n

i2(P
n

g
�Xn

i
); (2)

Xn+1

i
= Xn

i
+ � V n+1

i
; (3)

where i = 1; 2; : : : ; N ; N is the swarm's size; � is a con-

striction factor used to control and constrict velocities; w
is the inertia weight; c1 and c2 are two positive constants,
called the cognitive and social parameter respectively; rn

i1

and rn
i2 are two random numbers uniformly distributed

within the range [0; 1].
Eq. (2) is used to calculate at each iteration, the i-th

particle's new velocity. Three terms are taken into con-
sideration. The �rst term, wV n

i
, is the particle's previous

velocity weighted by the inertia weight w. The second
term, (Pn

i
� Xn

i
), is the distance between the particle's

best previous position, and its current position. Finally,
the third term, (Pn

g
�Xn

i
), is the distance between the

swarm's best experience, and the i-th particle's current
position. The parameters c1r

n

i1, c2r
n

i2, provide random-
ness that render the technique less predictable but more

exible [12]. Eq. (3) provides the new position of the
i-th particle, adding its new velocity, to its current posi-
tion. In general, the performance of each particle is mea-
sured according to a �tness function, which is problem{
dependent. In optimization problems, the �tness func-
tion is usually the objective function under consideration.
The role of the inertia weight w is considered crucial for

PSO's convergence behavior. The inertia weight is em-
ployed to control the impact of the history of velocities on
the current velocity. In this way, the parameter w regu-
lates the trade{o� between the global (wide{ranging) and
the local (nearby) exploration abilities of the swarm. A
large inertia weight facilitates global exploration (search-
ing new areas), while a small one tends to facilitate local
exploration, i.e. �ne{tuning the current search area. A
suitable value for the inertia weight w provides balance
between the global and local exploration ability of the
swarm, resulting in better convergence rates. Experi-
mental results suggest that it is better to set the inertia
to a large initial value, in order to promote global explo-
ration of the search space, and gradually decrease it to
obtain re�ned solutions [31]. Our approach, employs a
time{decreasing inertia weight value.

0-7803-7282-4/02/$10.00 ©2002 IEEE

The initial population, as well as the velocities, can be
generated either randomly or by a Sobol sequence gener-
ator [27], which ensures that the D-dimensional vectors
will be uniformly distributed within the search space.
Some variants of PSO impose a maximum allowed ve-

locity Vmax to prevent the swarm from exploding. Thus,
if vn+1

id
> Vmax in Eq. (2), then vn+1

id
= Vmax [14].

PSO resembles, to some extent, EA. Although it does
not rely on a direct recombination operator, the recombi-
nation concept is accounted for by the stochastic move-
ment of each particle toward its own best previous po-
sition, as well as toward the global best position of the
entire swarm or its neighborhood's best position, depend-
ing on the variant of the PSO that is used [6]. Moreover,
PSO's mutation{like behavior is directional, due to the
velocity of each particle, with a kind of momentum built
in. In other words, PSO is considered as performing mu-
tation with a \conscience", as pointed out by Eberhart
and Shi [6].
The PSO technique has proved to be very e�ective

in solving real valued global optimization problems, in
static, noisy as well as continuously changing environ-
ments, and for performing neural networks training [19]{
[22], exhibiting competitive results with the EA [1].
Moreover, it can cope e�ciently with Multiobjective Op-
timization problems [25] and specialized problems, like
the `1 norm errors{in{variables problems [23]. Its con-
vergence rates can be improved by properly initializing
the population e.g. using a derivative{free method like
the Nonlinear Simplex Method of Nelder and Mead [24].

III. THE BRANCH AND BOUND

TECHNIQUE

The BB technique is widely used for solving optimiza-
tion problems. In BB, the feasible region of the problem
is relaxed, and subsequently partitioned into several sub{
regions; this is called branching. Over these sub{regions,
lower and upper bounds for the values of the function can
be determined; this is the bounding part of the algorithm.
The BB technique can be algorithmically sketched as

follows [3], [15], [16]:

Step 1. Start with a relaxed feasible region M0 � S

and partition M0 into �nitely many subsets Mi; i =
1; 2; : : : ;m, where S is the feasible region of the prob-
lem.

Step 2. For each subset Mi, determine lower (and if
possible) upper bounds, �(Mi) and �(Mi), respec-
tively, satisfying

�(Mi) 6 inf f(Mi \ S) 6 �(Mi);

where f is the objective function under considera-
tion.
Then, the bounds de�ned as

� := min
i=1;2;:::;m

�(Mi);

and
� := min

i=1;2;:::;m
�(Mi);

are \overall" bounds, i.e.

� 6 min f(S) 6 �:

Step 3. If � = � (or � � � 6 ", for a prede�ned con-
stant " > 0), then stop.

Step 4. Otherwise, choose some of the subsets Mi and
partition them, in order to obtain a more re�ned
partition of M0. Determine new (hopefully better)
bounds on the new partition elements, and repeat
the procedure.

An advantage of the BB technique is that, during the
iteration process, one can usually delete subsets of S, in
which, the minimum of f cannot be attained. Impor-
tant issues that arise during the BB procedure are that
of properly partitioning the feasible region and selecting
which sub{problem to evaluate.
The BB technique has been successfully applied to In-

teger Programming problems. The algorithm applied in
this paper, transforms the initial integer problem to a
continuous one. Consecutively, following the prescribed
procedure, it restricts the domain of the variables, which
are still considered continuous, and solves the generated
sub{problems using the Sequential Quadratic Program-
ming method. This process is repeated until the variables
are �xed to an integer value. For the branching, Depth{
First traversal with backtracking was used.

IV. EXPERIMENTAL RESULTS

Seven Integer Programming test problems were se-
lected to investigate the performance of the PSO method.
Each particle of the swarm was truncated to the closest
integer, after the determination of its new position using
Eq. (3).
The considered test problems, de�ned immediately be-

low, are frequently encountered in the relevant literature:

Test Problem 1, [29]:

F1(x) = kxk1 = jx1j+ : : :+ jxDj;

with x = (x1; : : : ; xD) 2 [�100; 100]D, where D is the
corresponding dimension. The solution is x�

i
= 0, i =

0-7803-7282-4/02/$10.00 ©2002 IEEE

1; : : : ; D, with F1(x
�) = 0. This problem was considered

in dimensions 5, 10, 15, 20, 25, and 30.

Test Problem 2, [29]:

F2(x) = x> x =
�
x1 : : : xD

�
0
B@

x1
...
xD

1
CA ;

with x = (x1; : : : ; xD)
> 2 [�100; 100]D, where D is the

corresponding dimension. The solution is x�
i
= 0, i =

1; : : : ; D, with F2(x
�) = 0. This is a quite trivial problem

and it was considered in dimension 5.

Test Problem 3, [9]:

F3(x) = �
�
15 27 36 18 12

�
x +

+ x>

0
BBBB@

35 �20 �10 32 �10
�20 40 �6 �31 32
�10 �6 11 �6 �10
32 �31 �6 38 �20

�10 32 �10 �20 31

1
CCCCA

x:

with best known solutions x� = (0; 11; 22; 16; 6)> and
x� = (0; 12; 23; 17; 6)>, with F3(x

�) = �737.

Test Problem 4, [9]:

F4(x) = (9x21 + 2x22 � 11)2 + (3x1 + 4x22 � 7)2;

with solution x� = (1; 1)> and F4(x
�) = 0.

Test Problem 5, [9]:

F5(x) = (x1 + 10x2)
2 + 5(x3 � x4)

2 +

+(x2 � 2x3)
4 + 10(x1 � x4)

4;

with solution x� = (0; 0; 0; 0)> and F5(x
�) = 0.

Test Problem 6, [28]:

F6(x) = 2x21 + 3x22 + 4x1x2 � 6x1 � 3x2;

with solution x� = (2;�1)> and F6(x
�) = �6.

Test Problem 7, [9]:

F7(x) = �3803:84� 138:08x1 � 232:92x2 + 123:08x21 +

+203:64x22 + 182:25x1x2;

TABLE I

SUCCESS RATE, MEAN NUMBER, STANDARD

DEVIATION, AND MEDIAN OF FUNCTION

EVALUATIONS, FOR THE TEST PROBLEM F1.

Function Method Succ. Mean St.D. Median

F1 PSO-In 30/30 1646.0 661.5 1420

5 dim PSO-Co 30/30 744.0 89.8 730

PSO-Bo 30/30 692.6 97.2 680

BB 30/30 1167.83 659.8 1166

F1 PSO-In 30/30 4652.0 483.2 4610

10 dim PSO-Co 30/30 1362.6 254.7 1360

PSO-Bo 30/30 1208.6 162.7 1230

BB 30/30 5495.8 1676.3 5154

F1 PSO-In 30/30 7916.6 624.1 7950

15 dim PSO-Co 30/30 3538.3 526.6 3500

PSO-Bo 30/30 2860.0 220.2 2850

BB 30/30 10177.1 2393.4 10011

F1 PSO-In 30/30 8991.6 673.3 9050

20 dim PSO-Co 30/30 4871.6 743.3 4700

PSO-Bo 29/30 4408.3 3919.4 3650

BB 30/30 16291.3 3797.9 14550

F1 PSO-In 30/30 11886.6 543.7 11900

25 dim PSO-Co 30/30 9686.6 960.1 9450

PSO-Bo 25/30 9553.3 7098.6 6500

BB 20/30 23689.7 2574.2 25043

F1 PSO-In 30/30 13186.6 667.8 13050

30 dim PSO-Co 30/30 12586.6 1734.9 12500

PSO-Bo 19/30 13660.0 8863.9 7500

BB 14/30 25908.6 755.5 26078

with solution x� = (0; 1)> and F7(x
�) = �3833:12.

Three variants of PSO were used in the experiments:
one with inertia weight and without constriction fac-
tor, denoted as PSO-In; one with constriction factor and
without inertia weight, denoted as PSO-Co; and one with
both constriction factor and inertia weight, denoted as
PSO-Bo. For all experiments, the maximum number of
allowed function evaluations was set to 25000; the de-
sired accuracy was 10�6; the constriction factor � was
set equal to 0:729; the inertia weight w was gradually de-
creased from 1 towards 0:1; c1 = c2 = 2; and Vmax = 4.
The aforementioned values for all PSO's parameters are
considered default values, and they are used widely in
the relevant literature [14]. There was no preprocessing
stage that might yield more suitable values for the param-
eters. For each test problem, 30 experiments were per-
formed, starting with a swarm and velocities uniformly
distributed within the range [�100; 100]D, whereD is the
dimension of the corresponding problem, and truncated
to the nearest integer.
For the BB algorithm, 30 experiments were performed

for each test problem, starting from a randomly selected
point within [�100; 100]D, and truncated to the nearest

0-7803-7282-4/02/$10.00 ©2002 IEEE

TABLE II

SUCCESS RATE, MEAN NUMBER, STANDARD

DEVIATION, AND MEDIAN OF FUNCTION

EVALUATIONS, FOR THE TEST PROBLEMS F2{F7.

Function Method Succ. Mean St.D. Median

F2 PSO-In 30/30 1655.6 618.4 1650

5 dim PSO-Co 30/30 428.0 57.9 430

PSO-Bo 30/30 418.3 83.9 395

BB 30/30 139.7 102.6 93

F3 PSO-In 30/30 4111.3 1186.7 3850

PSO-Co 30/30 2972.6 536.4 2940

PSO-Bo 30/30 3171.0 493.6 3080

BB 30/30 4185.5 32.8 4191

F4 PSO-In 30/30 304.0 101.6 320

PSO-Co 30/30 297.3 50.8 290

PSO-Bo 30/30 302.0 80.5 320

BB 30/30 316.9 125.4 386

F5 PSO-In 30/30 1728.6 518.9 1760

PSO-Co 30/30 1100.6 229.2 1090

PSO-Bo 30/30 1082.0 295.6 1090

BB 30/30 2754.0 1030.1 2714

F6 PSO-In 30/30 178.0 41.9 180

PSO-Co 30/30 198.6 59.2 195

PSO-Bo 30/30 191.0 65.9 190

BB 30/30 211.1 15.0 209

F7 PSO-In 30/30 334.6 95.5 340

PSO-Co 30/30 324.0 78.5 320

PSO-Bo 30/30 306.6 96.7 300

BB 30/30 358.6 14.7 355

integer. The maximum number of allowed function eval-
uations and the desired accuracy were the same as for
PSO.
For both algorithms, the number of successes in de-

tecting the integer global minimum of the correspond-
ing problem, within the maximum number of function
evaluations, the mean, the standard deviation, and the
median of the required number of function evaluations,
were recorded and they are reported in Tables I and II.
The swarm's size was problem dependent. The swarm's
size for each test problem is reported in Table III. It
should be noted at this point, that although the swarm's
size was problem dependent, the maximum number of
allowed function evaluations was equal to 25000, for all
cases.
In a second round of experiments, a PSO with gradu-

ally truncated particles was used. Speci�cally, the parti-
cles for the �rst 50 iterations were rounded to 6 decimal
digits (d.d.), for another 100 iterations they were rounded
to 4 d.d., for another 100 iterations they were rounded
to 2 d.d., and for the rest iterations they were rounded
to the nearest integer. The results obtained using this

TABLE III

DIMENSION AND SWARM'S SIZE FOR ALL TEST

PROBLEMS.

Function Dimension Swarm's Size

F1 5 20

F1 10 20

F1 15 50

F1 20 50

F1 25 100

F1 30 100

F2 5 10

F3 5 70

F4 2 20

F5 4 20

F6 2 10

F7 2 20

gradually truncated variant of PSO, were almost similar
to the results reported in Tables I and II for the plain
PSO.

V. CONCLUSIONS

The ability of the PSO method to cope with Integer
Programming problems formed the core of the paper. Ex-
perimental results for seven widely used test problems in-
dicate that PSO is a very e�ective method and should be
considered as a good alternative to handle such problems.
The behavior of PSO seems to be stable even for high

dimensional cases, exhibiting high success rates even in
cases in which the BB technique failed. In most cases,
PSO outperformed the BB approach, by means of the
mean number of required function evaluations.
Moreover, the method appears not seem to su�er from

search stagnation. The aggregate movement of each par-
ticle towards its own best position and the best position
ever attained by the swarm, added to its weighted pre-
vious position change, ensures that particles maintain a
position change during the process of optimization, which
is of proper magnitude.
Regarding the three di�erent variants of PSO, PSO-

Bo, which utilizes both inertia weight and constriction
factor, was the fastest, but the other two approaches
posses better global convergence abilities, especially in
high dimensional problems. In most experiments, PSO-
Co, which utilizes only a constriction factor, was signif-
icantly faster than PSO-In, which utilizes only inertia
weight.
In general, PSO seems an e�cient alternative for solv-

ing Integer Programming problems, when deterministic
approaches fail, or it could be considered as an algorithm
for providing good initial points to deterministic meth-
ods, as the BB technique, and thus, help them converge

0-7803-7282-4/02/$10.00 ©2002 IEEE

to the global minimizer of the integer problem.

VI. ACKNOWLEDGEMENT

Part of this work was done while the authors (K.E.P.
and M.N.V.) were at the Department of Computer Sci-
ence, University of Dortmund, D{44221 Dortmund, Ger-
many. This material was partially supported by the
Deutsche Forschungsgemeinschaft{DFG (German Na-
tional Research Foundation) as a part of the collaborative
research center \Computational Intelligence" (SFB 531).

References

[1] P.J. Angeline, \Evolutionary Optimization Versus Particle

Swarm Optimization: Philosophy and Performance Di�er-

ences", Evolutionary Programming VII, pp. 601{610, 1998.

[2] W. Banzhaf, P. Nordin, R.E. Keller and F.D. Francone, Ge-

netic Programming{An Introduction, Morgan Kaufmann: San

Francisco, 1998.

[3] B. Borchers and J.E. Mitchell, \Using an Interior Point

Method In a Branch and Bound Algorithm For Integer Pro-

gramming", Technical Report, Rensselaer Polytechnic Insti-

tute, July 1992.

[4] R.C. Eberhart, P.K. Simpson and R.W. Dobbins, Compu-

tational Intelligence PC Tools, Academic Press Professional:

Boston, 1996.

[5] R.C. Eberhart and Y.H. Shi, \Evolving Arti�cial Neural Net-

works", Proc. Int. Conf. on Neural Networks and Brain, Bei-

jing, P.R. China, 1998.

[6] R.C. Eberhart and Y.H. Shi, \Comparison Between Genetic

Algorithms and Particle Swarm Optimization", Evolutionary

Programming VII, pp. 611{615, 1998.

[7] D.B. Fogel, Evolutionary Computation: Toward a New Phi-

losophy of Machine Intelligence, IEEE Press: New York, 1995.

[8] D.A. Gall, \A Practical Multifactor Optimization Criterion",

A. Levi, T.P. Vogl (Eds.), Recent Advances in Optimization

Techniques, pp. 369{386, 1966.

[9] A. Glankwahmdee, J.S. Liebman and G.L. Hogg, \Uncon-

strained Discrete Nonlinear Programming", Engineering Op-

timization, Vol. 4, pp. 95{107, 1979.

[10] R. Horst and H. Tuy, Global Optimization, Deterministic Ap-

proaches, Springer, 1996.

[11] R.C. Kelahan and J.L. Gaddy, \Application of the Adaptive

Random Search to Discrete and Mixed Integer Optimization",

International Journal for Numerical Methods in Enginnering,

Vol. 12, pp. 289{298, 1978.

[12] J. Kennedy, \The Behavior of Particles", Evolutionary Pro-

gramming VII, pp. 581{587, 1998.

[13] J. Kennedy and R.C. Eberhart, \Particle Swarm Optimiza-

tion", Proc. of the IEEE International Conference on Neural

Networks, Piscataway, NJ, USA, pp. 1942{1948, 1995.

[14] J. Kennedy and R.C. Eberhart, Swarm Intelligence, Morgan

Kaufmann Publishers, 2001.

[15] E.L. Lawler and D.W. Wood, \Branch and Bound Methods:

A Survey", Operations Research, Vol. 14, pp. 699{719, 1966.

[16] V.M. Manquinho, J.P. Marques Silva, A.L. Oliveira ans

K.A. Sakallah, \Branch and Bound Algorithms for Highly

Constrained Integer Programs", Technical Report, Cadence

European Laboratories, Portugal, 1997.

[17] G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (Eds.),

Handbooks in OR & MS, Vol. 1: Optimization, Elsevier, 1989.

[18] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial

Optimization, John Wiley and Sons, 1988.

[19] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas and

M.N. Vrahatis, \Objective Function \Stretching" to Allevi-

ate Convergence to Local Minima", Nonlinear Analysis TMA,

Vol. 47(5), pp. 3419{3424, 2001.

[20] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas and

M.N. Vrahatis, \Stretching Technique for Obtaining Global

Minimizers Through Particle Swarm Optimization", Proc.

of the Particle Swarm Optimization Workshop, Indianapolis

(IN), USA, pp. 22{29, 2001.

[21] K.E. Parsopoulos and M.N. Vrahatis, \Modi�cation of the

Particle Swarm Optimizer for Locating All the Global Min-

ima", V. Kurkova, N. Steele, R. Neruda, M. Karny (Eds.),

Arti�cial Neural Networks and Genetic Algorithms, Springer:

Wien (Computer Science Series), pp. 324{327, 2001.

[22] K.E. Parsopoulos and M.N. Vrahatis, \Particle Swarm Op-

timizer in Noisy and Continuously Changing Environments",

M.H. Hamza (Ed.), Arti�cial Intelligence and Soft Comput-

ing, IASTED/ACTA Press, pp. 289{294, 2001.

[23] K.E. Parsopoulos, E.C. Laskari and M.N. Vrahatis, \Solving

`1 Norm Errors-In-Variables Problems Using Particle Swarm

Optimizer", M.H. Hamza (Ed.), Arti�cial Intelligence and Ap-

plications, IASTED/ACTA Press, pp. 185{190, 2001.

[24] K.E. Parsopoulos and M.N. Vrahatis, \Initializing the Parti-

cle Swarm Optimizer Using the Nonlinear Simplex Method",

Proc. WSES Evolutionary Computation 2002 Conference, In-

terlaken, Switzerland, in press.

[25] K.E. Parsopoulos and M.N. Vrahatis, \Particle Swarm Op-

timization Method in Multiobjective Problems", ACM SAC

2002 Conference, Madrid, Spain, in press.

[26] V.P. Plagianakos and M.N. Vrahatis, \Training Neural Net-

works with Threshold Activation Functions and Constrained

Integer Weights", Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN 2000), Como, Italy,

2000.

[27] W.H. Press, W.T. Vetterling, S.A. Teukolsky and B.P. Flan-

nery, Numerical Recipes in Fortran 77, Cambridge University

Press: Cambridge, 1992.

[28] S.S. Rao, Engineering Optimization{Theory and Practice, Wi-

ley Eastern: New Delhi, 1996.

[29] G. R�udolph, \An Evolutionary Algorithm for Integer Pro-

gramming",Y. Davidor, H.{P. Schwefel, R. M�anner (Eds.),

Parallel Problem Solving from Nature 3, pp. 139{148,

Springer, 1994.

[30] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, 1995.

[31] Y. Shi and R.C. Eberhart, \Parameter Selection in Parti-

cle Swarm Optimization", EvolutionaryProgramming VII, pp.

591{600, 1998.

0-7803-7282-4/02/$10.00 ©2002 IEEE

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
