
Modi�cation of the Particle Swarm Optimizer forlocating all the global minimaK.E. Parsopoulos, M.N. Vrahatis�1�Department of Mathematics, University of Patras Arti�cial Intelligence Research Center (UPAIRC), Uni-versity of Patras, GR-261.10 Patras, GreeceAbstractIn many optimization applications, escaping fromthe local minima as well as computing all the globalminima of an objective function is of vital impor-tance. In this paper the Particle Swarm Optimiza-tion method is modi�ed in order to locate and eval-uate all the global minima of an objective function.The new approach separates the swarm properlywhen a candidate minimizer is detected. This tech-nique can also be used for escaping from the localminima which is very important in neural networktraining.1 IntroductionMany recent advances in science, economics andengineering rely on numerical techniques for com-puting globally optimal solutions to correspond-ing optimization problems. These problems areextremely diverse and include economic modeling,neural networks training, image processing and engi-neering design and control [3]. Due to the existenceof multiple local and global optima all these prob-lems cannot be solved by classical nonlinear pro-gramming techniques.During the past three decades, however, manynew algorithms have been developed and new ap-proaches have been implemented, resulting to pow-erful optimization algorithms such as the Evolu-tionary Algorithms [6]. In contrast to other adap-tive algorithms, evolutionary techniques work on aset of potential solutions, which is called popula-tion, and �nd the optimal solution through coop-eration and competition among the potential so-lutions. These techniques can often �nd optimain complicated optimization problems faster thantraditional optimization methods. The most com-monly used population{based evolutionary compu-tation techniques, such as Genetic Algorithms andArti�cial Life methods, are motivated from the evo-lution of nature and the social behavior.1e{mail: fkostasp, vrahatisg@math.upatras.gr

It is worth noting that, in general, Global Opti-mization (GO) strategies possess strong theoreticalconvergence properties, and, at least in principle,are straightforward to implement and apply. Issuesrelated to their numerical e�ciency are consideredby equipping GO algorithms with a \traditional"local optimization phase. Global convergence, how-ever, needs to be guaranteed by the global{scope al-gorithm component which, theoretically, should beused in a complete, \exhaustive" fashion. Theseremarks indicate the inherent computational de-mand of the GO algorithms, which increases non{polynomially, as a function of problem{size, even inthe simplest cases.In practical applications, most of the aforemen-tioned methods can detect just sub{optimal solu-tions of the objective function. In many cases thesesub{optimal solutions are acceptable but there areapplications where an optimal solution is not onlydesirable but also indispensable. Moreover, in manyapplications there are many global minima that haveto be computed quickly and reliably. Therefore, thedevelopment of robust and e�cient GO methods isa subject of considerable ongoing research.Recently, Eberhart and Kennedy (1995) proposedthe Particle Swarm Optimization (PSO) algorithm:a new, simple evolutionary algorithm, which di�ersfrom other evolution{motivated evolutionary com-putation techniques in that it is motivated fromthe simulation of social behavior [2, 4]. Although,in general, PSO results in global solutions even inhigh{dimensional spaces, there are some problemswhenever the objective function has many globaland few (or not at all) local minima.In this paper we propose a strategy that �nds allglobal minima (or some of them if their number isin�nite) of an objective function using a modi�ca-tion of the PSO technique and show, through simu-lation experiments, that this strategy is e�cient ande�ective.The paper is organized as follows: the backgroundof the PSO is presented in Section 2. The proposed



strategy is derived in Section 3. In Section 4 someresults are presented and discussed, and �nally con-clusions are drawn in Section 5.2 The Particle Swarm OptimizerAs it is already mentioned, PSO is di�erent fromother evolutionary algorithms. Indeed, in PSO thepopulation dynamics simulates a \bird ock's" be-havior where social sharing of information takesplace and individuals can pro�t from the discover-ies and previous experience of all other companionsduring the search for food. Thus, each compan-ion, called particle, in the population, which is nowcalled swarm, is assumed to \y" over the searchspace in order to �nd promising regions of the land-scape. For example, in the minimization case, suchregions possess lower functional values than othervisited previously. In this context, each particle istreated as a point in a D{dimensional space whichadjusts its own \ying" according to its ying ex-perience as well as the ying experience of otherparticles (companions). There are many variants ofthe PSO proposed so far. In our experiments weused a new version of this algorithm, which is de-rived by adding a new inertia weight to the originalPSO dynamics [1]. This version is described in thefollowing paragraphs.First, let us de�ne the notation adopted in this pa-per: the i-th particle of the swarm is represented bythe D{dimensional vector Xi = (xi1; xi2; : : : ; xiD)and the best particle in the swarm, i.e. the particlewith the smallest function value, is denoted by theindex g. The best previous position (the positiongiving the best function value) of the i-th particle isrecorded and represented as Pi = (pi1; pi2; : : : ; piD),and the position change (velocity) of the i-th parti-cle is Vi = (vi1; vi2; : : : ; viD).The particles evolve according to the equationsvid = w vid + c1 r1 (pid � xid) ++c2 r2 (pgd � xid); (1)xid = xid + vid; (2)where d = 1; 2; : : : ; D; i = 1; 2; : : : ; N , and N is thesize of population; w is the inertia weight; c1 and c2are two positive constants; r1 and r2 are two randomvalues in the range [0; 1].The �rst equation is used to calculate i-th parti-cle's new velocity by taking into consideration threeterms: the particle's previous velocity, the distancebetween the particle's best previous and current po-sition, and, �nally, the distance between swarm'sbest experience (the position of the best particle

in the swarm) and i-th particle's current position.Then, following the second equation, the i-th par-ticle ies toward a new position. In general, theperformance of each particle is measured accordingto a prede�ned �tness function, which is problem{dependent.The role of the inertia weight w is considered veryimportant in PSO convergence behavior. The in-ertia weight is employed to control the impact ofthe previous history of velocities on the current ve-locity. In this way, the parameter w regulates thetrade{o� between the global (wide{ranging) and lo-cal (nearby) exploration abilities of the swarm. Alarge inertia weight facilitates global exploration(searching new areas), while a small one tends tofacilitate local exploration, i.e. �ne{tuning the cur-rent search area. A suitable value for the inertiaweight w usually provides balance between globaland local exploration abilities and, consequently, areduction on the number of iterations required to lo-cate the optimal solution. A general rule of thumbsuggests that it is better to initially set the inertia toa large value, in order to make better global explo-ration of the search space, and gradually decrease itto get more re�ned solutions, thus a time decreas-ing inertia weight value is used. The initial popula-tion can be generated either randomly or by using aSobol sequence generator [8] which ensures that theD-dimensional vectors will be uniformly distributedinto the search space.From the above discussion it is obvious that PSO,to some extent, resembles evolutionary program-ming. However, in PSO, instead of using geneticoperators, each individual (particle) updates its ownposition based on its own search experience andother individuals' (companions) experience and dis-coveries. Adding the velocity term to the currentposition, in order to generate the next position, re-sembles the mutation operation in evolutionary pro-gramming. Note that in PSO, however, the \mu-tation" operator is guided by particle's own \y-ing" experience and bene�ts by the swarm's \y-ing" experience. In another words, PSO is consid-ered as performing mutation with a \conscience", aspointed out by Eberhart and Shi [1].3 Locating all the global minima of an objec-tive function using the PSO methodLet f : B ! R be an objective function that hasmany global minima inside a hypercube B. If we usethe plain PSO algorithm to compute just one globalminimizer, i.e. a point �x 2 B such that f(�x) � f(x),for all x 2 B, there are two things that might hap-



pen: either the PSO will �nd one global minimum(but we don't foreknow which one) or the swarmwill ramble over the search space failing to decidewhere to land. This last behavior is due to the equal\good" information that each global minimizer has.Each particle moves toward a global minimizer andinuences the swarm in order to move toward thatdirection, but it is also a�ected by the rest of theparticles in order to move toward the other globalminimizer that they target. The result of this inter-action between particles is a cyclic movement overthe search space and disability to detect a minimum.A strategy to overcome these problems and �nd allglobal minimizers of f is described in the rest of thissection.In many applications, such as neural networkstraining, the goal is to �nd a global minimizer ofa nonnegative function. The global minimum valueis a priori known and is equal to zero, but there isa �nite (or in�nite in neural networks case) numberof global minimizers. In order to avoid the prob-lem mentioned in the previous paragraph, we can doas follows: we determine a not{so{small threshold� > 0 (e.g. if the desired accuracy is 10�5, a thresh-old around 0:01 or 0:001 will work) and whenever aparticle has a functional value that is smaller than�, we pull this particle away from the populationand isolate it. Simultaneously, we apply deation orstretching [7] to the original objective function f atthat point, in order to repel the rest of the swarmfrom moving toward it and add a new particle (ran-domly generated) in the swarm.\Stretching" is a new technique that provides away of escape from the local minima when PSO'sconvergence stalls. It consists of a two{stage trans-formation to the form of the original function f andcan be applied soon after a local minimum �x of thefunction f has been detected:G(x) = f(x)+1 kx� �xk(sign(f(x) � f(�x)) + 1)2 ; (3)H(x) =G(x)+2 sign (f(x)� f(�x)) + 12 tanh (�(G(x) �G(�x))) ; (4)where 1; 2 and � are arbitrary chosen positive con-stants, and sign(�) de�nes the well known three{valued sign function [7]:sign(x) = 8<: +1; x > 0;0; x = 0;�1; x < 0: (5)Thus, after isolating a particle, we check its func-tional value. If the functional value is far from the

desired accuracy, we can generate a small populationof particles around it and constrain this small swarmin the isolated neighborhood of f to perform a �nersearch while the big swarm continues searching therest of the search space for other minimizers. If weset the threshold to a slightly higher value, thenthe isolated particle is probably a local minimizerand during the local search, a global minimum willnot be detected but we have already helped PSO toavoid it by deating or stretching it. If we knowhow many global minimizers of f exist in B then,after some cycles, we will �nd all of them. In casewe do not know the number of global minimizers,we can ask for a speci�c number of them or let thePSO run until it reaches the maximum allowablenumber of iterations in a cycle. This will imply thatno other minimizers can be detected by PSO. Thewhole algorithm can be parallelized and run the twoprocedures (for the big and the small swarm) simul-taneously, saving this way a lot of time.In the next section we will discuss a simulationof a simple yet di�cult problem that can be solvedusing the presented algorithm.4 Some experimental resultsLet f be the 2-dimensional functionf(x1; x2) = cos(x1)2 + sin(x2)2; (6)where (x1; x2) 2 R2 . This function has in�nite num-ber of minima in R2 , at the points (� �2 ; � �), where� = �1;�3;�5; : : : and � = 0;�1;�2;�3; : : :. Weassume that we are interested only in the subset[�5; 5]2 of R2 . Into this hypercube, the function fhas 12 global (equal to zero) minima.If we try to �nd a single minimizer of f then we�nd out that the swarm moves back and forth as de-scribed in the previous section, until the maximumnumber of iterations is reached, failing to detect theminimizer. As already mentioned, this happens dueto the same information (i.e. functional value) thateach minimizer has. Thus, we could say that theswarm is so excited that it cannot decide where toland. Applying the algorithm given above, after 12cycles of the method, we found all global minimizerswith accuracy 10�5 and there even was no need forfurther local search.In a second experiment we tried to �nd all minimaof a notorious two dimensional test function, calledthe Levy No. 5:f(x) = 5Xi=1 i cos[(i+ 1)x1 + i]�



� 5Xj=1 j cos[(j + 1)x2 + j] ++(x1 + 1:42)2 + (x2 + 0:80)2; (7)where �10 � xi � 10; i = 1; 2. There areabout 760 local minima and one global minimumwith function value f(x�) = �176:1375 located atx� = (�1:3068;�1:4248)>. The large number of lo-cal optimizers makes it extremely di�cult for anymethod to locate the global minimizer. Using thepresented algorithm, we are able to compute all min-ima (global and local) of this function in cpu timethat does not surpass 760 times the mean cpu timeneeded to compute each minimizer separately.In another experiment a neural network has beentrained using the PSO to learn the XOR Booleanclassi�cation problem. The XOR function maps twobinary inputs to a single binary output and the net-work that was trained to solve the problem had twolinear input nodes, two hidden nodes with logisticactivations and one linear output node. Trainingthe network corresponds to the minimization of a9-dimensional objective function [5, 9]. It is wellknown from the neural networks literature that suc-cessful training in this case, i.e. reaching a globalminimizer, strongly depends on the initial weightvalues and that the error function of the networkpresents a multitude of local minima. To solve thisproblem, we use the new algorithm as follows: we seta threshold of 0:1 and start the algorithm as abovebut if the standard deviation of the population inan iteration is too close to zero without having func-tional value close to the threshold (e.g. if the errorvalue of the network is around 0:5, where there is awell known local minimum of the function), we pullthe best particle of the population away and isolateit. This particle is probably a local minimizer (ornear one) and thus we provide to it some new parti-cles (in our simulation the size of the population was40 thus we were adding 10 particles to the isolatedone) and perform a local search in the vicinity ofit (we took an area of radius 0:01 around it) whilethe rest of the big swarm continues searching therest of the space. If the local search yields a globalminimizer, we add it to our list of found global min-ima, otherwise it is a local minimizer and we havealready avoided it. In this way, we are able to de-tect an arbitrarily large number of global minimizerswhile simultaneously avoiding local ones.5 ConclusionsA new strategy for locating e�ciently and ef-fectively all the global minimizers of a function

with many global and local minima has been in-troduced. Experimental results indicate that theproposed modi�cation of the PSO method is able todetect e�ectively all the global minimizers insteadof rambling over the search space or attracting bythe local minima.The algorithm provides stable and robust conver-gence and thus a better probability of success for thePSO. Also, it can be straightforwardly parallelized.Extensive testing on higher{dimensional andmore complicate real{life optimization hard tasks isnecessary to fully investigate the properties of theproposed algorithm, as well as give some hints ofmodi�cations that will probably improve its perfor-mance.References[1] R.C. Eberhart and Y.H. Shi, \Evolving Arti-�cial Neural Networks", Proc. Int. Conf. onN.N. and Brain, Beijing, P.R. China, 1998.[2] R.C. Eberhart, P.K. Simpson and R.W. Dob-bins, \Computational Intelligence PC Tools",Academic Press Professional, Boston, 1996.[3] R. Horst, P.M. Pardalos and N.V. Thoai, \In-troduction to Global Optimization", KluwerAcademic Publishers, 1995.[4] J. Kennedy and R.C. Eberhart, \ParticleSwarm Optimization", Proc. IEEE Int. Conf.on N.N., Piscataway, NJ, pp. 1942{1948, 1995.[5] G.D. Magoulas, M.N. Vrahatis and G.S. An-droulakis, \E�ective back{propagation withvariable stepsize", Neural Networks, vol. 10,pp. 69{82, 1997.[6] Z. Michalewicz, \Genetic Algorithms + DataStructures = Evolution Programs", Springer,New York, 1996.[7] K.P. Parsopoulos, V.P. Plagianakos, G.D.Magoulas and M.N. Vrahatis, \Objective func-tion \stretching" to alleviate convergence tolocal minima", Nonlinear Analysis, T.M.A.,2001, to appear.[8] W.H. Press, W.T. Vetterling, S.A. Teukolskyand B.P. Flannery, \Numerical Recipes in For-tran 77", Cambridge University Press, 1992.[9] M.N. Vrahatis, G.S. Androulakis, J.N. Lam-brinos and G.D. Magoulas, \A class of gra-dient unconstrained minimization algorithmswith adaptive stepsize", J. of Comp. and App.Math., vol. 114, pp. 367{386, 2000.


