Modification of the Particle Swarm Optimizer for
locating all the global minima

K.E. Parsopoulos, M.N. Vrahatis*

*Department of Mathematics, University of Patras Artificial Intelligence Research Center (UPAIRC), Uni-
versity of Patras, GR-261.10 Patras, Greece

Abstract

In many optimization applications, escaping from
the local minima as well as computing all the global
minima of an objective function is of vital impor-
tance. In this paper the Particle Swarm Optimiza-
tion method is modified in order to locate and eval-
uate all the global minima of an objective function.
The new approach separates the swarm properly
when a candidate minimizer is detected. This tech-
nique can also be used for escaping from the local
minima which is very important in neural network
training.

1 Introduction

Many recent advances in science, economics and
engineering rely on numerical techniques for com-
puting globally optimal solutions to correspond-
ing optimization problems. These problems are
extremely diverse and include economic modeling,
neural networks training, image processing and engi-
neering design and control [3]. Due to the existence
of multiple local and global optima all these prob-
lems cannot be solved by classical nonlinear pro-
gramming techniques.

During the past three decades, however, many
new algorithms have been developed and new ap-
proaches have been implemented, resulting to pow-
erful optimization algorithms such as the Evolu-
tionary Algorithms [6]. In contrast to other adap-
tive algorithms, evolutionary techniques work on a
set of potential solutions, which is called popula-
tion, and find the optimal solution through coop-
eration and competition among the potential so-
lutions. These techniques can often find optima
in complicated optimization problems faster than
traditional optimization methods. The most com-
monly used population—based evolutionary compu-
tation techniques, such as Genetic Algorithms and
Artificial Life methods, are motivated from the evo-
lution of nature and the social behavior.

le-mail: {kostasp, vrahatis}@math.upatras.gr

It is worth noting that, in general, Global Opti-
mization (GO) strategies possess strong theoretical
convergence properties, and, at least in principle,
are straightforward to implement and apply. Issues
related to their numerical efficiency are considered
by equipping GO algorithms with a “traditional”
local optimization phase. Global convergence, how-
ever, needs to be guaranteed by the global-scope al-
gorithm component which, theoretically, should be
used in a complete, “exhaustive” fashion. These
remarks indicate the inherent computational de-
mand of the GO algorithms, which increases non—
polynomially, as a function of problem—size, even in
the simplest cases.

In practical applications, most of the aforemen-
tioned methods can detect just sub—optimal solu-
tions of the objective function. In many cases these
sub—optimal solutions are acceptable but there are
applications where an optimal solution is not only
desirable but also indispensable. Moreover, in many
applications there are many global minima that have
to be computed quickly and reliably. Therefore, the
development of robust and efficient GO methods is
a subject of considerable ongoing research.

Recently, Eberhart and Kennedy (1995) proposed
the Particle Swarm Optimization (PSO) algorithm:
a new, simple evolutionary algorithm, which differs
from other evolution—motivated evolutionary com-
putation techniques in that it is motivated from
the simulation of social behavior [2, 4]. Although,
in general, PSO results in global solutions even in
high—dimensional spaces, there are some problems
whenever the objective function has many global
and few (or not at all) local minima.

In this paper we propose a strategy that finds all
global minima (or some of them if their number is
infinite) of an objective function using a modifica-
tion of the PSO technique and show, through simu-
lation experiments, that this strategy is efficient and
effective.

The paper is organized as follows: the background
of the PSO is presented in Section 2. The proposed

strategy is derived in Section 3. In Section 4 some
results are presented and discussed, and finally con-
clusions are drawn in Section 5.

2 The Particle Swarm Optimizer

As it is already mentioned, PSO is different from
other evolutionary algorithms. Indeed, in PSO the
population dynamics simulates a “bird flock’s” be-
havior where social sharing of information takes
place and individuals can profit from the discover-
ies and previous experience of all other companions
during the search for food. Thus, each compan-
ion, called particle, in the population, which is now
called swarm, is assumed to “fly” over the search
space in order to find promising regions of the land-
scape. For example, in the minimization case, such
regions possess lower functional values than other
visited previously. In this context, each particle is
treated as a point in a D—dimensional space which
adjusts its own “flying” according to its flying ex-
perience as well as the flying experience of other
particles (companions). There are many variants of
the PSO proposed so far. In our experiments we
used a new version of this algorithm, which is de-
rived by adding a new inertia weight to the original
PSO dynamics [1]. This version is described in the
following paragraphs.

First, let us define the notation adopted in this pa-
per: the i-th particle of the swarm is represented by
the D—dimensional vector X; = (%1, %2, .-, %iD)
and the best particle in the swarm, i.e. the particle
with the smallest function value, is denoted by the
index g. The best previous position (the position
giving the best function value) of the i-th particle is
recorded and represented as P; = (pi1,pi2,---,PiD),
and the position change (velocity) of the i-th parti-
cle is V; = (vi1, Vi, ..+, UiD).

The particles evolve according to the equations

Via = Wi+ c1r1 (Pid — Tia) +
+e272 (Pga — Tid), (1)
Tid = Tid + Vid, (2)

where d =1,2,...,D;i=1,2,...,N, and N is the
size of population; w is the inertia weight; ¢; and ¢
are two positive constants; r; and ry are two random
values in the range [0, 1].

The first equation is used to calculate i-th parti-
cle’s new velocity by taking into consideration three
terms: the particle’s previous velocity, the distance
between the particle’s best previous and current po-
sition, and, finally, the distance between swarm’s
best experience (the position of the best particle

in the swarm) and i-th particle’s current position.
Then, following the second equation, the i-th par-
ticle flies toward a new position. In general, the
performance of each particle is measured according
to a predefined fitness function, which is problem—
dependent.

The role of the inertia weight w is considered very
important in PSO convergence behavior. The in-
ertia weight is employed to control the impact of
the previous history of velocities on the current ve-
locity. In this way, the parameter w regulates the
trade—off between the global (wide-ranging) and lo-
cal (nearby) exploration abilities of the swarm. A
large inertia weight facilitates global exploration
(searching new areas), while a small one tends to
facilitate local exploration, i.e. fine—tuning the cur-
rent search area. A suitable value for the inertia
weight w usually provides balance between global
and local exploration abilities and, consequently, a
reduction on the number of iterations required to lo-
cate the optimal solution. A general rule of thumb
suggests that it is better to initially set the inertia to
a large value, in order to make better global explo-
ration of the search space, and gradually decrease it
to get more refined solutions, thus a time decreas-
ing inertia weight value is used. The initial popula-
tion can be generated either randomly or by using a
Sobol sequence generator [8] which ensures that the
D-dimensional vectors will be uniformly distributed
into the search space.

From the above discussion it is obvious that PSO,
to some extent, resembles evolutionary program-
ming. However, in PSO, instead of using genetic
operators, each individual (particle) updates its own
position based on its own search experience and
other individuals’ (companions) experience and dis-
coveries. Adding the velocity term to the current
position, in order to generate the next position, re-
sembles the mutation operation in evolutionary pro-
gramming. Note that in PSO, however, the “mu-
tation” operator is guided by particle’s own “fly-
ing” experience and benefits by the swarm’s “fly-
ing” experience. In another words, PSO is consid-
ered as performing mutation with a “conscience”, as
pointed out by Eberhart and Shi [1].

3 Locating all the global minima of an objec-
tive function using the PSO method

Let f: B — R be an objective function that has
many global minima inside a hypercube B. If we use
the plain PSO algorithm to compute just one global
minimizer, i.e. a point Z € B such that f(z) < f(z),
for all z € B, there are two things that might hap-

pen: either the PSO will find one global minimum
(but we don’t foreknow which one) or the swarm
will ramble over the search space failing to decide
where to land. This last behavior is due to the equal
“good” information that each global minimizer has.
Each particle moves toward a global minimizer and
influences the swarm in order to move toward that
direction, but it is also affected by the rest of the
particles in order to move toward the other global
minimizer that they target. The result of this inter-
action between particles is a cyclic movement over
the search space and disability to detect a minimum.
A strategy to overcome these problems and find all
global minimizers of f is described in the rest of this
section.

In many applications, such as neural networks
training, the goal is to find a global minimizer of
a nonnegative function. The global minimum value
is a priori known and is equal to zero, but there is
a finite (or infinite in neural networks case) number
of global minimizers. In order to avoid the prob-
lem mentioned in the previous paragraph, we can do
as follows: we determine a not—so—small threshold
€ > 0 (e.g. if the desired accuracy is 107, a thresh-
old around 0.01 or 0.001 will work) and whenever a
particle has a functional value that is smaller than
€, we pull this particle away from the population
and isolate it. Simultaneously, we apply deflation or
stretching [7] to the original objective function f at
that point, in order to repel the rest of the swarm
from moving toward it and add a new particle (ran-
domly generated) in the swarm.

“Stretching” is a new technique that provides a
way of escape from the local minima when PSO’s
convergence stalls. It consists of a two—stage trans-
formation to the form of the original function f and
can be applied soon after a local minimum Z of the
function f has been detected:

; (4)

where 71,72 and p are arbitrary chosen positive con-
stants, and sign(-) defines the well known three—
valued sign function [7]:

+1, x>0,
sign(z) = 0, z=0, (5)
-1, z<0.

Thus, after isolating a particle, we check its func-
tional value. If the functional value is far from the

desired accuracy, we can generate a small population
of particles around it and constrain this small swarm
in the isolated neighborhood of f to perform a finer
search while the big swarm continues searching the
rest of the search space for other minimizers. If we
set the threshold to a slightly higher value, then
the isolated particle is probably a local minimizer
and during the local search, a global minimum will
not be detected but we have already helped PSO to
avoid it by deflating or stretching it. If we know
how many global minimizers of f exist in B then,
after some cycles, we will find all of them. In case
we do not know the number of global minimizers,
we can ask for a specific number of them or let the
PSO run until it reaches the maximum allowable
number of iterations in a cycle. This will imply that
no other minimizers can be detected by PSO. The
whole algorithm can be parallelized and run the two
procedures (for the big and the small swarm) simul-
taneously, saving this way a lot of time.

In the next section we will discuss a simulation
of a simple yet difficult problem that can be solved
using the presented algorithm.

4 Some experimental results

Let f be the 2-dimensional function

flane) = cos(@)? +sin@)’, (6)
where (71, 22) € R?. This function has infinite num-
ber of minima in R?, at the points (x Z, A7), where
k==+1,4£3,£5...and A = 0,+1,+2, +3,.... We
assume that we are interested only in the subset
[—5,5]2 of R2. Into this hypercube, the function f
has 12 global (equal to zero) minima.

If we try to find a single minimizer of f then we
find out that the swarm moves back and forth as de-
scribed in the previous section, until the maximum
number of iterations is reached, failing to detect the
minimizer. As already mentioned, this happens due
to the same information (i.e. functional value) that
each minimizer has. Thus, we could say that the
swarm is so excited that it cannot decide where to
land. Applying the algorithm given above, after 12
cycles of the method, we found all global minimizers
with accuracy 10~ and there even was no need for
further local search.

In a second experiment we tried to find all minima
of a notorious two dimensional test function, called
the Levy No. 5:

5
fl@) = Zicos[(i + 1)z +14] x

i=1

5
X chos[(j + Dy + 4] +

j=1
(@1 +1.42)% + (2 + 0.80)%, (7)

where —10 < z; < 10,5 = 1,2. There are
about 760 local minima and one global minimum
with function value f(z*) = —176.1375 located at
z* = (—1.3068, —1.4248) . The large number of lo-
cal optimizers makes it extremely difficult for any
method to locate the global minimizer. Using the
presented algorithm, we are able to compute all min-
ima (global and local) of this function in cpu time
that does not surpass 760 times the mean cpu time
needed to compute each minimizer separately.

In another experiment a neural network has been
trained using the PSO to learn the XOR Boolean
classification problem. The XOR function maps two
binary inputs to a single binary output and the net-
work that was trained to solve the problem had two
linear input nodes, two hidden nodes with logistic
activations and one linear output node. Training
the network corresponds to the minimization of a
9-dimensional objective function [5, 9]. It is well
known from the neural networks literature that suc-
cessful training in this case, i.e. reaching a global
minimizer, strongly depends on the initial weight
values and that the error function of the network
presents a multitude of local minima. To solve this
problem, we use the new algorithm as follows: we set
a threshold of 0.1 and start the algorithm as above
but if the standard deviation of the population in
an iteration is too close to zero without having func-
tional value close to the threshold (e.g. if the error
value of the network is around 0.5, where there is a
well known local minimum of the function), we pull
the best particle of the population away and isolate
it. This particle is probably a local minimizer (or
near one) and thus we provide to it some new parti-
cles (in our simulation the size of the population was
40 thus we were adding 10 particles to the isolated
one) and perform a local search in the vicinity of
it (we took an area of radius 0.01 around it) while
the rest of the big swarm continues searching the
rest, of the space. If the local search yields a global
minimizer, we add it to our list of found global min-
ima, otherwise it is a local minimizer and we have
already avoided it. In this way, we are able to de-
tect an arbitrarily large number of global minimizers
while simultaneously avoiding local ones.

5 Conclusions

A new strategy for locating efficiently and ef-
fectively all the global minimizers of a function

with many global and local minima has been in-
troduced. Experimental results indicate that the
proposed modification of the PSO method is able to
detect effectively all the global minimizers instead
of rambling over the search space or attracting by
the local minima.

The algorithm provides stable and robust conver-
gence and thus a better probability of success for the
PSO. Also, it can be straightforwardly parallelized.

Extensive testing on higher-dimensional and
more complicate real-life optimization hard tasks is
necessary to fully investigate the properties of the
proposed algorithm, as well as give some hints of
modifications that will probably improve its perfor-
mance.

References
[1] R.C. Eberhart and Y.H. Shi, “Evolving Arti-
ficial Neural Networks”, Proc. Int. Conf. on
N.N. and Brain, Beijing, P.R. China, 1998.

[2] R.C. Eberhart, P.K. Simpson and R.W. Dob-
bins, “Computational Intelligence PC Tools”,
Academic Press Professional, Boston, 1996.

[3] R. Horst, P.M. Pardalos and N.V. Thoai, “In-

troduction to Global Optimization”, Kluwer
Academic Publishers, 1995.
[4] J. Kennedy and R.C. Eberhart, “Particle

Swarm Optimization”, Proc. IEEE Int. Conf.
on N.N., Piscataway, NJ, pp. 1942-1948, 1995.

[5] G.D. Magoulas, M.N. Vrahatis and G.S. An-
droulakis, “Effective back—propagation with
variable stepsize”, Neural Networks, vol. 10,
pp. 69-82, 1997.

[6] Z. Michalewicz, “Genetic Algorithms + Data
Structures = Evolution Programs”, Springer,
New York, 1996.

[7] K.P. Parsopoulos, V.P. Plagianakos, G.D.
Magoulas and M.N. Vrahatis, “Objective func-
tion “stretching” to alleviate convergence to
local minima”, Nonlinear Analysis, T.M.A.,
2001, to appear.

[8] W.H. Press, W.T. Vetterling, S.A. Teukolsky
and B.P. Flannery, “Numerical Recipes in For-
tran 77”7, Cambridge University Press, 1992.

[9] M.N. Vrahatis, G.S. Androulakis, J.N. Lam-
brinos and G.D. Magoulas, “A class of gra-
dient unconstrained minimization algorithms
with adaptive stepsize”, J. of Comp. and App.
Math., vol. 114, pp. 367-386, 2000.

