
SWARM-BASED OPTIMIZATION ALGORITHMS

1. INTRODUCTION

Nature has always inspired us. From arts to science and
engineering, nature has provided an apparently endless
list of objects of interest. Out of these, the human brain
is probably the most enigmatic object of study. Efforts to
understand it have ranged from introspection to anatomic
descriptions of its physical structure. Both of these efforts
have resulted in models that we have simulated in digital
computers as an attempt to create intelligent systems.

The former approach gave us systems that use exist-
ing knowledge of a domain and some form of logic in or-
der to derive new knowledge. Nevertheless, their practical
success varies considerably. The modeling of the physi-
cal structure of natural systems has resulted in some of
the most successful attempts at mimicking human intel-
ligence. As an example, consider the remarkable set of
applications that neural networks, and deep learning in
particular, have exhibited in recent years (1,2).

Swarm intelligence (3,4), in particular the swarm-based
optimization algorithms, share with neural networks the
key aspect of being composed of a large set of process-
ing units that, individually, have only limited computa-
tional power. However, put together, these units can form
powerful information processing systems. Thus, putting it
simply, we can say that a kind of collective intelligence
emerges from the interactions of many non-intelligent
units. This point is the overarching unifying theme behind
swarm intelligence techniques.

After decades of research on artificial intelligence, it
has become evident that intelligence is often associated
with search and/or optimization (5). Therefore, it is not
surprising that at the core of diverse artificial intelligence
techniques lies an optimization problem or an optimization
algorithm, which emphasizes the importance of search and
optimization in the field.

There is a rich variety of optimization techniques avail-
able. Swarm-based algorithms are part of the family of
algorithms inspired by nature. Different metaphors have
been used as a basis for the development of nature-inspired
search and optimization algorithms. One such metaphor is
based on what we know about natural evolution, and the
corresponding class of algorithms comprises the so-called
evolutionary algorithms (EAs) (6). In essence, EAs employ
populations of search agents that encode candidate solu-
tions of the problem at hand. The population is evolved
by applying operators that imitate the effects of biological
DNA procedures, namely, crossover, mutation, and selec-
tion, in order to produce new populations. Selection pres-
sure and the imposed competition among members of the
population offer the necessary guidance toward improved
solutions.

EAs have proved to be very effective in a large num-
ber of applications (7,8). Their ability to cope with uncer-
tainty, as well as their minor requirements with respect
to the form and mathematical properties of the objective
function, has rendered EAs a valuable part of the state-of-
the-art in modern optimization literature. Moreover, due

to their ability to concurrently evolve many search points,
their application in parallel computation environments be-
comes extremely convenient (9).

The success of EAs has increased interest in different
natural systems where traits of computational efficiency
have been observed. Swarms, herds, and other socially or-
ganized groups of living organisms exhibit clear evidence of
problem-solving capabilities (4,10). Typical examples are
ants with their remarkable ability of solving shortest path
problems during foraging and bees with the ability to guide
the search of their mates by waggle dancing according to
their discoveries. In such systems, patterns of intelligent
behavior emerge as a result of simple local interactions
between their members (11).

The aforementioned properties have offered fertile
ground for the development of population-based optimiza-
tion algorithms based on models of natural swarms. Al-
though intimately related with EAs, this type of algo-
rithms promotes cooperation and collaboration rather than
competition among themembers of the swarm. Thus, it has
been distinguished as a unique, promising new category of
algorithms called swarm intelligence (SI) (4,10,11). Today,
SI accounts for a variety of computational models with
significant applications. A large number of practical ap-
plications, including traveling salesman problem, vehicle
routing, flow shop scheduling, and robotics, among others,
are reported in (7).

This article presents the principles of swarm-based op-
timization as well as representative algorithms for contin-
uous and discrete optimization problems. The rest of the
article is organized as follows: Section 2 exposes the basic
principles that govern SI algorithms. In Sections 3 and 4,
selected swarm-based algorithms for discrete and contin-
uous optimization problems are presented. These include
the following popular algorithms:

1. Ant colony optimization
2. Particle swarm optimization
3. Artificial bee colony
4. Cuckoo search
5. Bacterial foraging optimization
6. Gravitational search algorithm

Finally, Section 5 concludes the article.

2. ESSENTIALS OF SWARM INTELLIGENCE

Swarm behavior (a.k.a. swarming) is regularly observed
in natural systems where socially organized living or-
ganisms exist. Insects that live in colonies such as ants,
bees, and locusts constitute representative examples of
such systems where, although each individual has lim-
ited sensing and response qualities, the colony as a whole
exhibits highly coordinated behavior (12). Migrating birds
and fish schools attain similar behaviors, offering fasci-
nating choreographies (13). Bacteria populations perform
coordinated translocations, a procedure also known as
swarming motility (14). White blood cells exhibit swarm
behavior when attacking parasites (15). Humans also
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exhibit swarm behaviors both in the physical world (16)
as well as in collective decision-making procedures such
as social swarming (17).

In all these systems, cooperation is the originating
source of the emergent collective behavior. It constitutes
the cornerstone quality that imposes the self-organization
without central control, rendering the colony capable of
solving problems of high complexity. The resultant co-
ordinated behavior is typically defined as SI (4,10). The
problem-solving efficiency of the observed SI in natural
systems has triggered the development of a number of
swarm-based approaches for optimization, simulation, and
robotics.

SI algorithms employ artificial swarms of autonomous
agents that follow simple rules (relative to the system’s
complexity) to update their state through time. In the op-
timization framework, a swarm consists of a number of
search agents whose state represents a candidate solution
of the optimization problem at hand. The agents adhere
to basic rules that promote their cooperation during the
search for better solutions. The search is typically defined
as an iterative, highly distributed procedure where the
agents explore the given search space of the problem while
communicating their findings to their mates. Information
sharing is a key issue for the efficiency of such computa-
tional schemes.

A number of interesting properties habitually ap-
pear in swarm-based optimization algorithms. First,
the algorithm does not assume any kind of central-
ized control. Instead, the search agents independently
follow fixed or adaptive rules to make decisions on
their forthcoming moves. Thus, computation becomes
completely distributed, promoting individuality within
the swarm. This inherent parallelization property of
swarm-based algorithms renders them perfectly suited
for contemporary high-performance computation environ-
ments such as supercomputers, clusters, and multicore
systems.

Second, despite of the special role of each individual
agent, the swarm retains robustness due to the lack of
explicit reliance on individual agents for its overall oper-
ation. Therefore, failure or replacement of fractions of the
swarm is not detrimental for its operation. In fact, it has
been shown that mild loss of information can be even ben-
eficial for the swarm by enhancing its exploration proper-
ties and promoting efficient management of the available
computational resources (18).

The basic mechanism that induces the emergence of
complex swarm behaviors lies in the exchange of infor-
mation. The agents can communicate their findings either
directly or indirectly. Direct communication implies that
the findings of the agents are immediately shared with
their mates. On the other hand, indirect communication
requires the use of external means where each agent mod-
ifies the environment in such a way that it affects other
agents’ behavior. In natural swarms the external mean is
usually the environment, while in artificial swarms it can
be an external data structure. For instance, it may come
in the form of lookup tables where useful information is
stored and regularly accessed by the agents. This mecha-
nism of indirect communication in swarms is also called

stigmergy and it is tightly related to the self-organization
properties in natural swarms (10).

The exploitation of the available information among
the search agents is based either on fixed or adaptive
strategies. Obviously, adaptability can be highly benefi-
cial for the swarm especially when it takes into consider-
ation the search progress. In this framework, stochastic-
ity is an essential property typically incorporated in the
decision-making procedures of swarm-based optimization
algorithms, in order to avoid the containment of the agents
in narrow response patterns. Learning procedures can fur-
ther enhance performance. In any case, cooperation among
the search agents is the key issue for the emergence of in-
telligent behavior of the swarm, triggering the formation
of behavioral patterns that are not hardwired in the search
agents nor directly dictated by external decision centers.

3. ALGORITHMS FOR DISCRETE PROBLEMS

The first swarm-based optimization algorithms were de-
signed to solve discrete optimization problems (19). In
these kinds of problems, the set of possible solutions to the
optimization problem at hand is finite, although typically
very large. Examples of search spaces with these proper-
ties are the permutations of integers and binary strings.

All problems of practical relevance are defined on spaces
where solutions can be thought of comprising a number of
components. For example, a permutation of length 𝑛 over
the first 𝑛 natural numbers can be seen as an array of 𝑛
natural numbers with the extra condition, or constraint,
that no number appears more than once in the array. For-
mally, a discrete optimization problem consists of a search
space  of feasible solutions,

𝑠 = (𝑠1, 𝑠2,… , 𝑠𝑛) ∈ 

which are vectors of length 𝑛 where each component 𝑠𝑖,
𝑖 ∈ {1, 2,… , 𝑛}, can take a value 𝑣

𝑗

𝑖
from a discrete set 𝑉𝑖,

also known as the component’s domain. A solution 𝑠∗ ∈ 

is optimal if,

𝑓 (𝑠∗) ⩽ 𝑓 (𝑠), ∀𝑠 ∈ 

where 𝑓 ∶  → ℝ, is the objective function to beminimized.
Over the years, various swarm-based algorithms for dis-

crete optimization problems have been proposed. The most
prominent family consists of algorithms inspired by the be-
havior of ants. The source of inspiration for these kinds of
algorithms can be traced back to an experiment with Ar-
gentine ants performed byGoss et al. (20). This experiment
consisted in restricting the ants’ way from their nest to a
food source to a path crossing a bridge with two branches
of unequal length. The amazing observation was that, over
time, ants would choose the branch of shortest length.

Such a phenomenon is remarkable when one considers
that ants are not measuring distance or time. The emer-
gence of the intelligent choice is the result of ants laying
and following pheromones while traveling back and forth
through the bridge. The basic mechanism works as fol-
lows: ants lay pheromoneswhilemoving. At the same time,
ants prefer to walk over areas with higher concentration
of pheromones. Since ants walk at about the same speed,
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the ants that (by chance) initially take the shorter path,
start laying pheromones earlier than the rest on their way
back to the nest. Thus, they reinforce the trail they ini-
tially laid on their way to the food source. When these ants
are already on their way back to the nest, reinforcing the
shorter path, the ants that took longer paths may have not
reached their initial destination yet.

The imbalance of pheromones after the first few trips
is amplified because ants prefer areas with higher concen-
tration of pheromones. This imbalance makes the majority
of the ants to eventually use the shorter path, even if the
probability of choosing each branch is initially the same.
Note that this mechanism would cause a single ant to keep
choosing the path that it initially selected regardless of its
length. Thus, the group is smart, not the individual.

3.1. Ant Colony Optimization

Ant colony optimization (ACO) (21) is an algorithmic ap-
proach to discrete optimization inspired by the ants’ ability
to find shortest paths. The basic idea in ACO algorithms
is the use of artificial ants, traversing a path on a graph
whose vertices typically (but not always) represent a prob-
lem’s solution components. By moving from one vertex to
the next, ants construct solutions to the problem at hand.

The edges of the graph are associated with numerical
values that represent pheromone concentration. Addition-
ally, edges may carry extra information that represents
domain knowledge. This extra information is heuristic in
the sense that it is used to guide the solution-construction
process but it does not fully determine it.

In ACO algorithms, the pheromones and the heuris-
tic variables bias the probabilistic solution-building pro-
cess of the artificial ants. The edges that are part of
the paths associated with higher quality solutions re-
ceive extra pheromone reinforcement. The combination of
pheromone attraction and reinforcement produces a pos-
itive feedback process that, over time, biases the search
around the most promising solutions.

Since ACO is a general framework rather than a specific
algorithm, it needs to be tailored to the specific problemun-
der consideration. This characteristic makes it very flexi-
ble and amenable for hybridization with problem-specific
heuristics and improvement procedures. In the following
paragraphs, two examples are used to present sample in-
stantiations of the ACO framework.

ACO in Permutation Problems. As a first example, consider
an optimization problemwhere the solution space is the set
of permutations of the first 𝑛 positive integers. Examples of
problems whose solutions can be modeled as permutations
are the traveling salesperson problem (TSP) and job shop
scheduling problems.

The space of all possible permutations of the first 𝑛

positive integers can be modeled as a fully connected
graph,

𝐺 = (𝑉 ,𝐸,𝑊 )

where 𝑉 is the set of vertices 𝑣𝑖 with 𝑖 ∈ {1, 2,… , 𝑛};𝐸 is the
set of edges connecting every pair of distinct vertices (i.e.,𝐸
does not have edges that directly link vertices with them-

Figure 1. A fully connected graph representing the search space
of all permutations of the first seven positive integers. The high-
lighted path represents the permutation {1, 2, 5, 6, 7, 3, 4} or the
reverse permutation, depending on the traversing direction.

selves); and 𝑊 is a matrix of weights (costs) associated
with every edge in 𝐸. A permutation is then represented
by a path in 𝐺 that connects the 𝑛 vertices as illustrated
in Figure 1.

For a better understanding of the search process per-
formed by an ACO algorithm on a permutation search
space, it is helpful to borrow language that would be used
to describe a real biological system. In this context, the en-
vironment is the graph𝐺. An ant is a solution-construction
procedure that builds new solutions component by compo-
nent. When an ant moves from one vertex to another, the
solution associated with that ant is extended with an extra
component, namely, the destination vertex.

Pheromones are numerical values associated with the
edges in𝐸. The values of the pheromone levels on the edges
of the graph change over time as a result of two processes:
(i) reinforcement, and (ii) evaporation. The specific oper-
ations associated with these processes differ in different
ACO algorithms, but they all try to simulate the natu-
ral phenomena of pheromone-trail reinforcement of real
ants (recall the shorter path discovery process enabled by
pheromone laying and following), and evaporation, which
is the process whereby the colony forgets previously vis-
ited areas. Thus, at any point in time, the pheromone dis-
tribution in the environment reflects the colony’s learned
features of the search space.

Thus, the basic process proceeds as follows. For each
ant, a starting vertex is chosen at random. From there,
ants move to another vertex not previously visited. Each
ant probabilistically chooses the next vertex to visit. The
probabilistic rule used in this step biases the choice toward
edges with higher pheromone levels and higher heuristic
values. When all the ants complete the process of creat-
ing full-length permutations, the pheromone-update phase
begins by first decreasing all pheromone values on all
the edges, and then providing higher reinforcement on



4 Swarm-Based Optimization Algorithms

edges that belong to superior solutions. Thus, when the
next iteration begins, the choices of the ants tend to favor
components that contribute toward better solutions.

ACO in Binary Search Spaces. As a second example, con-
sider an optimization problem where the solution space
is better represented by a vector of binary components.
Problems where the order of the components in a solution
is irrelevant, like assignment and scheduling, fall in this
category.

ACO algorithms can solve these kinds of problems
by associating with each component of the solution vec-
tor a pheromone and a heuristic value. The solution-
construction process consists in each ant starting with an
empty solution and, at each step, deciding whether to add
a solution component or not. This amounts to setting a
decision variable to 1 or 0. In some cases, there are ways
to determine when to stop testing whether to add compo-
nents or not. In other cases, the ants need to test as many
times as there are solution components. Thus, in binary op-
timization problems, it is possible that different ants may
take different number of steps. As in the previous exam-
ple, pheromones first evaporate and then being reinforced
based on the components’ association with higher quality
solutions.

Algorithmic Framework. A schematic view of the processes
described above is shown in Algorithm 1. The two exam-
ples presented above explain the Construct and Update
steps. This is because those two steps are necessary for
the framework to work. However, a third optional step,
identified as Improve, is typically performed in order to
enhance the performance of ACO algorithms.

The daemon actions usually take the form of local-
search procedures applied to the solutions produced by
the ants. Local search exploits domain knowledge and its
implementation departs from the basic SI principles, and
particularly decentralization. The combined use of the ba-
sic ACO steps with local search produces highly perform-
ing, full-fledged ACO algorithms.

ACO Instantiations. ACO defines a general framework and,
therefore, it needs to be instantiated in order to be of practi-
cal use. An ACO instantiation is an actual implementation
choice of at least two of the three steps in Algorithm 1. The
two most commonly used ACO algorithms are described
below.

Algorithm 1. Ant Colony Optimization

1∶ 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 Pheromones.
2∶ 𝐰𝐡𝐢𝐥𝐞 (not stopping condition) 𝐝𝐨
3∶ 𝑪𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕 solutions ∕∕𝑂𝑛𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑎𝑛𝑡

4∶ 𝑰𝒎𝒑𝒓𝒐𝒗𝒆 solutions via daemon actions∕∕𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

5∶ 𝑼𝒑𝒅𝒂𝒕𝒆 pheromones
6∶ 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞
7∶ 𝑹𝒆𝒑𝒐𝒓𝒕 overall best solution

Ant System. The ACO algorithm called ant system
(AS) (22) actually predates the definition of the ACO
framework itself, and therefore, while it is not a state-
of-the-art algorithm, it is of historical importance. In
AS, there are 𝑚 ants that, at each iteration, update the
problem’s pheromone values. The rule to update the 𝑖th
pheromone value is

𝜏𝑖 = (1 − 𝜌)𝜏𝑖 +
𝑚∑

𝑘=1
Δ𝜏𝑘

𝑖
(1)

where 𝜏𝑖 is the pheromone value associated with the
𝑖th solution component; 𝜌 ∈ [0, 1] is a parameter called
pheromone evaporation rate; and Δ𝜏𝑘

𝑖
is the quantity of

pheromone laid on the 𝑖th component by the 𝑘th ant. The
value of Δ𝜏𝑘

𝑖
is a function of the quality of the solution that

contains the 𝑖th component. If no solution contains the 𝑖th
component then Δ𝜏𝑘

𝑖
= 0. Typically, the better a solution

is, the higher is the amount of the deposited pheromone.
During solution construction, ants choose components

via Monte Carlo simulation using the following rule,

𝑝𝑖|𝑠 = 𝜏𝛼
𝑖
𝜂
𝛽

𝑖∑
𝑗∈𝑁(𝑠) 𝜏

𝛼
𝑗
𝜂
𝛽

𝑗

(2)

where 𝑝𝑖|𝑠 is the probability of choosing the 𝑖th compo-
nent given the partial solution 𝑠; 𝛼 and 𝛽 are parameters
that control the relative influence of pheromones and the
heuristic information, 𝜂, during the solution-construction
process; and 𝑁(𝑠) is a function that returns the indices of
all the valid components that could follow from the current
partial solution 𝑠.

Max–Min Ant System. Max–min ant system (MMAS) (23) is
an ACO algorithm that follows the original natural inspi-
ration closer than AS. The first distinctive feature is the
aggressive reinforcement of higher quality solutions by al-
lowing only one of the best ants to deposit pheromone. The
second distinctive feature is the explicit control of diversity
by bounding the pheromone levels within minimum and
maximum values (hence the name). Thus, the pheromone
update takes the form

𝜏𝑖 =
⎧⎪⎨⎪⎩
𝜏min, if 𝜏𝑖 ⩽ 𝜏min,

𝜏max, if 𝜏𝑖 ⩾ 𝜏max,

(1 − 𝜌)𝜏𝑖 + Δ𝜏best
𝑖

, otherwise,
(3)

where 𝜏min and 𝜏max are the minimum and maximum al-
lowed pheromone values, while 𝜏best

𝑖
is the reinforcement

produced by the ant associated with the best solution. The
definition of the best solution may be subject also to design
decisions. Common options are the iteration-best-solution,
the best-so-far solution, and combinations of these two.

In MMAS, pheromone values are initialized to 𝜏max
to encourage exploration during the first iterations of
the algorithm. MMAS also features extra algorithmic
components such as reinitialization and pheromone-value
smoothing in order to boost exploration. These techniques
are typically used whenever the algorithm fails to make
any progress for a prespecified number of iterations.
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4. ALGORITHMS FOR CONTINUOUS PROBLEMS

The ample literature on swarm-based algorithms for real-
valued problems impels us to make a selection among the
most popular and widely used algorithms. The selection is
based on essential aspects of the algorithms, namely, nov-
elty, efficiency, and popularity. Thus, the Particle swarm
optimization, artificial bee colony, cuckoo search, bacteria
foraging optimization, and gravitational search algorithm
are discussed in the following paragraphs. Although the
main field of application of these algorithms is continu-
ous optimization, a number of variants and modifications
have been proposed also for discrete or semi-continuous
problems. However, such approaches are not discussed in
this article.

In the forthcoming sections, the optimization problem
is assumed to be of the form,

min
𝑥∈ ⊂ℝ𝑛

𝑓 (𝑥) (4)

where, for simplicity reasons, the feasible set  is defined
as an 𝑛-dimensional hyperbox,

 =
[
𝑠min
1 , 𝑠max

1

]
×⋯ ×

[
𝑠min
𝑛

, 𝑠max
𝑛

]
with 𝑠min

𝑖
, 𝑠max

𝑖
∈ ℝ, being the lower and upper bound of the

𝑖th directional component, respectively.

4.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is the most recog-
nizable swarm-based optimization algorithm for contin-
uous problems, originally introduced by Eberhart and
Kennedy (24). Its development originated in simulations of
swarming search agents. The resultant models exhibited
similarities with models from the field of particle physics
from which, basic ideas and relevant notation were bor-
rowed (4,25).

The main rules implemented by PSO are the neigh-
bor velocity matching and acceleration by distance, which
were shown to produce swarming behavior in early sim-
ulations (4). The first versions of the algorithm were de-
scribed through simple difference equations. These equa-
tions promoted exploration based on randomized position
shifts of the search agents toward aggregated directions
defined through difference vectors. These vectors consti-
tute a form of cooperation among the agents in terms of
information exchange. In the following paragraphs, the so
called canonical particle swarm (26) model is presented.
This model has constituted the origin for numerous other
PSO variants and occupies a salient position in the state-
of-the-art of swarm-based optimization methods.

Let us consider the global optimization problem of equa-
tion 4 and assume a group of𝑁 search points (agents) that
iteratively probe the search space . This group is called a
swarm and henceforth denoted as

𝑃 (𝑡) =
{
𝑥
(𝑡)
1 ,… , 𝑥

(𝑡)
𝑁

}
where 𝑡 stands for the iteration index. For simplicity rea-
sons, let us also define as

𝐼 = {1, 2,… , 𝑁}, 𝐽 = {1, 2,… , 𝑛} (5)

the sets of particles’ and components’ indices, respectively.
Each search point is a candidate solution of the problem,
i.e., it constitutes an element of ,

𝑥
(𝑡)
𝑖
=
(
𝑥
(𝑡)
𝑖1 ,… , 𝑥

(𝑡)
𝑖𝑛

)
∈  , 𝑖 ∈ 𝐼

and it is called a particle. The number 𝑁 of particles is
called the swarm size and it is usually a user-defined
parameter.

Each particle is randomly initialized in  according to a
probability distribution over the whole search space. The
uniform distribution is regularly adopted for this purpose,
that is,

𝑥
(0)
𝑖𝑗

∼ 
([

𝑠min
𝑗

, 𝑠max
𝑗

])
, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6)

After initialization, the particles are allowed to probe the
search space  by iteratively updating their positions. For
this purpose, appropriate position shifts,

𝑣
(𝑡)
𝑖
=
(
𝑣
(𝑡)
𝑖1 ,… , 𝑣

(𝑡)
𝑖𝑛

)
, 𝑖 ∈ 𝐼

are used at each iteration. These position shifts are called
the velocities and they are also randomly and uniformly
initialized,

𝑣
(0)
𝑖𝑗

∼ 
([

−𝑣max
𝑗

, 𝑣max
𝑗

])
, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

where 𝑣max
𝑗

is a maximum value, usually defined as a frac-
tion of the search space in the specific direction, that is,

𝑣max
𝑗

= 𝛼𝑗

(
𝑠max
𝑗

− 𝑠min
𝑗

)
, 𝛼𝑗 ∈ (0, 1], 𝑗 ∈ 𝐽

Higher values of 𝛼𝑗 allow bigger steps to be taken by the
particles, thereby promoting global exploration. On the
other hand, smaller values are beneficial for local explo-
ration. Of course, longer steps can make particles to leave
the feasible set and, therefore, it is necessary to enforce
bound constraints in an appropriate way (27).

During its journey, each particle retains in external
memory the best position it has ever visited,

𝑏
(𝑡)
𝑖
=
(
𝑏
(𝑡)
𝑖1 ,… , 𝑏

(𝑡)
𝑖𝑛

)
∈  , 𝑖 ∈ 𝐼

with,

𝑏
(𝑡)
𝑖
= 𝑥

(𝜏∗)
𝑖

𝜏∗ = arg min
𝜏∈{0,1,…,𝑡}

𝑓

(
𝑥
(𝜏)
𝑖

)
This information is exploited to bias the particle’s move
toward promising regions of the search space that it has
already visited, aiming at discovering even better candi-
date solutions.

In addition to its findings, each particle cooperates with
other particles that form its neighborhood. In essence, a
neighborhood of a particle consists of a number of other
particles of the swarm that apprise it of their best posi-
tions. Neighborhoods can be arbitrarily defined in differ-
ent sets, such as the search space  or the particles’ indices
set 𝐼 . In order to promote diversity in the swarm and avoid
the rapid formation of particle clusters, the set 𝐼 is more
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Figure 2. The fully connected (a) and the ring (b) neighborhood
topologies.

commonly used for this purpose. Thus, neighborhoods are
defined as subsets of 𝐼 , which determine the communica-
tion channels in the swarm.

It is highly convenient to represent neighborhoods as
graphs consisting of nodes (particles) and edges (commu-
nication channels). Such graphs define different neigh-
borhood topologies. Two popular neighborhood topologies,
namely, the fully connected and the ring, are depicted in
Figure 2. Based on the description above, the neighbor-
hood of the 𝑖th particle according to the ring topology is
defined as

𝑖 = {𝑖 − 𝑟,… , 𝑖 − 1, 𝑖, 𝑖 + 1,… , 𝑖 + 𝑟} ⊆ 𝐼

where 𝑟 ⩽ 𝑁∕2 is a user-defined parameter called the
neighborhood’s radius, which determines the influence of
the swarm on each particle. The indices of the particles in
cyclic topologies such as the described ones are assumed
to recycle at both ends, that is, index 1 follows after 𝑁 .
Obviously, the fully connected topology can be considered
as a special case of the ring topology with 𝑖 = 𝐼 for all
𝑖 ∈ 𝐼 .

Let 𝑔𝑖𝑡 be the index of the best position with the lowest
function value in the neighborhood 𝑖 at iteration 𝑡, that
is,

𝑔𝑖𝑡 = arg min
𝑗∈𝑖

𝑓

(
𝑏
(𝑡)
𝑗

)
(7)

Then, the velocity and position update of the 𝑖th particle
is given as follows,

𝑣
(𝑡+1)
𝑖𝑗

= 𝑤𝑣
(𝑡)
𝑖𝑗
+ 𝑐1 1

(
𝑏
(𝑡)
𝑖𝑗
− 𝑥

(𝑡)
𝑖𝑗

)
+ 𝑐2 2

(
𝑏
(𝑡)
𝑔𝑖𝑡,𝑗

− 𝑥
(𝑡)
𝑖𝑗

)
(8)

𝑥
(𝑡+1)
𝑖𝑗

= 𝑥
(𝑡)
𝑖𝑗
+ 𝑣

(𝑡+1)
𝑖𝑗

(9)

where 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ; 1 and 2 are samples drawn from a
uniform distribution in the range [0, 1] (different for each 𝑖,
𝑗, and 𝑡); 𝑐1, 𝑐2 ⩾ 0, are acceleration parameters; and 𝑤 ⩾ 0
is a parameter called the inertia weight, which regulates
the contribution of the previous velocity to the current one.

A number of interesting observations can be made in
equations 8 and 9. First, we see that PSO updates the
velocities and the particles component-wisely, taking into
consideration the previousmoving direction (inertia term).
In order to avoid the uncontrollable increase of the magni-
tude of the velocities, also known as the swarm explosion
effect, the inertia weight 𝑤 is used. Appropriate fixed or
dynamic values of 𝑤, typically in the range [0, 1], modu-
late the magnitude of the velocities and gradually lead
the swarm to convergence. The stability analysis of PSO
derived in (28) suggested the following algebraically equiv-
alent form of equation 8,

𝑣
(𝑡+1)
𝑖𝑗

= 𝜒

[
𝑣
(𝑡)
𝑖𝑗
+ 𝑐1 1

(
𝑏
(𝑡)
𝑖𝑗
− 𝑥

(𝑡)
𝑖𝑗

)
+ 𝑐2 2

(
𝑏
(𝑡)
𝑔𝑖𝑡,𝑗

− 𝑥
(𝑡)
𝑖𝑗

)]
where 𝜒 is a parameter called the constriction coefficient,
which plays the role of the inertia weight. For this case,
the theoretical analysis suggests the default parameter
values,

𝜒 = 0.729, 𝑐1 = 𝑐2 = 2.05

which correspond to 𝑤 = 0.729, 𝑐1 = 𝑐2 = 1.494, in equa-
tion 8. Nevertheless, dynamic adaptation of the param-
eters is frequently used (29).

The update of the best positions succeeds the update
and evaluation of the particles as follows:

𝑏
(𝑡+1)
𝑖

=

{
𝑥
(𝑡+1)
𝑖

, if 𝑓
(𝑡+1)
𝑖

⩽ 𝑓
(𝑡)
𝑏𝑖
,

𝑏
(𝑡)
𝑖
, otherwise,

(10)

where 𝑖 ∈ 𝐼 and

𝑓
(𝑡+1)
𝑖

= 𝑓

(
𝑥
(𝑡+1)
𝑖

)
, 𝑓

(𝑡)
𝑏𝑖

= 𝑓

(
𝑏
(𝑡)
𝑖

)
Then, the best particles in the neighborhoods are deter-
mined anew using equation 7, and the algorithm proceeds
to the next iteration. Execution stops as soon as user-
defined stopping conditions, such as reaching a prespec-
ified error goal or a maximum number of functions evalu-
ations, are fulfilled. The algorithm is summarized in Algo-
rithm 2.

PSO inherently integrates the basic properties of
swarm-based optimization algorithms described in Sec-
tion 2. The swarm does not assume any central control.

Algorithm 2. Canonical Particle Swarm Optimization

1∶ 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 swarm, velocities, and best positions
2∶ 𝐰𝐡𝐢𝐥𝐞 (not stopping condition) 𝐝𝐨
3∶ 𝐟𝐨𝐫 (𝑖 = 1…𝑁) 𝐝𝐨
4∶ 𝑭 𝒊𝒏𝒅 neighborhood′s 𝑖 best as in equation 7
5∶ 𝑼𝒑𝒅𝒂𝒕𝒆 velocity and position with equations 8 and 9
6∶ 𝐞𝐧𝐝 𝐟𝐨𝐫
7∶ 𝐟𝐨𝐫 (𝑖 = 1…𝑁) 𝐝𝐨
8∶ 𝑼𝒑𝒅𝒂𝒕𝒆 best positions with equation 10
9∶ 𝐞𝐧𝐝 𝐟𝐨𝐫
10∶ 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞
11∶ 𝑹𝒆𝒑𝒐𝒓𝒕 overall best solution
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Computation is completely distributed and can be par-
allelized either in swarm, particle, or component level
(relevant software can be found in (30)). Moreover,
there is no crucial dependence of the swarm on spe-
cific particles, which is essential for retaining robust-
ness. In fact, recent developments suggested that delib-
erate loss of information can be even beneficial for the
swarm (18).

The emergent behavior of the swarm is attributed to
the cooperation among the particles in terms of informa-
tion exchange. In PSO, communication is direct since the
particles share their findings (best positions) directly with
other particles. Adaptability can be achieved through pa-
rameter adaptation. For instance, decreasing the inertia
weight from higher values toward zero changes the dy-
namic of the algorithm from exploration (global search)
to exploitation (local search). Finally, the stochasticity in-
duced by the stochastic terms in velocity update ensures
diverse response patterns of the particles.

Comprehensive presentations of PSO as well as discus-
sions on its crucial aspects such as parameter tuning, con-
straint handling, performance enhancement techniques,
and sophisticated variants can be found in dedicated books
such as (29,31–36), as well as in survey articles such as
(37–42). PSO has been imitated to great extent in other
swarm-based algorithms such as the firefly algorithm and
the bat algorithm (43), and the glowworm swarm optimiza-
tion (44).

4.2. Artificial Bee Colony

Artificial bee colony (ABC) is a swarm-based algorithm
that follows the physical analogue of honey bees. It was
originally introduced by Karaboga (45). The algorithm is
based on relevant models that describe the foraging be-
havior of honey bees, which is characterized by colony di-
vision. Specifically, the swarm consists of three types of
honey bees (search agents), namely, the employed bees,
the onlooker bees, and the scout bees. The first type de-
fines the current food sources of the bees, that is, posi-
tions in the search space. The second type assesses the
discovered food sources and probabilistically selects some
of them to intensify search. The last type performs random
search.

Putting it formally, a swarm of𝑁 scout bees is randomly
initialized according to equation 6 within the search space
of the general global optimization problem of equation 4.
Also, let 𝐼 and 𝐽 be the two sets defined in equation 5
(our notation deliberately imitates PSO to emphasize the
resemblance among the two algorithms). A fitness value is
computed for each position as follows:

𝐹 (𝑡)
𝑥𝑖

=
⎧⎪⎨⎪⎩

1(
1+𝑓 (𝑡)

𝑖

) , if 𝑓
(𝑡)
𝑖

⩾ 0,

1 + |||𝑓 (𝑡)
𝑖

||| , otherwise,
(11)

where 𝑓
(𝑡)
𝑖

= 𝑓

(
𝑥
(𝑡)
𝑖

)
(initially, 𝑡 = 0). Naturally, fit-

ness assignment can be appropriately modified if
necessary.

Then, the employed bees exploit the information pro-
vided by the scout bees and perform local search around

the memorized food sources by producing new vectors
through differences of the form,

𝑣
(𝑡)
𝑖𝑗
= 𝑥

(𝑡)
𝑖𝑗
+

(
𝑥
(𝑡)
𝑖𝑗
− 𝑥

(𝑡)
𝑘𝑗

)
(12)

where 𝑘 ≠ 𝑖 is a randomly selected index from 𝐼 ; 𝑗 is ran-
domly selected from 𝐽 ; and  ∼  ([−𝛼, 𝛼]) is a random
variable with 𝛼 > 0 being a user-defined parameter (typi-
cally, 𝛼 = 1).

For each new position 𝑣𝑖, its fitness value is computed
according to equation 11. Then, it competes with the cor-
responding 𝑥𝑖 as follows:

𝑥
(𝑡)
𝑖
=

{
𝑣
(𝑡)
𝑖
, if 𝐹 (𝑡)

𝑣𝑖
> 𝐹 (𝑡)

𝑥𝑖
,

𝑥
(𝑡)
𝑖
, otherwise.

(13)

After that, onlooker bees take action. Each one adopts one
of the available positions 𝑥𝑖 by conducting fitness-based
probabilistic selection with replacement, also known as
roulette wheel selection. The selection probabilities of the
positions 𝑥𝑖 are defined as

𝜌
(𝑡)
𝑖
=

𝐹 (𝑡)
𝑥𝑖

𝑁∑
𝑘=1

𝐹
(𝑡)
𝑥𝑖

Obviously, positions of higher fitness are selected more
frequently by the onlooker bees.

Each onlooker bee conducts local search around its se-
lected position according to equation 12 and, again, the
produced new positions compete with the existing ones ac-
cording to equation 13. This way, the ABC algorithm inten-
sifies search around the best discovered solutions, thereby
promoting exploitation.

Each existing position 𝑥𝑖 that could not be improved
for a maximum (user-defined) number 𝑡ab of iterations is
abandoned. The corresponding employed bee becomes a
scout bee and randomly reinitializes its position in the
search space. This completes a full iteration of the ABC al-
gorithm. The best solution found by the algorithm is stored
separately and updated at the end of each iteration.

Stripping the algorithm from its natural analogue, it
can be described in terms of a multistart random local
search approach, where the collective behavior emerges
from the implied promotion of intense local search around
the most promising positions. The main prerequisite for
this behavior is the cooperation in terms of information
sharing among the bees (agents).

ABC has been studied in various works. A comprehen-
sive presentation of the algorithm can be found in (46),
while a recent survey can be found in (47). ABC is also
closely related to other approaches based on the bee colony
analogue, such as the bees algorithm (48,49).

4.3. Cuckoo Search

Cuckoo search (CS) was introduced by Yang and Deb (50).
Inspiration sprang from the parasitic breeding behavior of
cuckoo birds, which lay their eggs in nests of other bird
species. Although host birds often unmask the fraud and
destroy the outlander’s eggs or abandon their nests, some
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special cuckoo species can deceive the host birds by imitat-
ing their egg color and texture. The hatched cuckoo birds
instinctively destroy the rest of the eggs in the nest of the
host birds, thereby claiming larger portions of the provided
food.

The natural paradigm of cuckoo’s breeding behavior is
roughly modeled in the CS algorithm. Let the global op-
timization problem and quantities defined in equations 4
and 5. Initially,𝑁 host nests (positions) are randomly gen-
erated in the search space and their objective values,

𝑓
(𝑡)
𝑖

= 𝑓

(
𝑥
(𝑡)
𝑖

)
, 𝑖 ∈ 𝐼

are computed (initially, 𝑡 = 0). Then, a new position (nest)
is produced using the following scheme (51),

𝑥
(𝑡+1)
𝑖

=
⎧⎪⎨⎪⎩
𝑥
(𝑡)
𝑖
+ 𝛼 𝑠

(
𝑥
(𝑡)
𝑗
− 𝑥

(𝑡)
𝑘

)
, if  ⩽ 𝜌𝛼,

𝑥
(𝑡)
𝑖
+ 𝛼 𝐿(𝑠, 𝜆), otherwise,

where 𝑠 > 0 is the step size; 𝛼 > 0 is a scaling factor; 𝑥(𝑡)
𝑗
and

𝑥
(𝑡)
𝑘
are two positions randomly selected among the existing

ones; 𝜌𝛼 ∈ [0, 1] is a user-defined probability of switching
from local to global random walk; and,

𝐿(𝑠, 𝜆) =
𝜆Γ(𝜆) sin(𝜋𝜆∕2)

𝜋 𝑠1+𝜆

where Γ(.) is the Gamma function. The scaling factor 𝛼

usually assumes values between 1% and 10% of the char-
acteristic scale of the problem.

The new position 𝑥
(𝑡+1)
𝑖

is assessed and an existing posi-
tion 𝑥

(𝑡)
𝑗
is randomly selected to compete with it. If the new

position has better value than the selected one, it replaces
it in the group of nests. Also, a user-defined percentage,
𝛽 ∈ [0, 1], of the worst positions is abandoned, replaced by
new randomly selected positions. This phase completes the
algorithm’s iteration and imitates the corresponding nest
dereliction in the physical analogue.

CS has gained increasing popularity but it has also re-
ceived criticism regarding its actual relevance with the
physical analogue, which seems somehow unjustified. In-
deed, CS seems to be based solely on the concept of ran-
dom walk, producing new positions according to a Markov
chain type procedure with special transition probabilities.
The cuckoo breeding paradigm seems to be useful only to
fit these mathematical procedures in the modern trend of
nature-inspired algorithms. Nevertheless, it appears that
CS is a useful swarm-based method with interesting ap-
plications. Recent developments, implementation details,
as well as a brief literature review of the algorithm can be
found in (52).

4.4. Bacteria Foraging Optimization

Bacteria foraging optimization (BFO) was originally in-
troduced by Passino (53). It was inspired by the collec-
tive foraging behavior of bacteria such as Escherichia coli,
which is guided by chemotaxis based on nutrient gradients
in their surrounding environment. Besides the direction of
the highest nutrients concentration, bacteria also take into
consideration information communicated by other bacteria

through chemical signal molecules. This form of coopera-
tion is highly responsible for their swarming behavior.

Let 𝑁 denote the number of artificial bacteria (search
agents) that are used for the solution of the 𝑛-dimensional
global optimization problem of equation 4. According to
the physical analogue, there are three nested phases of
bacterial behavior, namely, chemotaxis, reproduction, and
elimination dispersal, which are also simulated in the BFO
algorithm. We henceforth use the iteration counters 𝑡c, 𝑡r ,
and 𝑡e, for the corresponding phases above. Thus, the bac-
teria swarm can be represented as

𝑃 (𝑡c ,𝑡r ,𝑡e) =
{
𝑥
(𝑡c ,𝑡r ,𝑡e)
1 ,… , 𝑥

(𝑡c ,𝑡r ,𝑡e)
𝑁

}
Similarly to the previous algorithms, the bacteria are ran-
domly initialized in the search space as follows:

𝑥
(0,0,0)
𝑖𝑗

∼ 
([

𝑠min
𝑗

, 𝑠max
𝑗

])
, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

where 𝐼 and 𝐽 are the sets of indices defined in equation 5,
and they are evaluated with the original objective function
of equation 4,

𝑓
(𝑡c ,𝑡r ,𝑡e)
𝑖

= 𝑓

(
𝑥
(𝑡c ,𝑡r ,𝑡e)
𝑖

)
, 𝑖 ∈ 𝐼

Then, the main BFO procedure starts with each bacterium
undergoing a chemotaxis step that involves its indirect
communication with the rest of the swarm. Specifically,
for the 𝑖th bacterium, a penalized objective value is com-
puted (54),

𝐹
(𝑡c ,𝑡r ,𝑡e)
𝑖

= 𝑓
(𝑡c ,𝑡r ,𝑡e)
𝑖

+ 𝑔
(𝑡c ,𝑡r ,𝑡e)
𝑖

(14)

where,

𝑔
(𝑡c ,𝑡r ,𝑡e)
𝑖

= 𝑔

(
𝑥
(𝑡c ,𝑡r ,𝑡e)
𝑖

)
=

𝑁∑
𝑗=1

[
−𝑑att exp

(
−𝑤att Δ

(𝑡c ,𝑡r ,𝑡e)
𝑖,𝑗

)]
+

𝑁∑
𝑗=1

[
−𝑑rep exp

(
−𝑤rep Δ

(𝑡c ,𝑡r ,𝑡e)
𝑖,𝑗

)]
(15)

is called the cell-to-cell attractant effect, and,

Δ(𝑡c ,𝑡r ,𝑡e)
𝑖,𝑗

= ‖‖‖𝑥(𝑡c ,𝑡r ,𝑡e)
𝑖

− 𝑥
(𝑡c ,𝑡r ,𝑡e)
𝑗

‖‖‖2
is the squared Euclidean distance between two bacteria.
The parameters 𝑑att ,𝑤att , 𝑑rep, and𝑤rep, determine the mag-
nitude of attraction or repulsion between the bacteria.
These parameters are user-defined, although their proper
setting is not an easy task (55).

After that, tumbling takes place where a new position
is generated for the 𝑖th bacterium as follows (54):

𝑥
(𝑡c+1,𝑡r ,𝑡e)
𝑖

= 𝑥
(𝑡c ,𝑡r ,𝑡e)
𝑖

+ 𝑐𝑖
𝑅𝑖‖‖𝑅𝑖

‖‖ (16)

where 𝑐𝑖 is a user-defined step size (typically smaller than
1), and 𝑅𝑖 is an 𝑛-dimensional random vector with compo-
nents uniformly distributed in the range [−1, 1], that is,

𝑅𝑖 =
(
𝑅𝑖1, 𝑅𝑖2,… , 𝑅𝑖𝑛

)
, 𝑅𝑖𝑗 ∼  ([−1, 1])
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while ‖‖𝑅𝑖
‖‖ denotes the measure of 𝑅𝑖. The new position is

also evaluated according to

𝐹
(𝑡c+1,𝑡r ,𝑡e)
𝑖

= 𝑓
(𝑡c+1,𝑡r ,𝑡e)
𝑖

+ 𝑔
(𝑡c+1,𝑡r ,𝑡e)
𝑖

If the new value is better than the one of equation 14,
then the corresponding position 𝑥

(𝑡c+1,𝑡r ,𝑡e)
𝑖

replaces the ex-
isting one 𝑥

(𝑡c ,𝑡r ,𝑡e)
𝑖

. The algorithm continues the produc-
tion of new positions according to equation 16 with the
same 𝑅𝑖 for a user-defined maximum number of improv-
ing steps, 𝑞max, or until an inferior position is produced,
always preserving the best found position and its value.
This procedure is called the swim of the bacterium and
completes its chemotaxis step. The algorithm continues
with the next bacterium, until the whole swarm has been
processed.

The chemotaxis loop is repeated for a user-defined num-
ber of iterations, 𝑡max

𝑐
, for each bacterium. When it fin-

ishes, reproduction takes place. Specifically, the cumula-
tive value obtained from chemotaxis, also called health, is
computed for each bacterium (54),

𝐹 health
𝑖

=
𝑡max
𝑐∑
𝑗=1

𝐹
(𝑡c+𝑗,𝑡r ,𝑡e)
𝑖

, 𝑖 ∈ 𝐼 (17)

which is the equivalent of the amount of nutrients con-
sumed by the bacterium during its lifetime in the physical
analogue. The bacteria are then sorted according to their
health values, with lower values denoting better bacteria
(in minimization case). A user-defined number, 𝑀 ⩽ 𝑁∕2,
of the worst bacteria is eliminated from the swarm, and
the 𝑀 best ones are replicated in the swarm claiming the
empty positions. This completes the (𝑡𝑟 + 1)th reproduction
step and the swarm starts a new chemotaxis loop.

When 𝑡𝑟 reaches a user-defined maximum number of re-
production cycles, 𝑡max

𝑟
, the (𝑡𝑒 + 1)th elimination-dispersal

phase takes place. In this phase, each bacterium is elimi-
nated with a fixed probability 𝜌𝑒, and its position is occu-
pied by a new, randomly positioned bacterium. Then, the
whole cycle of reproduction and chemotaxis is repeated
again. When a maximum number 𝑡max

𝑒
of elimination-

dispersal cycles is reached, the algorithm is terminated
reporting the best position it has ever visited.

BFO resembles gradient-descent combined with
stochastic directional search in a sophisticated scheme.
Swarming behavior emerges as a consequence of the bac-
teria interaction through the attraction–repulsion forces
that are indirectly imposed by penalizing the objective
values of the bacteria. Stochasticity ensures the diverse
response of the swarm.

A theoretical analysis of a simplified system of
two bacteria can be found in (54). Although setting
its large number of parameters can be a laborious
task, BFO has gained increasing popularity with ap-
plications appearing in various fields such as filtering,
learning in neural networks, pattern recognition, and
scheduling (54).

4.5. Gravitational Search Algorithm

Gravitational search algorithm (GSA) was introduced by
Rashedi et al. (56) as an agent-based optimization algo-

rithm inspired by the behavior of body masses under grav-
itational forces. Specifically, the search agents are con-
sidered as objects with masses determined according to
their quality. The agents move in the search space subject
to gravitational forces that attract them toward heavier
masses, that is, agents of better quality, thereby imitating
the corresponding Newtonian laws of gravity and motion.

These laws dictate that eachmass attracts othermasses
with a gravitational force that is proportional to the prod-
uct of their masses and inversely proportional to their dis-
tance. Also, the velocity of a mass is equal to the sum of (a
fraction of) its previous velocity and its acceleration (56).

Putting it formally, let 𝑁 be the number of search
agents, forming a swarm of masses,

𝑃 (𝑡) =
{
𝑥
(𝑡)
1 ,… , 𝑥

(𝑡)
𝑁

}
at the current iteration 𝑡 of the algorithm. The position of
each agent is randomly initialized according to equation 6
in the 𝑛-dimensional search space, and 𝐼 and 𝐽 are the sets
of indices defined in equation 5. Besides its position, each
agent also assumes an inertial mass MI, as well as an ac-
tive and a passive gravitational mass, denoted as MA and
MP, respectively. These masses are determined according
to a user-defined fitness function, which takes into consid-
eration the quality of the agent, that is, its objective value,
such that higher masses correspond to agents with smaller
objective values in minimization case (further details are
given below).

The aggregate force imposed on the 𝑖th search agent is
defined as an 𝑛-dimensional vector (56),

𝐹
(𝑡)
𝑖

=
(
𝐹

(𝑡)
𝑖1 ,… , 𝐹

(𝑡)
𝑖𝑛

)
with components,

𝐹
(𝑡)
𝑖𝑗

=
∑
𝑘∈𝐾

𝑗 𝐹
(𝑡)
[𝑘↔𝑖],𝑗 , 𝑗 ∈ 𝐽 , 𝐾 ⊆ 𝐼 ⧵ {𝑖} (18)

where𝑗 is a random number uniformly distributed in the
range [0, 1], and,

𝐹
(𝑡)
[𝑘↔𝑖],𝑗 = 𝐺(𝑡) MP(𝑡)

𝑖
MA(𝑡)

𝑘

𝑅𝑖𝑘 + 𝜀

(
𝑥
(𝑡)
𝑘𝑗
− 𝑥

(𝑡)
𝑖𝑗

)
, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐼 ⧵ {𝑖}

with MP(𝑡)
𝑖

and MA(𝑡)
𝑘

denoting the passive and active
masses of agents 𝑖 and 𝑘, respectively, at iteration 𝑡. The
parameter 𝐺(𝑡) is a gravitational “constant”, that it is time-
decreasing; 𝜀 > 0 is a small fixed value that prevents di-
vision by zero; and 𝑅𝑖𝑘 is the Euclidean distance between
the two agents.

The set 𝐾 ⊆ 𝐼 includes the agents that affect the move
of the 𝑖th agent. In the simplest case, 𝐾 can be the whole
set 𝐼 , that is, every mass affects all other masses. This is
an exploration-oriented version that equips the algorithm
with the necessary search diversity in its early iterations.
However, as time passes, more exploitation-oriented steps
are desirable. This can be achieved by gradually modifying
𝐾 to include only best-performing agents as proposed in
(56).
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The acceleration of the 𝑖th agent is then defined as the
𝑛-dimensional vector (56),

𝛼
(𝑡)
𝑖

=
(
𝛼
(𝑡)
𝑖1 ,… , 𝛼

(𝑡)
𝑖𝑛

)
with components,

𝛼
(𝑡)
𝑖𝑗

=
𝐹

(𝑡)
𝑖𝑗

MI(𝑡)
𝑖

, 𝑗 ∈ 𝐽

where MI𝑖 is the inertial mass of the 𝑖th agent. According
to the law of motion, the new positions of the search agents
in the next iteration of the algorithm are given by

𝑣
(𝑡+1)
𝑖𝑗

= 𝑖 𝑣
(𝑡)
𝑖𝑗
+ 𝛼

(𝑡)
𝑖𝑗

(19)

𝑥
(𝑡+1)
𝑖𝑗

= 𝑥
(𝑡)
𝑖𝑗
+ 𝑣

(𝑡+1)
𝑖𝑗

(20)

where 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , and 𝑖 is a random number uniformly
distributed in [0, 1]. The procedure is iteratively repeated
until a user-defined stopping condition is satisfied.

According to (56), the inertial, active, and passive grav-
itational masses are assumed to be equal and determined
as follows:

MI(𝑡)
𝑖
= MA(𝑡)

𝑖
= MP(𝑡)

𝑖
= 𝑀

(𝑡)
𝑖

=
𝑚

(𝑡)
𝑖

𝑁∑
𝑗=1

𝑚
(𝑡)
𝑗

, 𝑖 ∈ 𝐼

where,

𝑚
(𝑡)
𝑖
=

𝑓
(𝑡)
𝑖

− 𝑓
(𝑡)
worst

𝑓
(𝑡)
best − 𝑓

(𝑡)
worst

with 𝑓
(𝑡)
𝑖

denoting the objective value of 𝑥(𝑡)
𝑖
, and,

𝑓
(𝑡)
best = min

𝑘∈𝐼

{
𝑓

(𝑡)
𝑘

}
, 𝑓

(𝑡)
worst = max

𝑘∈𝐼

{
𝑓

(𝑡)
𝑘

}
are the best and worst objective value of the swarm at
iteration 𝑡, respectively.

GSA integrates the typical elements of swarm-based
optimization algorithms. Its emergent swarming behavior
emanates from the direct cooperation among the agents
through their attraction forces. The use of weighted differ-
ences as well as its general context brings GSA closer to
PSO than other swarm-based approaches. It has common
inspiration origins also with other force-based algorithms
such as the central force optimization algorithm (57).

GSA has gained increasing popularity since its devel-
opment. A number of relevant applications are reported in
(58). However, it has also received criticism regarding its
actual relevance to the physical analogue (59). Neverthe-
less, it appears to be a relatively simple algorithm with
promising performance.

5. CONCLUSIONS

The basic properties of swarm-based optimization algo-
rithms were exposed and a number of popular approaches
were presented. The main purpose of the article was to
highlight the main qualities that produce emergent collec-
tive intelligence and to identify such virtues in a number

of widely used algorithms for discrete and continuous op-
timization problems.

Naturally, the ample literature available prohibits the
thorough presentation of the whole research field known
as swarm intelligence, where the studied algorithms be-
long to. Over and above, this was not the main goal of
the authors. Instead, our intention was to offer a starting
point for the study of the fascinating field of swarm-based
optimization by presenting some selected algorithmic ap-
proaches that prevailed in the field during the past two
decades.

LIST OF ABBREVIATIONS

ABC artificial bee colony
ACO ant colony optimization
AS ant system
BFO bacteria foraging optimization
CS cuckoo search
EA evolutionary algorithm
GSA gravitational search algorithm
MMAS max–min ant system
PSO particle swarm optimization
SI swarm intelligence
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