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Abstract

Particle swarm optimization has gained increasing popularity in the past 15 years.
Its effectiveness and efficiency has rendered it a valuable metaheuristic approach
in various scientific fields where complex optimization problems appear. Its
simplicity has made it accessible to the non-expert researchers, while the
potential for easy adaptation of operators and integration of new procedures
allows its application on a wide variety of problems with diverse characteristics.
Additionally, its inherent decentralized nature allows easy parallelization, taking
advantage of modern high-performance computer systems. The present work
exposes the basic concepts of particle swarm optimization and presents a number
of popular variants that opened new research directions by introducing novel
ideas in the original model of the algorithm. The focus is placed on presenting
the essential information of the algorithms rather than covering all the details.
Also, a large number of references and sources is provided for further inquiry.
Thus, the present text can serve as a starting point for researchers interested in
the development and application of particle swarm optimization and its variants.

Keywords
Particle Swarm Optimization • Swarm Intelligence • Metaheuristics • Nature-
Inspired Algorithms • Stochastic Search • Optimization • Computational Intel-
ligence

Introduction

Particle swarm optimization (PSO) was introduced in the pioneering works of
Russell C. Eberhart and James Kennedy in [33, 60]. At that time, the wide success
of Evolutionary Algorithms (EAs) motivated researchers worldwide to develop
and experiment with novel nature-inspired methods. Thus, besides the interest
in evolutionary procedures that governed EAs, new paradigms from nature were
subjected to investigation. In this context, the hierarchically organized societies
of simple organisms such as ants, bees, and fishes, which have limited range of
individual responses but fascinating collective behaviors, immediately attracted
scientific interest.

Simulations conducted with modeled populations of such organisms exhibited
traits of intelligent behavior and remarkable problem solving capabilities [12]. The
underlying mathematical models shared concepts with particle physics, enriched
with elements from probability theory and stochastic processes. The theoretical
background along with the potential for developing powerful optimization meta-
heuristics resulted in the emergence of a new category of algorithms under the name
of Swarm Intelligence (SI) [12, 34, 62].

PSO is placed in a salient position among SI algorithms. Its inspiration stemmed
from simulators of social behavior that implement rules such as neighbor velocity
matching and acceleration by distance. These properties were shown to produce
swarming motives in groups of simple artificial agents. The early models were prop-
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Fig. 1 Number of publications with the term “particle swarm” in the title (Source: Scopus search
engine, November 2014)

erly refined to fit the framework of optimization algorithms. The first PSO models
introduced the novelty of using difference vectors among population members to
sample new points in the search space. This novelty diverged from the established
procedures of EAs, which were mostly based on sampling new points from
explicit probability distributions [126]. Nevertheless, it proved to be appealing and,
almost concurrently with PSO, another algorithm with similar structure, namely,
Differential Evolution [131], appeared in the literature. Additional advantages of
PSO were its potential for easy adaptation of operators and procedures to match
the specific requirements of a given problem, as well as its inherent decentralized
structure that promoted parallelization.

PSO has gained wide recognition due to its effectiveness, efficiency, and easy
implementation. This is illustrated in Fig. 1, which reports the number of scientific
works that include the term “Particle Swarm” in the titles for the years 1995–2014,
as returned by the Scopus search engine on a search conducted in November 2014.
The illustrated numbers of papers include all sources provided by the Scopus search
engine (journals, conferences, books, etc.).

The present work aims at introducing the basic concepts of PSO and presenting
a number of its most influential variants, based on the criteria of novelty at the
time of development, popularity, and potential for opening new research directions.
Naturally, neither the selection of variants can be complete nor the presentation
can be thorough within the limited space of a book chapter. For this reason, only
basic information is provided, while further details can be acquired in the reported
references and sources. Thus, the present text can serve as the “Ariadne’s thread”
for researchers with interest in PSO.

The rest of the present chapter is organized as follows: section “Basic Model”
introduces a basic PSO model that is used as reference point for the presented
variants. Section “Convergence and Parameter Setting” outlines the theoretical
properties of PSO and probes interesting aspects such as convergence, parame-
ter setting, special features of the algorithm, as well as performance-enhancing
techniques. Section “Enhanced and Specialized PSO Variants” presents a number
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of enhanced and specialized PSO variants that constitute the state-of-the-art,
while section “Applications” briefly comments on applications. Finally, the paper
concludes in section “Conclusions”. The Appendix at the end of the text offers
additional sources for further inquiry and experimentation with PSO.

Basic Model

PSO was primarily developed for optimization in real-valued search spaces. For this
reason, the general d -dimensional bound-constrained optimization problem,

min
x2X

f .x/; (1)

where,

X D
�
xmin
1 ; xmax

1

�
� � � � �

�
xmin
d ; xmax

d

�
� R

d ; (2)

is henceforth considered as the reference problem for the presentation of the
algorithm. In case of different search spaces, explicit definitions will be given. The
only necessary assumption regarding the objective function f is the availability of
its value f .x/ for every point x 2 X . Smoothness properties such as continuity and
differentiability are not required.

The main search mechanism of PSO is based on a group of search agents, called
particles, which iteratively change their position in the search space X . The particles
retain in an external memory the best positions they have ever visited in X . The
move of each particle is stochastically biased toward its own findings as well as
promising regions of the search space discovered by the rest of the particles. This
implicit information-exchange scheme is responsible for the emergent convergence
properties of the whole group, which is accordingly called a swarm.

Putting it formally, let Ai denote the i -th particle (search agent) and,

S D fA1;A2; : : : ; AN g; (3)

be a swarm of size N (the ordering of the particles is irrelevant). Also, let,

I D f1; 2; : : : ; N g; D D f1; 2; : : : ; dg;

be the sets of indices of the particles and the coordinate directions, respectively, and
t denote the algorithm’s iteration counter (this notation will be henceforth used in
the present work). Then, each particle can be defined by four essential elements,

A
.t/
i D

D
x.t/i ; v

.t/
i ;p

.t/
i ; NB

.t/
i

E
; i 2 I:

The first vector,

x.t/i D
�
x
.t/
i1 ; x

.t/
i2 ; : : : ; x

.t/

id

�>
2 X ;
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defines the current position of the particle in X at iteration t . In many works
in literature, the term “particle” is used to define solely the current position xi .
However, in the author’s opinion, the use of this term to define the search agent
with all its components promotes a more compact presentation, and it is aligned
with notation in similar SI algorithms (e.g., the term “ant” is similarly used to define
search agents in ant colony optimization [12]). The second vector,

v.t/i D
�
v
.t/
i1 ; v

.t/
i2 ; : : : ; v

.t/

id

�>
;

is an adaptable position shift, also called velocity, which is responsible for the
particle’s move. The third vector,

p.t/i D
�
p
.t/
i1 ; p

.t/
i2 ; : : : ; p

.t/

id

�>
2 X ;

is the particle’s best position, i.e., the best position it has ever visited in X up
to iteration t . For the reference optimization problem of Eq. (1), the best position
corresponds to the particle’s previous position with the smallest objective value,
i.e.,

p.t/i D arg minn
x.k/i ; k6t

of
�

x.k/i
�
:

The best position plays the role of attractor that biases the velocity toward the
discovered promising regions of X . However, this sole information would render the
particle an isolated agent with limited search capability that produces trajectories by
oscillating around its best visited points.

For this reason, in addition to its own discoveries, each particle has an implicit
information-exchange mechanism with a subset of the swarm, called its neighbor-
hood. The neighborhood can be formally denoted as a subset of the indices set I ,

NB
.t/
i � I;

and its cardinality is usually called the neighborhood size. In most PSO variants, the
best position in the neighborhood of the particle, i.e.,

p.t/gi D arg minn
p.t/j ; j2NB

.t/
i

of
�

p.t/j
�
;

is used as a second attractor for biasing its velocity.
Based on the definitions above, at each iteration of the algorithm, the particles

componentwisely update their current positions and velocities as follows:

v
.tC1/
ij D �v

.t/
ij C C1

�
p
.t/
ij � x

.t/
ij

�
C C2

�
p
.t/
gi j
� x

.t/
ij

�
; (4)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (5)
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Algorithm 1: Canonical PSO
Require: Initialize PSO algorithm.

1: while (not stopping condition) do
2: for i D 1 to N do
3: for j D 1 to d do
4: Update vij by using Eq. (4).
5: Check for velocity boundaries violation and correct if needed.
6: Update xij using Eq. (5).
7: Check for search space boundaries violation and correct if needed.
8: end for
9: end for

10: for i D 1 to N do
11: Update pi according to Eq. (7).
12: end for
13: end while
14: Report best solution.

where i 2 I and j 2 D. The scalar parameter � is called the inertia weight
or constriction coefficient, and its role is discussed in section “Convergence and
Parameter Setting”. The stochastic terms C1 and C2 follow continuous uniform
distributions,

C1 � U.0; c1/; C2 � U.0; c2/; (6)

where c1 and c2 are user-defined parameters, called the acceleration constants,
which control the magnitude of attraction toward p.t/i and p.t/gi , respectively. The

first difference term
�
p
.t/
ij � x

.t/
ij

�
is called the cognitive term because it involves

only the particle’s own information. Correspondingly, the second difference term�
p
.t/
gi j
� x

.t/
ij

�
is called the social term since it involves information provided by

other particles.
After the current positions and velocities, the best positions are also updated as

follows:

p.tC1/i D

(
x.tC1/i ; if f

�
x.tC1/i

�
6 f

�
p.t/i

�
;

p.t/i ; otherwise;
i 2 I: (7)

The algorithm is executed until a predefined stopping condition is fulfilled. The
presented basic PSO model is also known as the Canonical Particle Swarm [59],
and it is summarized in Algorithm 1. The discussion on initialization, boundary
violation, and stopping conditions is postponed until the next section.
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A number of issues arise regarding essential decisions that need to be made prior
to the application of the basic PSO algorithm. Specifically, the practitioner shall
address the following questions:

1. How shall the parameters N , �, c1, c2, be set?
2. How shall the neighborhoods be defined?
3. How shall the boundaries violations be handled?
4. How shall the swarm be initialized?
5. What stopping conditions shall be used?

Apparently, each decision can have significant impact on the algorithm’s perfor-
mance. For this reason, careful settings that take into consideration the potential
impact on PSO’s dynamic are of vital importance.

A number of PSO variants have been developed on the basis of using alternative
techniques for configuring the algorithm. These issues are discussed in the next
section. Canonical PSO has constituted the starting point for further developments
and enhancements for almost two decades. Yet, it still remains a popular piece of
the state-of-the-art due to its verified effectiveness and efficiency in a plethora of
applications [106, 112, 127].

Convergence and Parameter Setting

During the last two decades of PSO’s development, a large number of variants
have been proposed. In almost all cases, the motivation for further research has
stemmed from the necessity for more efficient algorithms that tackle the weaknesses
of previous variants. In the core of these developments lie the answers of the basic
questions posed in section “Basic Model” with respect to PSO’s configuration and
parameter setting.

In the following paragraphs, the most significant developments are highlighted
along with insights and suggestions for PSO’s configuration.

Early Precursors

The early PSO precursors [33, 60] were not as sophisticated as the Canonical
PSO approach presented in section “Basic Model”. In fact, they were based on a
simplified version of Eq. (4) with � D 1 and NBi D I , i.e.,

v
.tC1/
ij D v

.t/
ij C C1

�
p
.t/
ij � x

.t/
ij

�
C C2

�
p
.t/
gj � x

.t/
ij

�
; (8)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (9)
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with i 2 I , j 2 D, and p.t/g be the best position discovered by any particle (also
called the swarm’s overall best) up to iteration t , i.e.,

p.t/g D arg minn
p.t/k ; k2I

of
�

p.t/k
�
: (10)

Obviously, the magnitude of the position shifts depends on the values of the
parameters c1 and c2 that determine the stochastic terms C1 and C2 according to
Eq. (6).

In [56] the trajectories of the particles were studied by simplifying the system.
The use of the previous velocity v.t/i in the update equation of the current velocity
results in an oscillatory move of the particle around the weighted average of the two
best positions,

Np.t/i D
1

C1 C C1

�
C1p.t/i C C2p.t/g

�
: (11)

The swarm’s overall best particle, for which it holds that p.t/i D p.t/g , updates its
velocity as follows:

v
.tC1/
ij D v

.t/
ij C C

�
p
.t/
j � x

.t/
ij

�
; (12)

where j 2 D, C D C1 C C2, and p.t/ D p.t/g .
If we consider the trivial case of a single particle and a fixed best position p, it

was shown in [56] that the particle’s trajectory becomes highly dependent on the
values of C, as shown in Fig. 2. Values higher than C D 4:0 are detrimental for
the algorithm’s convergence, since the velocity can grow arbitrarily large (notice
the scaling difference in the vertical axis for C D 4:0 in Fig. 2). This problem was
called the swarm explosion effect, and it was verified also in [87, 88], emphasizing
the necessity for a mechanism to control the amplitude of the velocities.

Velocity Clamping and Inertia Weight

The swarm explosion effect led to the first significant improvements of PSO, namely
velocity clamping and the introduction of the inertia weight. Since the main problem
was the arbitrary growth of the velocities, a straightforward solution was their
explicit restriction in acceptable bounds. Specifically, a maximum value vmax

j was
imposed on the absolute value of each velocity component, i.e.,

�vmax
j 6 vij 6 vmax

j ; for all i 2 I; j 2 D:
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Fig. 2 Particle trajectory for fixed value C D 2:5 (upper left), 3:0 (upper right), 3:5 (lower left),
and 4:0 (lower right)

This way, if a component vij violates one of the boundaries, it is set equal to the
violated boundary’s value, prohibiting the particle from taking large steps away
from the weighted average of best positions of Eq. (11). The user-defined value
vmax
j is usually equal to a fraction of the search space along the j -th coordinate

direction, i.e.,

vmax
j D �j

�
xmax
j � xmin

j

�
; j 2 D; �j 2 .0; 1/: (13)

Naturally, prior information regarding the search space facilitates proper setting
of the maximum velocity. For example, in cases of extremely large number of
minimizers or very narrow regions of attraction around them, smaller velocities
can offer better search accuracy [129]. Equation (13) is used also in modern PSO
variants, usually assuming identical �j values for all j 2 D. Velocity clamping is
applied in line 5 of the Canonical PSO in Algorithm 1.

Although velocity clamping was effective in hindering divergence, it was proved
to be inadequate to produce convergent behavior of the particles. Obviously,
convergence to a point in the search space requires the gradual decrease of velocities
such that the particles can perform decreasing oscillations around the attractors and,
eventually, settle on a point. This was achieved by introducing an inertia weight
w [128] on the velocity update of Eq. (8), i.e.,
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v
.tC1/
ij D wv.t/ij C C1

�
p
.t/
ij � x

.t/
ij

�
C C2

�
p
.t/
gj � x

.t/
ij

�
; (14)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij : (15)

The parameter w shall be properly set such that the impact of the previous velocity
v.t/i declines during the execution of the algorithm. This can be achieved by setting
either a fixed value w 2 .0; 1/ or assuming a decreasing value between two extreme
values wmax and wmin, during the algorithm’s run. For example, if tmax is a predefined
maximum number of iterations, the most common linearly decreasing inertia weight
takes values as follows,

w.t/ D wmax �
t

tmax
.wmax � wmin/ :

Figure 3 illustrates the swarm’s diversity in terms of the average of the particles’
standard deviations per coordinate direction, without inertia weight as well as with
a linearly decreasing inertia weight, for a well known optimization problem.

Velocity clamping and the introduction of inertia weight boosted PSO research
due to the improved convergence properties of the derived PSO variants. Both these
improvements are still used in modern PSO approaches [106]. Further information
and enhancements can be found in recent works such as [15, 155].
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Fig. 3 Swarm’s diversity with (solid line) and without (dotted line) inertia weight while minimiz-
ing the 2-dimensional Rosenbrock function using 20 particles with c1 D c2 D 2, vmax D 50,
wmax D 1:2, and wmin D 0:1
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Stability Analysis

The empirical analyses of particles’ trajectories in [56,87,88] and their implications
in PSO’s modeling and parameter setting motivated the systematic theoretical
investigation of the algorithm. The first breakthrough appeared in 2002 due to
M. Clerc and J. Kennedy who conducted a convergence and stability analysis of
the algorithm in multidimensional search spaces [21].

The authors used as starting point the early model of Eqs. (8) and (9) with
velocity clamping. The initial model was manipulated according to Eq. (12) and
further simplified by assuming 1-dimensional particles without stochasticity, i.e., the
two stochastic acceleration terms were assumed to be equal and fixed, C1 D C2 D C.
After dropping some indices and making proper algebraic manipulations, the 1-
dimensional swarm’s update rules can be rewritten in the form [21],

v.tC1/ D v.t/ C Cy.t/; (16)

y.tC1/ D �v.t/ C .1 � C/y.t/; (17)

where y.t/ D Np � x.t/, with Np being the (currently fixed) aggregate best position
defined in Eq. (11) (note that all vectors currently collapse to scalars). This discrete
system can be written also in matrix form,

PtC1 DM Pt DM
t P0;

where,

Pt D

�
v.t/

y.t/

�
; M D

�
1 C
�1 1 � C

�
:

Then, the behavior of the system depends on the eigenvalues ofM , which are given
by,

�1;2 D 1 �
C
2
˙

p
C2 � 4C
2

:

The previously identified critical value C D 4 (recall Fig. 2) [56, 88], appears again
as the limit between the case of two different real eigenvalues, one eigenvalue of
multiplicity 2, and two complex conjugate eigenvalues �1;2.

For the case of C 2 .0; 4/, the eigenvalues become complex [21],

�t1 D cos.t�/C i sin.t�/; �t2 D cos.t�/ � i sin.t�/;

and the system exhibits cyclic behavior for � D .2��/=t . On the other hand, values
of C > 4 produce no cyclic behavior and it is proved that Pt has monotonically
increasing distance from the origin [21]. Finally, the limit case C D 4 produces
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either oscillatory behavior, i.e., PtC1 D �Pt , if P0 is an eigenvector of M , or
linearly increasing or decreasing kPtk for y0 > 0 or y0 < 0, respectively.

The investigation was further extended to the continuous case by transforming
the simplified model into the recurrent equation [21],

v.tC2/ C .C � 2/v.tC1/ C v.t/ D 0;

which in turn becomes a second-order differential equation,

@2v
@t2
C ln.�1�2/

@v
@t
C ln.�1/ ln.�2/v D 0;

where �1 and �2 are the solutions of the polynomial,

�2 C .C � 2/�C 1 D 0:

Thus, the quantities v.t/ and y.t/ assume the general form [21],

v.t/ D c1�t1 C c2�
t
2;

y.t/ D
�
c1�

t
1.�1 � 1/C c2�

t
2.�2 � 1/

	
=C:

The parameters c1 and c2 depend on the initial vectors v.0/ and y.0/. Similar analysis
with the discrete case shows that the system’s explosion depends on whether the
condition,

maxfj�1j; j�2jg > 1;

holds or not [21].
After the analysis above, the employed simplified model was generalized in

order to approximate the actual model of PSO. A number of extended models
were accordingly developed and studied in [21]. The outcome of the study was an
effective model, namely the Canonical PSO model of Eqs. (4) and (5), accompanied
with a proposed parameter setting [21],

� D 0:729; c1 D c2 D 1:49; (18)

derived from closed-form formulae in order to retain the convergent behavior of the
system. This parameter setting has become the most common choice for off-the-
shelf PSO approaches in numerous applications [106].

The first theoretically sound convergence analysis of PSO in [21] was suc-
ceeded by a number of theoretical studies [49, 54, 113, 124, 143, 147]. These
developments increased our understanding of PSO’s dynamic. Also, they added
merit that, along with its easy implementation and the reported excellent results
in various applications, eventually placed PSO in a salient position among other
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established population-based optimization algorithms such as Genetic Algorithms
and Evolution Strategies. Moreover, the dynamic of the Canonical PSO model
motivated recent approaches that spare function evaluations by taking advantage
of the particles’ dynamic [148].

Concept of Neighborhood

Information exchange among the particles is a concept of major importance in
PSO. In the Canonical PSO of Eqs. (4) and (5), the i -th particle adopts the best
position pgi of its neighborhood NBi as an attractor for its move, besides its own
best position. This way, the neighborhood determines the communication channels
among particles and, consequently, the information flow within the swarm. Without
communication, collective behavior cannot emerge and the swarm is downgraded to
a group of isolated search agents with limited search capabilities.

Obviously, the neighborhood’s characteristics have direct impact on PSO’s
dynamic [57, 132]. Its structure defines the communication channels among par-
ticles, while its size controls the influence of the swarm on each particle. Since
the particles are attracted toward the best positions of their neighbors, it is
easily comprehended that neighborhoods with large number of particles and dense
communication channels are more inclined toward intensification of search around
the best detected positions in the search space. This is ascribed to the rapid diffusion
of the discovered good solutions to the particles and their consequent attraction
toward them.

However, this also renders the particles prone to get stuck in deep local minima
that are possibly detected in early steps of the algorithm’s execution. Such minima
are typically updated less frequently than shallow ones. Hence, they can impose
stronger attraction on the particles. On the other hand, less crowded neighborhoods
with sparse connections among particles exhibit slower information diffusion in
the swarm. In this case, the particles are gradually acquainted with good solutions,
retaining higher diversity and exploration capability.

The discussion above suggests that neighborhood’s configuration is highly
responsible for the diversification/intensification (a.k.a. exploration/exploitation)
trade-off of the algorithm. For this reason, it shall be carefully selected. To this
end, prior knowledge on the studied problem can be valuable. For example, smooth
functions with one or few minima can be properly handled through intensification-
oriented neighborhoods. On the other hand, rugged landscapes with a plethora of
minimizers dispersed at distant parts of the search space usually require exploration-
oriented approaches.

In early PSO variants, each particle was assumed to be connected with all the
rest, i.e.,

NB
.t/
i D I; for all i 2 I;
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Fig. 4 Graphical
representation of the fully
connected (left) and the ring
(right) neighborhood
topology

and the best position for all neighborhoods was the overall best of the swarm, as
defined in Eq. (10). Also, the neighborhoods were time-invariant, i.e., they remained
unchanged throughout the execution of the algorithm (hence we can neglect t in
NB

.t/
i notation). This PSO model is also called the global PSO model or simply

the gbest model. The connection scheme among the particles can be elegantly
represented by undirected graphs, where nodes denote the particles and edges denote
communication channels. The corresponding structure is called the neighborhood’s
topology. Apparently, the gbest model corresponds to a fully connected graph since
all particles communicate with each other. This topology is illustrated in the left part
of Fig. 4.

The tendency of the best model to rapidly converge toward the most promising
detected solutions and easily get stuck in local minima led to further experimen-
tation with sparsely connected models. The outcome of these efforts was the local
PSO model or lbest model, which assumes neighborhoods that are proper subsets
of I , i.e.,

NBi � I; for all i 2 I:

The most effective and easily implemented topology of this form is the ring, which
is depicted in the right part of Fig. 4. In this scheme, the particles are assumed to
lie on a ring according to their indices, i.e, neighboring particles have neighboring
indices. Then, each particle is set to communicate only with its immediate neighbors
on the ring. The number of neighbors for each direction (front and back) is called the
neighborhood’s radius. Thus, a neighborhood of radius r < N of the i -th particle
is defined as the set,

NBi D fi � r; i � r C 1; : : : ; i � 1; i; i C 1; : : : ; i C r � 1; i C rg ;

where the indices are assumed to recycle after index N , i.e.,

j D

8
<

:

j; if 1 6 j 6 N;
j mod N; if j > N;
N � jj j; if j < 1;

for all j 2 NBi :

The diversity differences between the gbest model and the lbest with ring topology
of radius k D 1 is indicatively depicted in Fig. 5 for a simple run on a well-known
optimization test problem.
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Fig. 5 Swarm’s diversity for the lbest (solid line) and gbest (dotted line) PSO model on the 10-
dimensional Rastrigin function using 20 particles

The ring topology has become a standard for lbest PSO implementations due
to its successful application in various problems [106]. There is also a multitude
of alternative topologies that have drawn attention, such as random [132], hier-
archical [46], and dynamic [18], but with limited number of applications. Also,
the concept of neighborhood has recently offered the ground for the development
of new PSO variants with sophisticated computational budget allocation based on
information carried by neighborhoods rather than the particles [130].

Initialization, Stopping Conditions, and Boundaries Violation

A basic requirement in the design and development of stochastic optimization
algorithms such as PSO is their tolerance on perturbations of the initial con-
ditions. In practice, this implies that mild perturbations on the initial positions
of the particles shall correspond to similar performance profiles of the algo-
rithm.

In benchmarking studies, it is commonly assumed that there is no information
available regarding the optimization problem at hand. This is usually called the
black-box optimization problem. In such cases, there is no reason for purposely bias-
ing the particles’ initialization in specific areas of the search space. Consequently,
random and uniform initialization of the particles in the search space is the typical
procedure followed in most studies, i.e.,

x
.0/
ij D p

.0/
ij � U

�
xmin
j ; xmax

j

�
; for all i 2 I; j 2 D:
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Accordingly, the velocities are randomly initialized as,

v
.0/
ij � U

�
�vmax

j ; vmax
j

�
; for all i 2 I; j 2 D:

Naturally, if there is prior information regarding promising regions of the search
space, the distributions can be properly adapted to favor the sampling of particles in
these regions.

The effect of initialization has been studied in a number of works for different
PSO variants [25, 31, 36, 100, 137, 157], offering further insight and suggestions
in specific applications. Nevertheless, random initialization remains the standard
approach also due to its minor implementation effort and the availability of uniform
random number generators in almost all hardware platforms.

In contrast to initialization, which is based on the problem’s characteristics,
the termination conditions are rather user- and resources-dependent [106]. The
following are the most common termination criteria:

1. Convergence in search space.
2. Convergence in function values.
3. Limitations in computational budget.
4. Search stagnation.

The first two criteria entail information on the position of the global minimizer or its
value, respectively. Naturally, this information is generally unavailable. However, in
some cases there are estimated bounds for the solution (or its value) and the user
can set the algorithm to stop as soon as it reaches these bounds with a prespecified
tolerance. In this case, the underlying stopping condition takes the form,

IF
�


p.t/g � x�




 6 "x OR
ˇ̌
ˇf .t/
g � f

�
ˇ̌
ˇ 6 "f

�
THEN STOP

where x� and f � are the targets in the search space and function values, respectively,
and "x , "f , are the corresponding user-defined tolerances.

The other two stopping criteria are more common in PSO’s literature. Computa-
tional budget limitations are typically imposed by the maximum available time that
can be spent for solving a problem. This quantity can be explicitly expressed either
as wall-clock/CPU time or as the number of function evaluations performed by the
algorithm. For benchmarking purposes, the latter is preferable since even the same
algorithm, executed on the same machine at different time instances, may result
in different running times due to irrelevant procedures that may be concurrently
executed on the machine.

On the other hand, the search stagnation criterion can prematurely stop the
algorithm even if the computational budget is not exceeded. Successful application
of this criterion is based on the existence of a proper stagnation measure. Typically,
the number of subsequent iterations without improvement of the best solution and/or
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the dispersion of the particles’ current (or best) positions in the search space have
been used as indicators of search stagnation.

Frequently, the aforementioned termination criteria are combined in forms
such as,

IF
�
t > tmax OR tfail > tmaxfail OR dv.t/ < dvmin

	
THEN STOP

where t stands for the iteration number, tfail is the number of subsequent non-
improving iterations, and dv.t/ is a measure of dispersion of the particles (e.g., the
average standard deviation per coordinate component). Moreover, the user shall pay
special attention to the selection of stopping criteria in order to avoid unintentional
premature termination of the algorithm. Recent developments on this issue can be
found in [67].

Another topic of interest is the handling of search space boundaries violations.
Specifically, after the update of a particle’s current position with Eqs. (4) and (5),
there is a possibility that some of the new position’s components violate the
corresponding boundaries of the search space. The most common approach to
restrict the particle in the search space is to set the violated components of the
particle equal to the value of the violated boundary, i.e.,

x
.t/
ij D

8
<̂

:̂

xmax
j ; if x.t/ij > xmax

j ;

xmin
j ; if x.t/ij < xmin

j ;

x
.t/
ij ; otherwise;

(19)

while simultaneously setting the corresponding velocity component v.t/ij to zero.
Different boundary handling techniques (absorbing, bouncing, cyclic search spaces)
have been proposed, although with less popularity. A recent survey on such
techniques can be found in [89].

Performance-Enhancing Techniques

The Canonical PSO has offered satisfactory performance in various problems.
However, it may exhibit declining performance in special problems such as the
detection of multiple local/global minima, constrained, or discrete problems. In
such cases, the user can either change the algorithm by introducing new, specialized
operators or incorporate external techniques to tackle the problem’s peculiarities.

There are established techniques that have been successfully used with Canonical
PSO. Transformations of the objective function have been used for the alleviation
of local minima and the detection of multiple minimizers. Rounding has been used
for solving discrete optimization problems, while penalty functions can address
constrained optimization problems. In the following paragraphs, basic techniques
that have been combined with the Canonical PSO model are presented. Specialized
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variants of the algorithm with ad hoc operators for similar purposes are presented in
subsequent sections.

Alleviating Local Minimizers
In problems with a multitude of local and/or global minimizers, stochastic opti-
mization algorithms such as PSO may approximate a different minimizer in each
independent run. Frequently, the detected solutions are sub-optimal, while the
user either needs more than one such solution or requires the globally best one.
Multistart techniques where the algorithm is subsequently restarted from different
initial conditions have been proposed for these cases and discussed in classical
optimization texts [142]. However, these approaches cannot guarantee that an
already detected minimizer will be avoided after restarting the algorithm.

An alternative approach consists of transforming the objective function into a
new one that excludes the already detected solutions. Well-known examples of this
type are the filled functions [37]. Similar techniques have been recently developed
and successfully used with PSO [95, 100]. The Stretching technique consists of a
two-stage transformation of the objective function [95],

F1.x/ D f .x/C �1kx � x�k
�
1C sign

�
f .x/ � f .x�/

	�
; (20)

F2.x/ D F1.x/C �2
1C sign .f .x/ � f .x�//
tanh .� .F1.x/ � F1.x�///

; (21)

where f .x/ is the original objective function, x� is the best detected solution of the
algorithm so far and,

sign.z/ D

8
<

:

�1; if z < 0;
0; if z D 0;
C1; if z > 0;

is the three-valued sign function. As soon as a local minimizer (or generally a
sub-optimal solution) is detected, the transformation F1.x/ stretches the objective
function upward, while F2.x/ transforms the detected solution x� into a local
maximizer. Under proper parameter setting, Stretching has the ability to remove
higher local minima than the detected solution x�, while leaving unchanged all
lower minima as well as the global one. This is illustrated in Fig. 6 for an
1-dimensional instance of a well-known test function. Thus, it can be very useful in
problems with a multitude of local minima that can mislead the algorithm after its
re-initialization. Of course, if a better solution is found in a subsequent application
of the algorithm, it can simply replace x� in Eqs. (20) and (21).

However, if Stretching is applied on a global minimizer, all other minimizers
vanish. For this reason, Stretching is inappropriate for detecting multiple global
minimizers (see next section for a relevant technique that tackles this problem).
Also, similarly to its filled functions predecessors, Stretching may introduce new
local minima around the point of application x� [101]. This is also known as the
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Fig. 6 The Stretching technique applied on the 1-dimensional Rastrigin function for the local
minimizer x� D �1 and parameters �1 D �2 D 20, � D 0:1

mexican hat effect and has been addressed in [153] through proper parameterization.
Naturally, the application of Stretching is not limited to the Canonical PSO. It can
be incorporated to any PSO variant or even different algorithms [42].

Detecting Multiple Minimizers
Deflection [78] is a technique that works similarly to Stretching but it has only local
effect on the objective function. Thus, it can be applied in cases where multiple
(global or local) solutions are needed. Deflection has been used with PSO with
promising results in detecting multiple global and/or local minimizers [101].

Let f .x/ be the objective function and x�1 ; : : : ; x
�
k , be k previously detected

solutions. Then, Deflection transforms the objective function as follows [101],

F .x/ D
f .x/

kQ

iD1

Ti
�
x; x�i ; �i

	
; (22)

where Ti is defined as,

Ti
�
x; x�i ; �i

	
D tanh

�
�ikx � x�i k

	
; (23)

and �i are relaxation parameters, i D 1; 2; : : : ; k. The idea behind this transforma-
tion is the same as in Stretching, i.e., the transformation of detected minimizers into
local maximizers. However, Deflection changes the objective function only locally,
around the point of application. The magnitude of change depends on the parameters
�i that need proper tuning. Also, Deflection requires strictly positive objective
functions in order to achieve the desirable effect. In cases where the problem at
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Fig. 7 The Deflection technique applied on the 1-dimensional Rastrigin function for the local
minimizer x�1 D �1 as well as the global minimizer x�g D 0 and parameters �1 D �g D 1

hand is not strictly positive, it can be simply shifted to positive values by using
f .x/ D f .x/ C c, with a sufficiently large bias c > 0, prior to the application of
Deflection.

Figure 7 illustrates Deflection for the 1-dimensional instance of the Rastrigin
test function. The mexican hat effect appears also in Deflection, although its impact
can be controlled with proper selection of the parameters �i . Moreover, Deflection
can be combined with a repulsion technique that prevents the particles from
visiting the neighborhoods of detected solutions and possibly get trapped in the
artificially introduced local minima [101, 106]. Combined with PSO, Deflection
offered previously undetected solutions in computationally demanding optimization
problems [129].

Penalty Functions for Constrained Optimization Problems
Constrained optimization problems are accompanied by a set of constraints that
need to be satisfied at the final solution. In general, such a problem can be defined as,

min
x2X

f .x/ subject to Ci.x/ 6 0; i D 1; 2; : : : ; k; (24)

where Ci.x/ are inequality constraints. Different forms of constraints can be
equivalently given in the form above as follows,

Ci.x/ > 0, �Ci.x/ 6 0;

Ci .x/ D 0, Ci.x/ > 0 and Ci.x/ 6 0:
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Penalty functions have been widely used in constrained problems. The main goal is
to penalize all solutions that lie in the infeasible region, such that the algorithm will
be directed again into the search space.

The general form of a penalty function for the problem of Eq. (24) is defined as,

f .x/ D f .x/C P .x/;

where,

P .x/ D
�
˛ > 0; if Ci.x/ > 0 for at least one i;
0; otherwise:

In the simplest case, the penalty term P .x/ can be constant for all infeasible
solutions. However, this choice is not always the most suitable one, since it neglects
the degree of violation and does not provide any information to the algorithm
regarding the distance of the infeasible solutions from the feasible ones. Thus, the
penalty term is recommended to take into consideration the number of violated
constraints as well as the degree of violation for every infeasible solution. Moreover,
the magnitude of penalties can be time-varying, starting with mild penalties in early
stages and becoming strict in the last phase of the optimization procedure.

The Canonical PSO has been combined with such a penalty function defined as
follows [98, 159],

f .x/ D f .x/C h.t/H.x/; (25)

where,

H.x/ D
kX

iD1

� .qi .x// qi .x/�
.qi .x//; (26)

and,

qi .x/ D max f0; Ci .x/g ; i D 1; 2; : : : ; k:

The weight h.t/ controls the impact of the penalty term H.x/ with the number of
iterations t . The degree of violation is accounted in qi .x/ and manipulated with
the power function �.qi .x// as well as with the multi-stage assignment function
� .qi .x//. An alternative penalty function was proposed in [23],

f .x/ D f .x/CH.x/;

with,

H.x/ D w1 HNVC.x/C w2 HSVC.x/;
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where HNVC.x/ is the number of violated constraints and,

HSVC.x/ D
kX

iD1

max f0; Ci .x/g ;

is the sum of violations. The weights w1 and w2 can be either fixed or time-varying
and they determine the importance of each penalty term.

The Canonical PSO updates its best positions according to Eq. (7) by comparing
objective values, solely. However, it is commonly desirable to allow only feasible
best positions in order to avoid oscillations of the particles in the infeasible space.
On top of that, the final solution shall be feasible and, thus, the particles shall
eventually concentrate their search efforts in the feasible region. Yet, in the penalty
functions defined above, it is still possible that an infeasible solution attains lower
value than a feasible one and, therefore, be preferable for inclusion in the best
positions.

In order to prevent such undesirable inclusions, a set of rules can be imposed in
the selection procedure:

1. Between feasible solutions, the one with the smallest objective value is prefer-
able.

2. Between a feasible and an infeasible solution, the feasible one is always
preferable.

3. Between two infeasible solutions, the one with the smallest penalty termH.x/ is
preferable.

These selection rules along with the penalty function approaches have been used
with PSO in various constrained optimization problems with promising results [82,
111].

Tackling Discrete Problems
The Canonical PSO was initially introduced as a continuous optimization method
and its operators are designed to work on real-valued search spaces. In Mathematical
Programming literature, integer optimization problems can be tackled with continu-
ous algorithms by extending the discrete problem to a continuous one and rounding
the solutions to the nearest integers. Such approaches have been used with Branch
and Bound algorithms combined with quadratic programming solvers [69, 79].

A similar approach was used also with PSO for solving integer problems [68].
Specifically, the particles are let to assume real vectors in their current positions,
although they are rounded to the nearest integer vector when evaluated with
the objective function. Also, the rounded integer vectors are preferable as best
positions, since the final solution shall be integer. Putting it formally, if xi D
.xi1; xi2; : : : ; xid /

> is the current position of the i -th particle then its objective
value f .xi / D f .zi / is evaluated on the integer vector zi D .zi1; zi2; : : : ; zid /

>

defined as,
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zij D bxij C 0:5c; i 2 I; j 2 D:

Rounding has effectively worked for various problems of integer and mixed
integer type [68, 82, 92, 111]. Note that in mixed integer problems, no additional
representation scheme is required for the real and the discrete parameters. The
algorithm works by simply rounding the coordinate components that correspond
to integer variables.

Yet, if PSO’s velocities become small enough, it is probable that rounding
will result in search stagnation due to the inability of producing different integer
components. This potential deficiency can be tackled either by restarting the current
positions of the particles (and possibly also the best positions except the overall
best one) as soon as stagnation is identified or by applying gradual truncation of
the decimal digits of the position vectors of the particles as the number of iterations
increases [68].

Another problem category that involves discrete search spaces comprises of
permutation problems. In such problems, the main goal is the detection of an
optimal permutation of fixed elements (e.g., numbers, items, indices, etc.) and they
are frequently met in Combinatorics and Operations Research [11]. Such problems
can be tackled through real-valued algorithms by using the smallest position value
(SPV) representation [138]. Specifically, let,

Z D fZ1; : : : ; Zd g

be an ordered set of the elements of interest Zi , i 2 D. Then, the components of a
real-valued particle are defined as numerical weights that denote the priority of the
corresponding discrete elements according to a predefined mapping. For example,
the components of the i -th particle xi D .xi1; xi2; : : : ; xid /

> can be mapped as
follows,

ordered list of (discrete) elements: Z1 Z2 � � � Zd
l l l

particle’s components (weights): xi1 xi2 � � � xid

Then, the weights (particle’s components) are sorted in ascending order and
the corresponding permutation is received by re-arranging the discrete elements
accordingly, i.e.,

sorted particle’s components (weights): xik1 xik2 � � � xikd
l l l

corresponding permutation: Zk1 Zk2 � � � Zkd

Thus, each particle corresponds to a permutation received after sorting its com-
ponents and PSO’s goal is to find the appropriate weights that produce optimal
or near-optimal permutations. The most common search space in such problems
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is X D Œ0; 1	d , i.e., the weights are all assumed to lie in the range Œ0; 1	.
Obviously, there is an infinite number of weight vectors that correspond to a specific
permutation, since it depends only on the relative ordering of the weights and
not their actual values. SPV has been successfully combined with PSO in various
permutation problems [65, 103, 139, 140].

Enhanced and Specialized PSO Variants

This section is devoted to PSO variants that stemmed from the Canonical PSO
as improvements or specialized modifications for specific problem types. The
pluralism of PSO variants in literature renders a complete presentation impossible.
For this reason, a selection is made based on the novelty introduced by each method
as well as the influence for further developments. Chronological order of appearance
of the methods is partially retained.

Binary PSO

The first Binary PSO (BPSO) variant was developed in 1997 [61]. Instead of using
rounding for transforming the real-valued parameters into binary ones, the algorithm
introduced a new interpretation of the velocities. Specifically, each component of
the velocity’s vector is considered as the input of a sigmoid that determines the state
(0 or 1) of the corresponding particle’s position component. Thus, the velocity vi of
the i -th particle is updated according to Eq. (4), while the current position is updated
as follows [61],

x
.t/
ij D

(
1; if R < S

�
v
.t/
ij

�
;

0; otherwise;
(27)

for all i 2 I , j 2 D, and R � U.0; 1/ is a random variable. The sigmoid is defined
as,

S .x/ D
1

1C exp.�x/
;

clamping the velocity in the range Œ0; 1	 so it can be translated to probability. The
rest of the algorithm follows the basic rules of the Canonical PSO.

The algorithm was demonstrated on a set of test problems with promising results.
It also exhibits conceptual similarities with reinforcement learning approaches [73].
BPSO is still considered as the basis for the development of modern and ad hoc
binary PSO variants for specific applications [9, 14, 52, 116, 158].
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Guaranteed Convergence PSO

The Guaranteed Convergence PSO (GCPSO) was introduced in 2002 [145] based
on the observation that small velocities can prohibit the convergence of the gbest
PSO model with inertia weight. This is ascribed to the cancellation of the attraction
forces of the overall best particle toward its best positions, along with small
velocities that essentially immobilize it in the long run.

The problem was solved by modifying the position update of the overall best
particle (denoted with the index g), as follows [145],

x
.tC1/
gj D p

.t/
gj C �v

.t/
gj C 


.t/.1 � 2R/; (28)

where j 2 D, 
.t/ is a scaling factor, and R � U.0; 1/ is a random variable. The rest
of the particles are updated with the standard rules of Eqs. (4) and (5). The scaling
factor is dynamically adjusted based on the number of consecutive successes and
failures in improving the overall best, i.e.,


.tC1/ D

8
<̂

:̂

2 
.t/; if m.t/
suc > Tsuc;

0:5 
.t/; if m.t/
fail > Tfail;


.t/; otherwise;

where m.t/
suc and m.t/

fail are counters of the consecutive successes and failures at itera-
tion t , respectively, and Tsuc, Tfail, are the corresponding user-defined thresholds.
The counters are reset whenever the row of consecutive successes or failures is
interrupted by a failure or success, respectively. Convergence of GCPSO was proved
and the values 
.0/ D 1, Tsuc D 15, and Tfail D 5, were recommended in [145],
where GCPSO was shown to be very promising on typical benchmark problems.

Bare Bones PSO

The Bare Bones PSO (BBPSO) was introduced in 2003 [58] as a simplification
of the Canonical PSO. Its main feature is the elimination of the velocity update
of Eq. (4) and its replacement with Gaussian sampling around the best positions.
Specifically, the current position is updated by sampling the Gaussian distribution,

x
.tC1/
ij � N

�
�
.t/
ij ; �

2
ij

.t/
�
; (29)

where,

�
.t/
ij D

1

2

�
p
.t/
gj C p

.t/
ij

�
; �2ij

.t/
D
ˇ̌
ˇp.t/gj � p

.t/
ij

ˇ̌
ˇ ;
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and g stands for the index of the overall best particle. The rest of the Canonical
PSO’s procedures (such as best position update and boundary violations handling)
are retained.

BBPSO aimed at offering a very simple, parameter-free PSO variant. Its conver-
gence properties were studied in [10,90,115] and enhanced variants were proposed
for applications in various scientific fields [66, 164–166].

Fully Informed PSO

The Fully Informed PSO (FIPS) was introduced in 2004 [80] as a variant of the
Canonical PSO that extends the concept of neighbor influence. Specifically, in FIPS
each particle is influenced by all its neighbors and not only the best one. The
particles’ update scheme of Eqs. (4) and (5) is modified in the following update
rule,

x
.tC1/
ij D x

.t/
ij C �

�
x
.t/
ij � x

.t�1/
ij

�
C

X

k2NBi

Ck
�
p
.t/

kj � x
.t/
ij

�
; (30)

where i 2 I , j 2 D, NBi is the i -th particle’s neighborhood of size si , and Ck �
U.0; c=si / is a random variable. Adapting the analysis of [21] in FIPS, the default
parameter setting of Eq. (18) is used.

FIPS introduced a novel point of view for the concept of neighborhood. The
social influence was enhanced, providing additional attractors to the particles. The
outcome is their stochastic move around a stochastic average of the best positions
of all neighbors. However, this also implies the dependency of the algorithm’s
performance on the selected neighborhood topology. For example, in the gbest PSO
model where the whole swarm is the neighborhood of all particles, their move tends
to be nearly random [59]. A multitude of neighborhood structures (more than 1000)
were tested in [80] and interesting conclusions were derived regarding the potential
of FIPS to improve the Canonical PSO.

Quantum PSO

Quantum PSO (QPSO) was introduced in 2004 [133], putting the algorithm in a
new framework. In QPSO, the swarm is considered as a quantum system where each
particle possesses a quantum state, while moving in a Delta potential well (DPW)
toward a position p. The quantum state depends on the employed wave function.

Borrowing from previous PSO analyses such as [21], the aforementioned
position p is defined as in Eq. (11). Depending on the considered potential,
different variants of QPSO can be defined. Three established approaches are the
following [81, 133, 135],
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Delta Potential Well: x.tC1/i D p.t/ ˙
ln
�
1
R
	

2 q ln.
p
2/




x.t/i � p.t/



 ; (31)

Harmonic Oscillator: x.tC1/i D p.t/ ˙

q
ln
�
1
R
	

0:47694 q




x.t/i � p.t/



 ; (32)

Square Well: x.tC1/i D p.t/ C
0:6574

� q
cos�1

�
˙
p
R
� 


x.t/i � p.t/




 ; (33)

where i 2 I , R � U.0; 1/ is a random number, and � , q, are user-defined
parameters. Despite the identified parameter sensitivity of the algorithm, it was
embraced by the scientific community and extended in a number of interesting
applications [17, 22, 39, 45, 50, 76, 163].

Unified PSO

The Unified PSO (UPSO) was introduced in 2004 [102] as a PSO variant that
harnesses the gbest and lbest PSO models in a unified scheme. The motivation
behind its development lies in the good intensification (exploitation) properties of
the gbest model and the corresponding good diversification (exprolartion) properties
of the lbest model. Their combination can form variants with different trade-offs of
these two properties.

UPSO is based on the update equations of the Canonical PSO with constriction
coefficient. Specifically, let,

L.tC1/ij D �v
.t/
ij C C1

�
p
.t/
ij � x

.t/
ij

�
C C2

�
p
.t/
gi j
� x

.t/
ij

�
; (34)

denote the velocity update of Eq. (4) for the lbest PSO model, where gi is the index
of the best neighbor of the i -th particle and j 2 D. Also, let,

G.tC1/ij D �v
.t/
ij C C3

�
p
.t/
ij � x

.t/
ij

�
C C4

�
p
.t/
gj � x

.t/
ij

�
; (35)

be the corresponding velocity update for the gbest PSO model, i.e., g denotes the
overall best particle. Then, the basic UPSO scheme is defined as [102],

v
.tC1/
ij D uG.tC1/ij C .1 � u/L.tC1/ij ; (36)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (37)

where i 2 I , j 2 D, and u 2 Œ0; 1	 is a user-defined parameter called
the unification factor, which controls the influence of the gbest and lbest term.
Obviously, u D 0 corresponds to the lbest model, while u D 1 corresponds to
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Fig. 8 The distribution of 3000 possible new positions (light grey points) of the 2-dimensional
particle xi D .0; 0/> (cross) with own best position pi D .1; 2/> (square), neighborhood’s best
position pgi D .5;�3/> (triangle), and overall best pg D .2; 5/> (circle), for different values of
u 2 Œ0; 1	. For simplicity, the velocity vector is set to vi D .0; 0/>

the gbest model. All intermediate values define UPSO variants that combine the
diversification/intensification properties of the two models. Figure 8 illustrates the
distribution of new positions of a particle for different values of the unification
factor.

In addition to the main UPSO model, an alternative with increased stochasticity
was also proposed [102]. It came in two forms, namely,

v
.tC1/
ij D R uG.tC1/ij C .1 � u/L.tC1/ij ; (38)

which is mostly based on the lbest model, and,

v
.tC1/
ij D uG.tC1/ij CR .1 � u/L.tC1/ij ; (39)

which is based on the gbest model [102]. The stochastic parameter R � N .�; �2/
is normally distributed and imitates the mutation operators in Evolutionary Algo-
rithms.

Theoretical properties of UPSO were studied in [102], while a thorough investi-
gation of its parameter setting and adaptation was offered in [104]. Its performance
has been studied on various problems [3, 38, 41, 65, 83, 84, 106, 144].
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Cooperative PSO

Cooperative population-based algorithms [117] are based on the concept of coop-
eration between individuals toward a common goal. Cooperation can be either
explicit through direct communication among them or implicit through a shared
memory where information is deposited. Cooperation can be considered in a multi-
or single-population framework. In the first case, each population usually operates
on a subspace of the original search space, e.g., on one coordinate direction of the
solution vector. Thus, its individuals carry partial solutions that are combined with
those of the other populations, forming complete solutions. In the second case, the
individuals usually carry complete solution information that is combined with the
rest by using special recombination schemes [117].

In the context of PSO, one of the first notable attempts to design a Cooperative
PSO (CPSO) took place in 2004 [146]. That version consists of a number d of
swarms (equal to the problem’s dimension), containing Nk particles each, k 2 D,
i.e., according to Eq. (3),

S Œ1	 D
n
A
Œ1	
1 ; : : : ; A

Œ1	
N1

o
; : : : ; S Œd 	 D

n
A
Œd	
1 ; : : : ; A

Œd	
Nd

o
:

Each swarm probes only one coordinate direction of the solution vector, applying
any PSO variant (Canonical PSO was used in the specific one). Yet, the evaluation of
the particles with the objective function requires complete d -dimensional solutions.
Thus, two main issues need to be addressed:

1. How shall particles from different swarms be selected to form complete solu-
tions?

2. How shall particles be awarded or penalized for their contribution in solutions’
quality?

The decisions on these crucial properties have direct impact on the algorithm’s
performance and, thus, require special attention.

In [146] two alternative schemes were proposed. The first scheme, denoted as
CPSO-Sk , introduced a context vector z� for the evaluation of the particles. This
vector constitutes an external memory where each swarm S Œk	 participates with its
1-dimensional overall best at the corresponding k-th direction component, i.e.,

z� D
�

pŒ1	g ;p
Œ2	
g ; : : : ;p

Œd 	
g

�
;

where pŒk	g is the overall (1-dimensional) best of the k-th swarm [146]. Then, the
evaluation of the i -th particle of the k-th swarm is done by replacing the k-th
swarm’s best in z� with its own information, i.e.,

f
�

xŒk	i
�
D f

�
z�Œi;k	

�
;
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where,

z�Œi;k	 D
�

pŒ1	g ; : : : ;p
Œk�1	
g ; xŒk	i ;p

ŒkC1	
g ; : : : ;pŒd 	g

�
;

where xŒk	i is the current position of the i -th particle of the k-th swarm, which is
under evaluation. Naturally, instead of the overall bests of the swarms, randomly
selected best positions can be used in the context vector. Also, swarms of higher
dimension can be used. However, both these alternatives can radically change
the algorithm’s performance. Obviously, the context vector z� constitutes the best
approximation of the problem’s solution with CPSO-Sk .

The second variant presented in [146], denoted as CPSO-Hk , combines CPSO-Sk
with the Canonical PSO and applies each algorithm alternatively in subsequent
iterations. In addition, information exchange between the two algorithms was con-
sidered by sharing half of the discovered solutions between them. The experimental
assessment revealed that both CPSO-Sk and CPSO-Hk are promising, opening the
ground for further developments such as the ones in [48, 136, 152, 167].

Comprehensive Learning PSO

The Comprehensive Learning PSO (CLPSO) [72] was proposed in 2006 as an
alternative for alleviating gbest PSO’s premature convergence problem, which can
be attributed to the use of the overall best position in the update equation of the
velocities. In CLPSO, each particle can use the best position of any other particle to
independently update its velocity, based on a probabilistic scheme.

Specifically, the velocity update of Eq. (4) is replaced with the following [72],

v
.t/
ij D �v

.t/
ij C C

�
pqŒi;j 	j � x

.t/
ij

�
; (40)

where j 2 D, i 2 I , and qŒi;j 	 2 I is the index of the particle that is used for
the update of the j -th component of the i -th particle’s velocity vector. Naturally,
this particle can be either the i -th particle itself or another particle from the
swarm. This decision is probabilistically made according to predefined probabilities

1; 
2; : : : ; 
d , i.e.,

qŒi;j 	 D

�
i; if R 6 
j ;
TOURN .I 0/ ; otherwise;

for all j 2 D;

where R � U.0; 1/ is a uniformly distributed random variable, I 0 D I n fig, and
TOURN .I 0/ is an index selected from I 0 through tournament selection [72]. The
latter procedure includes the random selection of two particles from the set I 0. The
best between them, i.e., the one with smallest objective value, is the winner and
participates in the update of vij .

In case of qŒi;j 	 D i , for all j 2 D, one of the components of vij is randomly
selected and determined anew by using another particle. Also, the indices qŒi;j 	 are
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updated for each particle after a number of non-improving iterations. CLPSO has
been extensively studied in [72], while a number of improvements, modifications,
and applications in various fields have been proposed in relevant literature [40, 43,
154, 161].

TRIBES

The TRIBES algorithm was proposed in 2006 [19] as a novel PSO variant with
self-adaptation capability. It is based on a special communication scheme between
neighborhoods and admits the update rules of any PSO variant. In TRIBES, the
i -th particle is called informant of the j -th particle if it shares its best position
for the update of the latter. Accordingly, a tribe can be defined as a subset of the
swarm, where each one of its members is informant of all the rest in the same tribe.
Obviously, the swarm is the union set of all tribes.

Each tribe must have at least one communication channel with another tribe.
In other words, between two particles there shall be at least one path in the
neighborhood’s graph that connects them [19]. Also, the algorithm is self-adaptive,
i.e., existing tribes can be deleted and new tribes can be generated. Hence, the
communication channels between tribes also change dynamically. The goodness
criterion for the tribes is related to the performance of their members-particles,
which are characterized as neutral if they have not improved their best position
in the last iteration, good if improvement was achieved in the last iteration, and
excellent if improvement was achieved for more than one consecutive iterations.
Accordingly, a tribe TR that contains sTR particles is characterized as follows,

TR is

(
good; if N good

TR > R;
bad; otherwise;

where N good
TR is the number of good particles in tribe TR, and R is a randomly

selected integer in f0; 1; : : : ; sTRg. Moreover, additional rules are applied for the
generation/deletion of particles and tribes as follows:

1. The worst particle of the best tribe can be eliminated, inheriting its communica-
tion channels to the best particle of its tribe.

2. If a tribe consists of only one particle, it is eliminated if it has an informant with
better performance.

3. Each tribe that was characterized as “bad” generates two new particles. The
first one is randomly generated within the whole search space. The second one
is uniformly generated in the sphere with center the best position of the best
informant of the tribe’s best particle, and radius equal to the distance between
the latter and the sphere’s center.

Adaptations were recommended to occur after a number of iterations so that
the algorithm can deploy its dynamic [19]. Promising results were received with
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TRIBES under various settings [19]. Although TRIBES is a rather controversial
PSO variant, it has contributed toward the development of self-adaptation mecha-
nisms [25–27] and has been applied on interesting problems [30].

Niching PSO

Niching algorithms are applied on multimodal optimization problems where the
main goal is the identification of multiple global/local minima. In such problems,
the algorithms must be capable of identifying minima and retaining them until the
end of the search. Although transformation techniques such as the ones presented in
section “Performance-Enhancing Techniques” can be used in these cases, alternative
algorithmic models that do not use external procedures have been developed.

Two efficient Niching PSO approaches are the Speciation-based PSO
(SPSO) [94] and the Fitness Euclidean-distance Ratio PSO (FERPSO) [70]. In
SPSO, the swarm is divided into subswarms, which are considered as species
represented by the dominant (best) particle in the subswarm. A niche radius is
also specified to define the size of species. Special procedures are applied for
determining species and their seeds, while the global best particle is replaced by
the species best or species seed. Also, all particles in the same species use the same
neighborhood best at each iteration.

On the other hand, FERPSO is based on the lbest PSO model of Eqs. (4)
and (5) [70], where the neighborhood’s best pgi is taken as the particle that
maximizes the fitness Euclidean-distance ratio (FER), defined as,

FERi;k D
˛ .f .pi / � f .pk//
kpi � pkk

; k 2 I;

where the scaling factor ˛ is defined as,

˛ D

s
dP

lD1

�
xmax
l � xmin

l

	2

f
�
pg
	
� f .pw/

;

with pg and pw being the swarm’s best and worst particles, respectively [70]. The
effectiveness of both SPSO and FERPSO has led to further enhancements such as
the ones in [71, 118, 125].

Standard PSO

The Standard PSO (SPSO) was introduced in an attempt to define a baseline for
the development and assessment of new PSO variants. Although there have been
various versions (2006, 2007, and 2011), only the latest one, SPSO-2011 [20], is
considered here since it cures a number of deficiencies identified in the previous
versions.
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A characteristic feature of SPSO-2011 is the independence on the coordinate
system. Let,

P .t/
ij D x

.t/
ij C C1

�
p
.t/
ij � x

.t/
ij

�
; (41)

L.t/ij D x
.t/
ij C C2

�
p
.t/
gi j
� x

.t/
ij

�
; (42)

with j 2 D, define two points for the i -th particle that are a little “beyond” its own
best position and its neighborhood’s best position, respectively, at iteration t . Then,
the center of gravity between the two points and the particle’s current position is
defined as,

G.t/i D
1

3

�
x.t/i C P .t/

i C L.t/i
�
: (43)

A new point x0.t/i is randomly (not necessarily uniformly) generated in the hyper-

sphere H.t/
i with center G.t/i and radius equal to its distance from the actual x.t/i ,

i.e.,

x0.t/i 2 H.t/
i

�
G.t/i ;




G.t/i � x.t/i




�
: (44)

Then, the update equations of SPSO-2011 are given as follows [20],

v
.tC1/
ij D �v

.t/
ij C x

0.t/
ij � x

.t/
i ; (45)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (46)

where i 2 I and j 2 D. The rest of the algorithm follows the Canonical PSO
approach. The particles are bounded in the search space according to Eq. (19). The
algorithm’s parameters were studied in [162], while a thorough theoretical analysis
was provided in [13].

Memetic PSO

The term Memetic Algorithm [85] is used to describe hybrid algorithms that consist
of population-based metaheuristics with additional local search or learning mech-
anisms. Early Memetic PSO (MPSO) schemes appeared in 2005 [74], hybridizing
PSO with the Solis and Wets local search approach. Later, different schemes were
proposed using alternative local search algorithms, such as the Random Walk with
Direction Exploitation and the Hooke and Jeeves method [108,109]. Recently, PSO
was integrated with gradient-based optimization as well as direct search approaches
in MEMPSODE, an efficient general-purpose software package [149]. Further
enhancements and applications can be found in [5, 44, 150].



34 K.E. Parsopoulos

Besides the choice of an appropriate local search algorithm, which is mostly
a problem-dependent decision, additional resolutions shall be made prior to the
application of MPSO [106]:

1. When to apply local search?
2. Where to apply local search?
3. What computational budget shall be devoted to local search?

A straightforward choice is the application of local search on the best positions (if
updated) and/or the current positions of the particles at each iteration, until a local
minimum is found. Naturally, this approach would require excessive computational
resources that are hardly available in practice.

For this reason, the following schemes were proposed in [108] after empirical
evaluations on established test problems:

(S1) Application of local search on the overall best position pg , whenever it
changes.

(S2) For each best position pi , i 2 I , local search is applied with a predefined
probability 
.

(S3) Local search is applied both on pg and some randomly selected best positions
pi , i 2 I .

(S4) Local search is applied on pg as well as on the best positions pi that lie in
adequate distance from pg, e.g., kpg � pik > ", where " > 0 is a predefined
distance usually defined as a fraction of the search space diameter.

In addition, the Shannon information entropy, used as a measure of the swarm’s
information diversity, was employed in [107] along with the above schemes in order
to make swarm-level decisions on the application of local search. Further details
and extensive results are given in [106], where it is shown that MPSO outperforms
the Canonical PSO (as expected) but also its gbest model can outperform the lbest
model of Canonical PSO. The latter result suggests that local search applied as
above can be beneficial both for PSO’s intensification and diversification properties.

Opposition-Based PSO

The opposition-based algorithms are grounded on the concept of opposite
point [120]. If x D .x1; : : : ; xd /

> is a point in the search space X defined
as in Eq. (2), then its opposite is defined as a point x0 D .x01; : : : ; x

0
d /
> with

x0j D xmin
j C xmax

j � xj , for all j 2 D. Evaluating both points simultaneously and
keeping the best one can accelerate the optimization procedure according to the
study in [120].

This scheme was recently adopted in the framework of PSO, producing the
Generalized Opposition-based PSO (GOPSO) [151]. In GOPSO, there are two
swarms, S and S 0, comprising the particles and their opposites, respectively. The
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initial positions x.0/i , i 2 I , of S are randomly initialized, while for S 0 the initial

positions x0.0/i are obtained as follows [151],

x0
.0/
ij D R

�
˛
.0/
j C ˇ

.0/
j

�
� xij ; (47)

where i 2 I , j 2 D, R � U.0; 1/, and ˛.0/j D xmin
j , ˇ.0/j D xmax

j . Subsequently,
both swarms are evaluated and merged. The N best particles are then selected to
form the initial swarm.

At each iteration, a probabilistic decision is taken. The algorithm, with a
user-defined probability 
, either chooses to update the boundaries ˛.t/j , ˇ.t/j , as
follows [151],

˛
.t/
j D min

i

n
x
.t/
ij

o
; ˇ

.t/
j D max

i

n
x
.t/
ij

o
; (48)

or applies the update equations of the Canonical PSO defined in Eqs. (4) and (5). The
procedure continues with the best positions update of Eq. (7). The new overall best
undergoes also mutation, where its components are perturbed with random numbers
following a Cauchy distribution [151].

Experimental results have shown that GOPSO can be competitive to other
PSO variants [151]. A number of different opposition-based approaches have been
proposed in various application fields [28, 55, 77, 168].

PSO in Noisy Environments

Noisy problems arise very often in engineering applications. The use of mea-
surement instruments or approximations based on inaccurate mathematical models
impose uncertainty on the objective function values. Thus, noise-tolerance is a
desirable property for metaheuristic optimization algorithms such as PSO. In [97]
the gbest PSO model was studied on a number of test problems contaminated by
Gaussian noise, exhibiting promising behavior. Various other studies followed in
subsequent years [8, 91, 119].

A common technique for tackling noisy problems is the re-evaluation of the
objective function at each point. Specifically, if the objective function is given as,

f 0.x/ D f .x/CR;

where R is a random variable following a (usually Gaussian) distribution, then PSO
evaluates the particles by using,

F .x/ D
1

M

MX

mD1

f 0
.m/
.x/;
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where f 0.m/.x/ is the m-th re-evaluation of x using f 0.x/. Re-evaluation serves
as a mean for approximating the expected value of the noisy objective function,
i.e., F .x/ � E.f 0.x//. Accuracy increases with the number M of re-evaluations,
although it also increases the computational cost.

Thus, the trade-off between better estimations of the objective values and the
corresponding computational burden shall be tuned. In such cases, specialized
techniques such as the Optimal Computing Budget Allocation (OCBA) [16] have
been used to optimally allocate the re-evaluations budget in order to provide reliable
evaluation and identification of the promising particles [91]. These techniques can
be used along with proper parameter tuning [8] or learning strategies [110] for
improved results. Also, they do not require the modification of the algorithm. Alter-
natively, specialized operators have been proposed with remarkable success [47].

Multiobjective PSO

Multiobjective optimization (MO) problems consist of a number of objective
functions that need to be simultaneously optimized. In contrast to the definition of
single-objective problems in Eq. (1), an MO problem is defined as the minimization
of a vector function [24],

f.x/ D .f1.x/; f2.x/; : : : ; fK.x//
> ;

possibly subject to constraints Ci.x/ 6 0, i D 1; 2; : : : ; m. Typically, the objective
functions fk.x/ can be conflicting. Thus, it is highly improbable that a single
solution that globally minimizes all of them can be found.

For this reason, the main interest in such problems is concentrated on the
detection of Pareto optimal solutions. These solutions are nondominated by any
other point in the search space, i.e., they are at least as good as any other point for
all the objectives fk.x/. Formally, if x, y, are two points in the search space X , then
f.x/ is said to dominate f.y/, and we denote f.x/ 	 f.y/, if it holds that,

fk.x/ 6 fk.y/; for all k D 1; 2; : : : ; K;

and,

fk0.x/ < fk0.y/; for at least one k0 2 f1; 2; : : : ; Kg:

Thus, x� 2 X is a Pareto optimal point if there is no other point y 2 X such
that f.y/ 	 f.x�/. Obviously, an (even infinite) set fx�1 ; x

�
2 ; : : :g of Pareto optimal

solutions may exist. The set ff.x�1 /; f.x
�
2 /; : : :g is called the Pareto front.

There are two main approaches for tackling MO problems. The first one
aggregates the objectives into a single one and solves the problem with the typical
methodologies for single-objective optimization. The second approach requires
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vector evaluated operators and it is based on the concept of Pareto dominance. In
the context of PSO, early aggregation approaches appeared in 2002 [99], where the
Canonical PSO was used for the minimization of a weighted aggregation of the
objective functions,

F .x/ D
KX

kD1

wk fk.x/;
KX

kD1

wk D 1:

Both a conventional weighted aggregation (CWA) approach with fixed weights as
well as a dynamic weighted aggregation (DWA) approach [53] were investigated
with promising results. Obviously, the detection of many Pareto optimal solutions
through weighted aggregation requires multiple applications of PSO, since each run
provides a single solution of F .x/. From the computational point of view, this is a
drawback since the swarms can simultaneously evolve many solutions. Yet, it is still
a popular approach in applications mostly due to its simplicity.

A Vector Evaluated PSO (VEPSO) was also proposed in [99] and parallelized
later in [96]. VEPSO uses a number of K swarms, one for each objective fk .
The k-th swarm Sk is evaluated only with the corresponding objective fk , k D
1; 2; : : : ; K. The swarms are updated according to the gbest model of the Canonical
PSO, although with a slight modification. Specifically, the overall best that is used
for the velocity update of the particles in the k-th swarm comes from another
swarm. Clearly, this is a migration scheme aiming at transferring information among
swarms. The donator swarm can be either a neighbor of the k-th swarm in a ring
topology scheme as the one described in section “Concept of Neighborhood” or it
can be randomly selected [99]. VEPSO was studied on standard MO benchmark
problems with promising results [96].

There is a large number of new developments and applications on multiobjective
PSO approaches in literature [1, 2, 27, 29, 32, 51, 75, 156, 160, 169]. The interested
reader can find comprehensive surveys in [105, 121].

Applications

It would be futile to even try to enumerate all applications of PSO that have
been published so far. From 2005 and on, more than 400 papers with PSO’s
applications appear every year, spanning various scientific and technological fields.
Electrical Engineering concentrates the majority of these works, especially in
the fields of power systems, control, antenna design, electromagnetics, sensors,
networks and communications. Artificial Intelligence also hosts a large number of
PSO-based applications, especially in robotics, machine learning, and data mining.
Bioinformatics and Operations Research follow closely, with numerous works in
modeling, health-care systems, scheduling, routing, supply chain management, and
forecasting.
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A number of applications is cited in the previous sections. In addition, the
interested reader can refer to devoted survey papers such as [112], which was
probably the first notable attempt to collect and categorize PSO’s applications.
An analytical survey was published in [127], where a huge number of PSO-based
applications was categorized along with more than 100 PSO variants. Further
applications are reported in relevant books such as [106]. The Appendix at the end
of the present work contains a number of sources for further inquiry on PSO-based
developments.

Conclusions

PSO has been established as one of the most popular metaheuristic optimization
algorithms. Its popularity emanates from its nice performance and adequate simplic-
ity that renders it usable even by non-expert researchers. In the previous sections, a
number of variants and improvements were presented. This is only a small fraction
of the existing PSO-related literature, which counts thousands of papers. Thus, a
reasonable question can be put regarding the room left for further developments on
PSO. In the author’s opinion, the answer is: a lot.

Despite the numerous research contributions, there are still many issues that need
improvement to achieve the main goal of intelligent behavior and self-adaptation.
Moreover, the evolution of computer and web technologies always introduces
new challenges on the design and development of algorithms that can take full
advantage of their properties to solve problems of increasing complexity. For
example, the GPU computing paradigm and modern multicore desktop systems can
offer computational power comparable to small- and medium-size clusters. Cloud
computing and ubuquitous computing environments are other examples. Also, new
ad hoc operators and procedures for specific problems are expected to boost PSO’s
performance.

Closing this chapter, the author would like to quote Albert Einstein’s words
to motivate new researchers toward unconventional thinking, which was the main
ingredient for the development of PSO so far:

You will never solve problems using the same thinking you created them with.

Cross-References

�Adaptive and Multilevel Metaheuristics
�Ant Systems
�Automatic Tuning of Parameters
�General Concepts of Metaheuristics
�Hyper Heuristics
�Memetic Algorithms
�Multiobjective Optimization

http://link.springer.com/Adaptive and Multilevel Metaheuristics
http://link.springer.com/Ant Systems
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http://link.springer.com/General Concepts of Metaheuristics
http://link.springer.com/Hyper Heuristics
http://link.springer.com/Memetic Algorithms
http://link.springer.com/Multiobjective Optimization
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�Multi Start Methods
� Parallel Search
� Statistical Tests to Compare Heuristics

Appendix

A number of sources for further inquiry and experimentation with PSO is reported
below.
Books
[19, 34, 62–64, 86, 93, 106, 134]
Survey papers
[4, 6, 7, 35, 112, 114, 122, 123, 127, 141]
Webpages
Particle Swarm Central
http://www.particleswarm.info/

M. Clerc’s PSO page
http://clerc.maurice.free.fr/pso/

Software
PSO in C (code published in [149])
http://www.cpc.cs.qub.ac.uk/summaries/AELM_v1_0.html

PSO in Matlab
http://www.mathworks.com/matlabcentral/fileexchange/7506

http://psotoolbox.sourceforge.net/

PSO in Java
http://jswarm-pso.sourceforge.net/

http://gundog.lbl.gov/GO/jdoc/genopt/algorithm/PSOCC.html
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