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Abstract. A regression mixture model is proposed where each mixture component is
a multi-kernel version of the Relevance Vector Machine (RVM). This mixture model
exploits the enhanced modeling capability of RVMs, due to their embedded sparsity
enforcing properties. In order to deal with the selection problem of kernel parameters,
a weighted multi-kernel scheme is employed, where the weights are estimated during
training. The mixture model is trained using the maximum a posteriori (MAP) ap-
proach, where the Expectation Maximization (EM) algorithm is applied offering closed
form update equations for the model parameters. Moreover, an incremental learning
methodology is also presented that tackles the parameter initialization problem of the
EM algorithm along with a BIC-based model selection methodology to estimate the
proper number of mixture components. We provide comparative experimental results
using various artificial and real benchmark datasets that empirically illustrate the effi-
ciency of the proposed mixture model.
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1. Introduction

Mixture model constitutes a flexible and well established approach in the case of
data sets containing data objects that have been generated from heterogeneous
sources (McLachlan and Peel, 2000; Bishop, 2006). Among many advantages they
offer, mixture models provide a nice framework for cluster analysis by assigning
objects to mixture components (or clusters) while simultaneously estimating
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the model parameters. Regression mixture models are a special type of mixture
models where the components correspond to regression functions and they have
mainly employed to model sequential data.

Many problems of scientific interest can be formulated as sequential data
modeling problems. Such type of data can be encountered in a number of diverse
applications, ranging from gene clustering in bioinformatics to clustering of cy-
clone or trucks trajectories (DeSarbo and Cron, 1988), (Chudova, Gaffney, Mjol-
sness and Smyth, 2003), (Blekas, Nikou, Galatsanos and Tsekos, 2008), (Pelekis,
Kopanakis, Kotsifakos, Frentzos and Theodoridis, 2011) and recently to video
surveillance problems (Alon, Sclaroff, Kollios and Pavlovic, 2003), (Williams,
Blake and Cipolla, 2005), (Antonini and Thiran, 2006) and motion recognition
(Williams, Toussaint and Storkey, 2008).

A natural framework for modeling sequential data is through regression mix-
ture models, also known as latent class regression analysis (McLachlan and
Peel, 2000; Bishop, 2006). A regression mixture model allows for simultaneously
modeling heterogeneous regression functions by training a mixture of distinct
distributions, each corresponding to a latent class. Objects within each latent
class share the same regression function. Through the literature there are differ-
ent types of regression mixture models that have been used for sequential data
modeling (Liao, 2005). Among them, Hidden Markov Models (Smyth, 1997),
polynomial and spline regression models (Gaffney and Smyth, 2003; Chudova
et al., 2003; Blekas et al., 2008), mixtures of ARMA models (Xiong and Ye-
ung, 2002) and mixtures of Gaussian processes (Shi and Wang, 2008) are com-
monly used models. These methods are suffering from the drawback of not auto-
matically addressing the problem of model order selection, which is very impor-
tant in regression. If the order of the regressor model is too large, it overfits the
observations and does not generalize well. On the other hand if it is too small,
it might miss trends in the data.

Sparse Bayesian regression offers a solution to the model selection problem,
see for example (Tipping, 2001), (Zhong, 2006), (Schmolck and Everson, 2007)
and (Seeger, 2008), by introducing sparse priors on the model parameters. En-
forcing sparsity is a fundamental machine learning regularization principle and
has been successfully used to tackle several problems, such as feature selection.
The key idea behind sparse Bayesian regression is that we can use Bayesian in-
ference to obtain sparse models with high generalization by initially employing
models with many degrees of freedom on which a heavy tail prior is imposed.
During training, the coefficients that are not significant are zeroed out due to the
prior, thus only a few coefficients are retained in the model which are considered
significant for the particular training data.

In this paper we propose a regression mixture model where each component
corresponds to an extension of the typical RVM model (Tipping, 2001) assuming
a weighted multikernel function, ie. each RVM kernel is a weighted combination of
basic kernels and the combination weights are estimated during training (Gonen
and Alpaydin, 2011). We call this extension Multi-kernel RVM (MKRVM). In
the RVM model the marginal distribution of the observations given the hyper-
parameters is a Gaussian distribution (see Eq. 10). Therefore, the regression
mixture is converted into a typical mixture model of Gaussians with zero mean
and full covariances. A significant problem in regression is how to define the
scalar parameter of the kernel design matrix. In this study we have faced this
issue by considering a multi-kernel scheme where we assume that each mixture
component has a unique kernel matrix calculated as a linear combination of a
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(common) set of matrices with known kernel parameter values. These vectors of
coefficients are part of the mixture model parameters which must be estimated.
Then, a maximum a posteriori expectation maximization algorithm (MAP-EM)
(Dempster, Laird and Rubin, 1977), (McLachlan and Peel, 2000) is applied to
learn this mixture of multi-kernel RVMs model and fit the input data. This leads
to update rules of all model parameters in closed form during the M -step and
improves data fitting. In the case of the multi-kernel scheme coefficients this leads
to a convex quadratic programming problem with constraints. Another contri-
bution of the present work is an incremental scheme for training the mixture of
multi-kernel RVMs model that is based on an appropriate repeated splitting pro-
cess. This makes the learning process independent of the initialization of model
parameters and leads to near-optimal solutions. We also estimate the number of
components of the mixture model, and therefore the number of clusters, using
the Bayesian information criterion (BIC) (Fraley and Raftery, 1998).

The general learning framework where the proposed regression mixture model
can be employed is to model and cluster a set of functions, ie. each object
in the training set is a function represented as by a set of (input, output)
pairs. More specifically, suppose we are given a set of N samples (data ob-
jects) Y = {y1, . . . ,yN}, where each sample yn consists of L input-target pairs:
yn = {xn, tn} = {(xni, tni)}Li=1. tni is the target attribute to be analyzed, while
the input xni can have different formats. An important special case of the above
general framework, is time-series clustering, where the inputs may be either
the time instances or d-dimensional vectors containing d past target values, i.e.
xni = (tn,i−d, tn,i−d+1, . . . , tn,i−1). Another special case is trajectory clustering
where the inputs xni usually correspond to space coordinates.

We first evaluated the performance of the proposed methodology on the gen-
eral task of clustering a set of functions using synthetically created data. Then
we tested our method on time-series clustering performance using a variety of
artificial and real data sets. Comparative results demonstrate improvements over
previous methods such as the polynomial regression mixture model and the mix-
ture of autoregressive models. Since the ground truth is already known for all
datasets, we have used the percentage of correct classification (purity) and the
normalized mutual information (NMI) quantities for evaluating the performance
of each method. In the case of artificial data, we have computed as a performance
metric the error in estimating the original functions that have generated each
cluster. Finally, we have experimentally studied the performance of the proposed
mixture model on a real problem of clustering trajectories.

As experiments indicate, our method offers both flexibility and robustness
and obtains superior modeling solutions. Its modeling power is mainly due to
the use of multi-kernel RVM as a mixture component. Multi-kernel RVM is
a powerful regressor, that exhibits the notable robustness capability of typical
RVM that is due to Bayesian regularization. In addition, it effectively tackles the
main drawback of typical RVM which is its sensitivity to the choice of the kernel
parameters. Although the proposed mixture model is rather complex, the use
of Bayesian priors and constraints on the model parameters, guide the learning
process to avoid overfitting in regression modeling and provide robust regression
components. Since the learning process is non-convex and depends on parameter
initialization, the proposed incremental training approach also contributes to the
quality of the clustering solution. Finally in the case where we are interested in
estimating the true number of clusters, we provide empirical evidence that the
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simple BIC criterion could provide good estimations in cases where the clusters
are well-separated.

In section 2 we describe the multi-kernel relevance vector machine which is the
building block in our approach. The proposed sparse regression mixture model
is then presented in section 3, along with the EM algorithm used for parameter
estimation and the incremental learning procedure. To assess the performance
of the proposed methodology we present in section 4 numerical experiments
with artificial and real benchmark data sets. Finally, in section 5 we provide
conclusions and suggestions for future research

2. The Multi-Kernel Relevance Vector Machine

In this section we present the multi-kernel Relevance Vector Machine that can
be applied to model a sample (data object) yn consisting of L input-target pairs:
yn = {xn, tn} = {(xni, tni)}

L
i=1. tni is the target attribute to be analyzed, while

the input xni can have different formats.
We consider that the real target values tni correspond to noisy measurements

of the output of a parametric model f with input vector xni, i.e.

tni = f(xni; θ) + ǫni , (1)

where ǫni refers to noise and θ denotes the model parameters which must be
estimated using a training set. Moreover, for the conditional density of each
sample yn we can write

p(yn = {xn, tn}|θ) = p(tn|xn, θ)p(xn) ∝ p(tn|xn, θ) (2)

Typically, we can model tn by assuming an M -order linear regression model on
the L input vectors with an additive noise term given by

tn = Φnw + ǫn , (3)

where w = (w1, . . . , wM )T is the vector with the unknown regression coefficients,
and Φn is the design matrix of size L ×M . In the above model, the error term
ǫn is a L-dimensional vector that is assumed to be zero mean Gaussian with a
spherical covariance, ǫn ∼ N (0, σ2I), i.e. errors are not correlated.

For constructing the design matrix Φ we can employ several approaches. A
simple approach is to use the Vandermonde or B-splines matrix, in cases where we
assume polynomial or splines regression models, respectively (Harrell, 2001). An-
other option is to consider a kernel design matrix of size L×L, consisting of L ba-
sis functions, Φn = [φ(xn1), . . . , φ(xnL)] where φ(xni) is a vector of L kernel val-
ues among xni and all other inputs, i.e. φ(xni) = (K(xni,xn1), . . . ,K(xni,xnL)).
This is achieved by appropriately selecting a kernel function, with the RBF kernel
function to be the most commonly used:

K(xni,xnk) = exp(−
‖xni − xik‖2

2λ
) . (4)

The scalar parameter λ plays a significant role to the quality of the fitting pro-
cedure. Its selection depends on the amount of local variations of input data
sequences.

In our case we consider a multi-kernel scheme by using a discrete set of S
RBF kernel functions Ks, each one having its own scalar parameter value λs. In
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particular, we assume that the composite kernel matrix Φn can be written as a
linear combination of S kernel matrices Fns:

Φn =

S
∑

s=1

usFns , (5)

where the coefficients us satisfy the constraints us ≥ 0 and
∑S

s=1 us = 1. These
parameters should be estimated during learning in order to construct the compos-
ite kernel matrix, as it will be shown later. It must be noted that the multi-kernel
idea has been successfully used in several machine learning models (Gunn and
Kandola, 2002; Girolami and Rogers, 2005; Hu, Chen and Kwok, 2009; Gonen
and Alpaydin, 2011), that assume a weighted linear sum of kernel and estimate
the kernel weights during training. However, to the best of our knowledge this is
the first time that a multi-kernel version of RVM with adaptive kernel weights
is proposed.

Using Equation 3, it is obvious that given the set of regression parameters
{w, σ2,u}, we can model the conditional probability density of the target tn
with the normal distribution, i.e.

p(tn|w, σ2,u) = N (tn|Φnw, σ2I) . (6)

An important issue, when using a regression model is how to define its order M ,
since models of small order may lead to underfitting, while large values of M
may lead to overfitting. One approach to tackle this problem is the Bayesian reg-
ularization method that has been successfully employed in the Relevance Vector
Machine (RVM) model (Tipping, 2001). This technique initially assumes a large
value of the order M (M = L) and imposes a heavy tailed prior distribution
p(w) on the regression model parameters wi, to zero out most of them after
training.

More specifically, the prior is defined in a hierarchical way by considering a
zero-mean Gaussian distribution over w = (w1, . . . , wL):

p(w|α) = N (w|0, A−1) =

L
∏

i=1

N (wi|0, α
−1
i ) (7)

where A is a diagonal matrix containing L elements of the hyperparameter vector
α = [α1 . . . αL]. In addition, a Gamma prior is imposed on each hyperparameter
αi:

p(α) =

L
∏

i=1

Gamma(αi|a, b) ∝
L
∏

i=1

αa−1
i e−bαi . (8)

Also we can assume a Gamma hyperprior over the noise parameter σ2:

p(σ−2) = Gamma(σ−2|c, d) ∝ σ−2(c−1)e−dσ−2

. (9)

All Gamma parameters {a, b, c, d} are a priori set to zero values to achieve un-
informative priors.

The above two-stage hierarchical prior on αi is actually a Student-t distribu-
tion and is called sparse (Tipping, 2001), since it enforces most of the values αi to
be large, thus the corresponding coefficients wi are forced to zero and eliminated
from the model. In this way the complexity of the regression model is controlled
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in an automatic and elegant way and overfitting is avoided. By integrating out
the contribution of weights w from Equation 6, we can obtain the marginal dis-
tribution of target tn given the model parameters θ = {α, σ2,u}, as a zero mean
Normal distribution:

p(tn|θ) =

∫

p(tn|w, σ2,u)p(w|α)dw = N (0, Cn) , (10)

where the covariance matrix has the form:

Cn = ΦnA
−1ΦT

n + σ2I . (11)

Furthermore, we can obtain the posterior distribution over the weights w, which
is also Gaussian, as:

p(w|tn, θ) = N (w|µn,Σn) , (12)

with mean and covariance given by

µn = σ−2ΣnΦ
T
n tn , Σn = (σ−2ΦT

nΦn +A)−1 . (13)

Thus, the Φnµn denotes the final model-based estimation for sample yn.
Learning the linear weights u of the multi-kernel scheme can be done using

the fact that

Φnµn =

S
∑

s=1

usFnsµn = Fnu ,

where Fn = [Fn1µn Fn2µn · · · FnSµn], and by solving the following minimiza-
tion problem:

min
u

1

2
‖tn −Fnu‖

2 s.t.

S
∑

s=1

us = 1 and us ≥ 0 . (14)

More comprehensively, we can rewrite the above objective function as follows:

min
u

{1

2
uTZnu+ uTqn

}

, s.t.

S
∑

s=1

us = 1 ,us ≥ 0 , (15)

where Zn = FT
n Fn and qn = −FT

n tn. This is a typical convex quadratic pro-
gramming problem with both equality and inequality constraints that can be
solved by active-set methods that use Lagrange multipliers leading to closed
form analytical expressions (Nocedal and Wright, 1999).

3. The mixture of MKRVMs model

Suppose we are given a set ofN samples (data objects) Y = {y1, . . . ,yN}, where
each sample yn consists of L input-target pairs: yn = {xn, tn} = {(xni, tni)}

L
i=1.

In the mixture of MKRVMs model there are K multi-kernel RVM components
with parameters θj = {αj , σ

2
j ,uj}, j = 1, . . . ,K. According to Eq. 10, each

component defines a zero mean Normal distribution:

p(tn|θj) = N (tn|0, Cnj) , (16)
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with

Cnj = ΦnjA
−1
j ΦT

nj + σ2
j I and Φnj =

S
∑

s=1

ujsFns . (17)

Moreover, Aj in Eq. 17 is a diagonal matrix containing the elements of hyperpa-
rameter vector αj , i.e. Aj = diag{αj1, . . . , αjL}. The MK-RVM mixture model
is described by the following probability density function:

f(tn|Θ) =

K
∑

j=1

πjp(tn|θj) =
K
∑

j=1

πjN (tn|0, Cnj) . (18)

Let Θ denote the set of all mixture model parameters, i.e. Θ = {πj , θj}Kj=1. The

mixing weights πj satisfy the constraints:
∑K

j=1 πj = 1 and πj ≥ 0. The same

happens with the coefficients uj of the multi-kernel scheme, i.e.
∑S

s=1 ujs = 1 and
ujs ≥ 0. The parameters {αj , σ

2
j } are constrained by Gamma prior distributions:

p(αj) =

L
∏

i=1

Gamma(αji|aj, bj) ∝
L
∏

i=1

α
aj−1
ji e−bjαji , (19)

p(σ−2
j ) = Gamma(σ−2

j |cj , dj) ∝ σ
−2(cj−1)
j e−djσ

−2

j , (20)

where all Gamma parameters {aj , bj, cj , dj}, are set to zero (uninformative pri-
ors).

To train the mixture of MKRVMs model we define the maximum a posteriori
(MAP) log-likelihood function:

LMAP = log p(Y |Θ) + log p(Θ) =

=

N
∑

n=1

log{
K
∑

j=1

πjN (tn|0, Cnj)} +
K
∑

j=1

{log p(αj) + log p(σ−2
j )} , (21)

and use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977)
for likelihood maximization. EM performs iteratively two steps: The E-step,
where the current posterior probabilities are calculated of any sample yn =
{xn, tn} to belong to any cluster j:

znj = P (j|yn,Θ) =
πjN (tn|0, Cnj)

∑K

j′=1 πj′N (tn|0, Cnj′ )
. (22)

During the M -step the maximization of the expected value of the complete log-
likelihood (Q-function) is performed with respect to Θ. In our case the Q-function
is:

Q(Θ) =

N
∑

n=1

K
∑

j=1

znj{log πj −
1

2
log |Cnj | −

1

2
tTn (Cnj)

−1tn}+

+

K
∑

j=1

{
L
∑

i=1

{aj log(αji)− bjαji}+ cj log(σ
−2
j )− djσ

−2
j } , (23)

where the quantities znj have been computed by Eq. 22.
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Setting the partial derivatives equal to zeros, the following update rules for
the mixture parameters are obtained:

π̂j =

N
∑

n=1

znj

N
, (24)

α̂ji =

N
∑

n=1

znj + 2aj

N
∑

n=1

znjµ
2
nji +

N
∑

n=1

znj(Σnj)ii + 2bj

, (25)

σ̂2
j =

N
∑

n=1

znj‖tn − Φnjµnj‖
2 + 2dj

N
∑

n=1

znj(L−
∑T

i=1 γnji) + 2cj

. (26)

In the above rules we have used the following expressions (Tipping, 2001):

log |ΦnjA
−1
j ΦT

nj + σ2
j I| = − log |Σnj |+ log σ2

j − log |Aj |, (27)

tTn (ΦnjA
−1
j ΦT

nj + σ2
j I)

−1tn =
1

σ2
j

tTn (tn − Φnjµnj)

=
1

σ2
j

‖tn − Φnjµnj‖
2 + µT

njAjµnj , (28)

where

µnj = σ−2
j ΣnjΦ

T
njtn , (29)

Σnj = (σ−2
j ΦT

njΦnj +Aj)
−1 . (30)

Note also that in the above equations (Eqs. 25, 26) the (Σnj)ii indicates the i-th
diagonal element of the j-th RVM posterior weight covariance matrix Σnj , while
µnji is the i-th element of the posterior mean vector µnj . Also, the quantities
{γnji} are defined as γnji = 1− αji(Σnj)ii.

As in the case of a single multi-kernel RVM model (see Eq. 14), the linear
weights uj = (uj1, . . . , ujS) of the multi-kernel scheme can be estimated by
solving the following minimization problem per component j:

min
uj

1

2

N
∑

n=1

znj‖tn − Φnjµnj‖
2 = min

uj

1

2

N
∑

n=1

znj‖tn −
S
∑

s=1

ujsFnsµnj‖
2 =

min
uj

1

2

N
∑

n=1

znj‖tn −Fnjuj‖
2 s.t.

S
∑

s=1

ujs = 1 and ujs ≥ 0 , (31)

where we have considered only the part of the Q-function (Eq. 23) that involves
uj . It must be noted here that we assume the posterior mean vector µnj and the
covariance matrix Σnj as constants. Also, the matrix Fnj in the above rule has
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S columns calculated by Fjsµnj , i.e. Fnj = [Fn1µnj Fn2µnj · · · FnSµnj ]. We
can further write the minimization problem in a more convenient way (similar
to Eq. 15):

min
uj

{1

2
uT
j Zjuj + uT

j qj

}

, s.t.
S
∑

s=1

ujs = 1 ,ujs ≥ 0 , (32)

where Zj =
∑N

n=1 znjF
T
njFnj and qj = −

∑N

n=1 znjF
T
njtn. This is a typical

convex quadratic programming problem with both equality and inequality con-
straints (Nocedal and Wright, 1999).

After EM convergence, the assignment of each sample yn to the K MKRVM
components can be made using the maximum value of the posterior probabilities
znj (Eq. 22). The MKRVM function can be also obtained for each component j
as follows:

wj = (σ−2
j

N
∑

n=1

znjΦ
T
njΦnj +Aj)

−1σ−2
j

N
∑

i=1

znjΦ
T
njtn . (33)

The algorithmic complexity of the proposed methodology depends on the
computational cost of the E-step and M-step during the EM learning. The com-
plexity is dominated by the inversion cost O(NKL3) of the NK covariance
matrices Cnj (Eq. 17) each of them being an L× L matrix.

3.1. Incremental mixture learning

An important concern when applying the EM algorithm, is its strong dependence
on the initialization of the model parameters. Improper initialization may lead
to poor local maxima of the log-likelihood, a fact that in turn may affect the
quality of the method’s estimation capability. A natural way for initialization is
to first make a random sampling through the training set Y to select K samples,
one for each component. Then, a single multi-kernel RVM is trained using the
corresponding selected sample in order to estimate the regression parameters
θj = {αj , σ

2
j ,uj} for each component j. The mixing parameters πj are initially

set to 1
K
. Finally, one iteration of the EM algorithm (one-step-EM) is executed to

further refine these parameters and to evaluate the MAP log-likelihood function
value LMAP (Eq. 21). Several such random trials (100 in our experiments) are
executed and the solution with the maximum log-likelihood value is selected for
initializing the model parameters.

In Gaussian mixture modeling, several methods have been proposed to over-
come the problem of poor initialization, which are mainly based on incremen-
tal construction of the mixture model(Li and Barron, 2000), (Ueda, Nakano,
Ghahramani and Hinton, 2000), (Vlassis and Likas, 2001). We have adopted
such a scheme to train our RVM mixture model and have developed a learn-
ing methodology that sequentially adds a new RVM component to the mixture
based on a component splitting procedure. Initially, we start with a mixture model
with one MKRVM component. This is done by executing the single multi-kernel
RVM learning process to estimate the initial regression parameters {α1, σ

2
1 ,u1}

following the updated rules given in previous section, where we put j = 1 and
znj = 1.

Now assume that we have already computed a mixture fk with k MKRVM
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components (k < K):

fk(tn|Θk) =

k
∑

j=1

πjp(tn|θj) . (34)

Also, we denote as:

f−j
k (tn|Θ

−j
k ) = fk(tn|Θk)− πjp(tn|θj) , (35)

the model containing the k − 1 components of the k-order mixture model fk,
after eliminating the contribution of the j-th component. In order to add a new
component, at first an existing component j∗ is selected for splitting based on
the current maximum mixing prior probability value, i.e. j∗ = argmaxj{πj}.
A new regression component is then added, labeled (k + 1), with weight πk+1

(πk+1 < πj∗). Thus, the new mixture density function fk+1 with k+1 components
is now given as:

fk+1(tn|Θk+1) = f−j∗

k (tn|Θ
−j∗

k ) + πj∗
newp(tn|θj∗) + πk+1p(tn|θk+1) . (36)

The mixing weights of both the new inserted (k + 1) and the splitted (j∗) com-

ponent are initialized as πk+1 = πj∗
new =

πj∗
old

2 . For initializing the RVM

parameters θk+1 = {αk+1, σ
2
k+1,uk+1} we apply the following strategy: First,

we find the samples yn that currently belong to the cluster j∗. We then select a
small percentage of those samples (e.g. 20% in our experiments) that have the
lowest probability (outliers), after sorting them in terms of their density values
p(tn|θj∗) = N (tn|0, Cj∗). Next we execute the training procedure of a single
multi-kernel RVM component to this this set of samples, in order to obtain an
initial estimation of the MKRVM parameters θk+1 = {αk+1, σ

2
k+1,uk+1}. After

the above initialization, the EM algorithm is used to estimate the parameters
Θk+1 of the new mixture model fk+1 with k + 1 RVM components.

The splitting procedure proceeds in this incremental fashion, adding one
MKRVM component at a time, until we receive a mixture model with the de-
sired number (K) of the MKRVM components. This approach is summarized in
Algorithm 1. An obvious advantage of the incremental learning scheme is that of
simultaneously offering solutions for the intermediate models with k = 1, . . . ,K
components. This can be seen very convenient for introducing model order se-
lection criteria and terminating the evolution of learning: stop training when the
insertion of a new component does not offer any significant improvement of the
(penalized) likelihood function.

3.2. Model order selection

The problem of selecting a statistical model of correct order is fundamental in
statistical learning. In mixture models this corresponds to the problem of choos-
ing the proper number of mixture componentsK. Among the various methods for
model order selection, in this study we have used the Bayesian information cri-
terion (BIC) (Schwarz, 1978) which provides an approximation of Bayes factors
and has been successfully applied in a number of applications, see for example
(Fraley and Raftery, 1998; Wasserman, 2000). If we recall that L(.) is the log-
likelihood function as defined in Eq. 21 and let Θk be the maximum likelihood
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Algorithm 1 Incremental learning of the mixture of MKRVMs model

Initially apply the single multiple-kernel RVM training procedure to the
dataset Y for estimating parameters θ1 = {a1, σ

2
1 ,u1}. Set Θ1 = {π1, θ1}

with π1 = 1.

1: while k < K do
2: Select a component for splitting: j∗ = argmaxkj=1{πj}.
3: Find samples that currently belong to component j∗, i.e. Y∗ = {yn : j∗ =

argmaxkj=1 znj}. Sort them in terms of their density values p(tn|θj∗).

4: Select a subset (e.g. 10%) Y out
∗

of Y∗ with the less probable samples (out-
liers).

5: Run single multiple-kernel RVM training over Y out
∗

for initializing new
component parameters θk+1 = {ak+1, σ

2
k+1,uk+1}.

6: Initialize mixing weights as πk+1 = πj∗
new =

πj∗
old

2 .
7: Apply the EM algorithm to the new mixture of MKRVMs fk+1(tn|Θk+1)

and obtain Θk+1.
8: k = k + 1.
9: end while

estimate of the k order model, then the BIC value is given by:

BIC = −2L(Θk) +G log(N) . (37)

The quantityG is the total number of model parameters, where in our case is G =
(k−1)+kT+k+k(S−1) = k(T+S+1)−1, since there are four kinds of parameters
{π,α,σ,u} and the constraints

∑

j πj = 1,
∑

s ujs = 1 ∀j = 1, . . . ,K. In
this way BIC includes a penalty term that depends on the number of model
parameters. This term penalizes complex models with many parameters and thus
counterbalances the negative log-likelihood term which decreases monotonically
with the number of parameters.

Finally, it must be noted that, as mentioned before, the proposed incremen-
tal scheme for building the mixture model of the MKRVM components is very
convenient, since it provides the parameters Θk and the log-likelihood L(Θk) of
all successive models [Θ1, . . . ,ΘK ] simultaneously. Thus, we execute the learning
procedure only once by setting a large value to the number of components K
and then we select the mixture with minimum BIC score.

4. Experimental Results

The proposed mixture model has been evaluated using a variety of artificial
datasets and real benchmarks. We have considered both the general case where
the samples yn consist of input-output pairs (xn, tn) (i.e. inputs are given), as
well as the tasks of time-series and trajectory clustering. In all experiments for
constructing the multi-kernel scheme for a dataset, we calculated first the total
variance of samples, λ. Next, we used a set of S = 10 RBF kernel functions,
where each one had a scalar parameter λs = ksλ, where ks = [0.1, 0.2, . . . , 1.0]
(level of percentage). Finally, the linear weights of the multi-kernel scheme were
in all cases initialized equally to ujs = 1/S.

In our study we have tested both the incremental and the typical (with
random initialization) regression mixture with MKRVM components, that will
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be referred next as iMMKRVM and MMKRVM, respectively. In the incremental
approach, the hyperparameters α are always initialized as αl = 1/L (step 5
of Algorithm 1) at every single MKRVM training. In the case of time-series
clustering we compared our method with two common regression mixture models
(see section 4.2): the polynomial regression mixture model (MPRM) and the
mixture of autoregressive (MAR) model.

To quantify the performance and measure the quality of the clustering results
obtained by each method, we have used three evaluation criteria:

– purity, which is the percentage of correctly classified samples after labeling
each cluster with the label of the class which is most frequent among the
sequences that belong to this cluster, and

– normalized mutual information (NMI), which is an information-theoretic mea-
sure based on the mutual information of the true labeling (Ω) and the cluster-
ing (C) normalized by their respective entropies:

NMI(Ω, C) =
I(Ω, C)

[H(Ω) +H(C)]/2
, (38)

where

I(Ω, C) =
∑

k

∑

j

P (ωk, cj) log
P (ωk, cj)

P (ωk)P (cj)
(39)

H(Ω) = −
∑

k

P (ωk) logP (ωk) (40)

H(C) = −
∑

k

P (ck) logP (ck) . (41)

The quantities P (ωk), P (cj) and P (ωk, cj) are the probabilities of a sample
belonging to class ωk, cluster cj and in their intersection, respectively, and are
computed based on the corresponding set of cardinalities (frequencies).

– mean square error (MSE) between the original series {rj , j = 1, . . . ,K} and
the estimated mean functional curves tj after convergence calculated as:

MSE =
1

K

K
∑

j=1

1

L
‖rj − tj‖

2 , (42)

where

tj =

∑N
n=1 znjΦnjµnj
∑N

n=1 znj
. (43)

This evaluation criterion was used in the case of artificial datasets, since we
are aware of the generative series of each cluster.

4.1. Clustering artificial functional data

At first we have evaluated our method to a synthetic dataset created by a set
of functional data sources. In particular, we have used a pool of K functional
parametric forms fj(x;ϑj) and a grid of L input data points {x̂i, i = 1, . . . , L}.



Sparse Regression Mixture Modeling with the multi-kernel Relevance Vector Machine 13

0
1

2
3

4
5

0

2

4

6
0

0.2

0.4

0.6

0.8

1

x
1

x
2

f j

Fig. 1. The four (4) two-dimensional RBF functions (with different centers) used
for constructing synthetic datasets with K = {2, 3, or 4} clusters.

In order to generate the n-th sample (data object), at first a functional form
fj was selected and its parameters ϑ were specified by adding noise ǫ to the
parameter vector ϑj . In this way a function gn(x;ϑ) = fj(x;ϑj + ǫ) is produced.
Next we add noise to the points {x̂i} to generate the inputs {xni = x̂i + ǫ}.
Then, the targets tni are computed as tni = gn(xni).

In our study we have used K RBF functions with different centers mj , (j =
1, . . . ,K) and constant radius (equal to 1):

fj(x;mj) = exp(−0.5|x−mj |
2) . (44)

defined on a 2-dimensional (15 × 15) grid in the domain [0, 5] × [0, 5]. Figure 1
shows the four RBF functions fj , evaluated on the corresponding L = 225 grid
input points.

Three different data sets have been studied using K = {2, 3, 4} RBF func-
tions, respectively. A number of 100 noisy copies per functional class were gen-
erated (as previously described) assuming a specific noise level (variance), thus
creating a dataset with N = 100 × K samples (data objects). For every noise
level, we generated 30 different datasets and we calculated the mean value and
the standard deviation of three performance criteria: purity, NMI and MSE. The
obtained results are shown in Fig. 2 for the various level of noise. As it is obvious,
the proposed method manages to distinguish well among K functions, especially
in cases with low level of noise. When the noise grows the results becomes lower
due to the significant overlapping among the K RBF functions.

Additional experiments have been performed in order to evaluate the BIC-
based model selection methodology. In particular, for each set (with K = 2, 3
and 4 clusters respectively) and noise level (small, medium, large), a group of
50 datasets were stochastically generated. The BIC-based methodology was exe-
cuted and we measured the relative frequency of the estimated number of mixture
components K̂. Note that for each dataset the proposed incremental learning
scheme of the MMKRVM was executed only once until a model with Kmax = 10
components had been constructed. Figure 3 presents the histogram results, i.e.
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Fig. 2. Performance results of the proposed method on the synthetic functional
datasets. Plots illustrate the three evaluation metrics in terms of various noise
levels.

plots of the relative frequencies of the obtained estimates K̂ found. It is apparent
that the true number of clusters K can be accurately deduced most of the times
in the low noise experiments. As noise levels increase, estimation performance
deteriorates as K increases.

4.2. Time-series clustering

In the task of time-series clustering we consider each sample as a sequence of real
observations measured at L successive time instances that correspond to the tar-
get values tni. At each time instance the input xni is a d-dimensional vector that
describes the d previous target values, i.e. xni = (tn,i−d, tn,i−d+1, . . . , tn,i−1).
During all experiments we have considered inputs of length d = 10. It must
be noted that the objective of our experiments is to evaluate the clustering
ability of the proposed method. In the experiments with time series we con-
sider each time series as an object to be clustered and we are not interested
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Fig. 3. Results from the use of the BIC criterion on the synthetic functional
dataset as histograms of the estimated number of clusters for three noise levels.
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Fig. 4. Three sets with (a) K = 2, (b) K = 3 and (c) K = 4 Mackey-Glass series
used for generating artificial datasets.

in identifying possible subsequences in every time series (Keogh, Lin and Trup-
pel, 2005),(Rakthanmanon, Campana and et. al., to appear).

In this case of time-series clustering we compared our method with two com-
mon regression mixture models:

– The polynomial regression mixture model (MPRM) that considers a polyno-
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mial regression function of order p for any cluster, i.e.

tni =

p
∑

l=0

wjlx
l
ni , (45)

where wjl are the p + 1 regression coefficients for each cluster. In this case
the time instances are considered as inputs (xni = i) and a (common) Van-
dermonde design matrix is used. Finally, in all experiments we have chosen
polynomials of order p = 10, since they showed better performance.

– The mixture of autoregressive (MAR) model that consists of K different AR
models, which correspond to the K clusters of interest. Given a time-series
tn and an order p, the AR(p) model assumes that any value tni has been
generated as a linear combination of p previous values plus a constant term,
i.e.

tni = wj0 +

p
∑

l=1

wjltn,i−l . (46)

Again, {wjl}
p
l=0 are the p + 1 coefficients for the j-th cluster. In this case,

the design matrix is created by setting ones (1) to the first column, while the
rest columns have the past p values for every time instance. Experiments have
made with setting p = 10.

Both regression mixture models were trained using the EM-based maximum
likelihood framework (Xiong and Yeung, 2002; Gaffney and Smyth, 2003; Blekas
et al., 2008), where we follow the typical sample-based initialization strategy
described in section 3.1.

4.2.1. Experiments with artificial data

At first we have made a series of experiments with artificial datasets for evalu-
ating the performance of our method on time-series clustering. For this purpose
we have selected the Mackey-Glass delay differential equation, which provides a
classical benchmark for time-series modeling given by the following rule:

r(t + 1) = r(t) + δ

(

0.2
r(t− τ/δ)

1 + r(t − τ/δ)10
− 0.1r(t)

)

, (47)

where the step size set to δ = 0.1. In our study we have generated three data sets
using K = {2, 3, 4} of such series of length L = 500 respectively, by considering
different values for the delay time τ , as illustrated in Fig. 4. A number of 100 noisy
copies of the original curve per class were generated using various levels of noise.
Similarly to the previous case study, for every noise level (SNR) we generated 30
different datasets and we calculated the mean value and the standard deviation
of three performance criteria purity, NMI and MSE.

Figure 5 illustrates the comparative results in terms of the SNR values. As
it is obvious, the proposed mixture of MKRMVs model improves significantly
clustering quality as compared to the polynomial and the AR regression mix-
ture, especially for high noise. Between the two proposed versions of MKRVM
mixtures, the one based on incremental learning (iMMKRVM) gave slightly bet-
ter results, confirming its ability to offer efficient parameter initialization and
reaching high quality solutions. In what concerns MSE, it is interesting to ob-
serve the significant improvement of the fit error criterion in the case of mixture
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Fig. 5. Comparative results for the simulated datasets of Fig. 4. Plots illustrate
the three evaluation metrics in terms of various noise levels.

of MKRVMs. This is in agreement with our belief, that sparseness is beneficial
both not only for classification accuracy, but also for fitting quality. The MSE
results also indicate that the incremental learning approach is superior to the
randomly initialized MMKRVM.

Finally, we have made additional experiments in order to evaluate the BIC-
based model selection methodology following the same strategy as described
previously. In particular, for each of the three Mackey-Glass sets (Fig. 1), we
created 50 different datasets by adding noise to the function values (three levels
of noise: small, medium and large), where we measured the relative frequency of
the estimated number of components. Figure 6 presents the obtained histogram
results, i.e. plots of the relative frequencies of the number of clusters found for
the three Mackey-Glass sets of Fig. 4 and three noise levels. It is clear that the
true number of clusters K can be accurately deduced most of the times in the low
noise experiments. As noise levels increase, estimation performance deteriorates
as K increases. Nevertheless, it must be underlined that in the case of K = 3
and 4 the time-series exhibit very high overlap (see Fig. 4 (b), (c)), thus it is
difficult to identify separated clusters.
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Fig. 6. Histograms of the estimated number of clusters by applying the BIC
model selection method to the mixture of MKRVMs for three noise levels added
to the three sets of Mackey Glass series (Fig. 4) with K = 2, 3 and 4 clusters
respectively.

dataset # classes (K) size (N) dimension (T )
CBF 3 930 128
Coffee 2 56 286

Diatom Size Reduction 3 467 166
ECG 2 200 96

Face Four 4 112 350
Gun Point 2 200 150

Sony AIBO Robot I 2 621 70
Sony AIBO Robot II 2 1018 65
Star Light Curves 3 1000 1024

Symbols 6 1020 398
Synthetic control 6 600 60

Trace 4 200 275
Wafer 2 1000 152

Table 1. Description of the 13 UCR datasets used in our experimental study.

4.2.2. Experiments with real benchmarks

Further experiments have been conducted using various real datasets, obtained
from the UCR time series data collection (Keogh, Xi, Wei and Ratanama-
hatana, 2006), (Ding, Trajcevski, Scheuermann, Wang and Keogh, 2008), where
the ground truth is known. In Table 1 we present a summary of thirteen (13) UCR
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UCR Dataset iMMKRVM MMKRVM MPRM MAR
CBF 0.94 0.85(0.05) 0.65(0.02) 0.60(0.03)
Coffee 0.64 0.64(0.00) 0.56(0.00) 0.57(0.00)

Diatom Size Reduction 0.95 0.89(0.02) 0.78(0.00) 0.59(0.03)
ECG 0.78 0.78(0.00) 0.69(0.00) 0.72(0.00)

Face Four 0.69 0.61(0.03) 0.40(0.04) 0.41(0.00)
Gun Point 0.72 0.72(0.00) 0.50(0.00) 0.55(0.00)

Sony AIBO Robot I 0.93 0.92(0.01) 0.92(0.01) 0.91(0.00)
Sony AIBO Robot II 0.81 0.81(0.00) 0.73(0.00) 0.92(0.01)
Star Light Curves 0.74 0.74(0.00) 0.74(0.00) 0.57(0.00)

Symbols 0.81 0.75(0.03) 0.70(0.06) 0.60(0.10)
Synthetic Control 0.76 0.72(0.02) 0.73(0.01) 0.70(0.04)

Trace 0.75 0.72(0.02) 0.53(0.00) 0.67(0.08)
Wafer 0.75 0.75(0.00) 0.61(0.01) 0.67(0.04)

Table 2. A. Comparative results (purity metric) of regression mixture models for
the UCR datasets

UCR Dataset iMMKRVM MMKRVM MPRM MAR
CBF 0.79 0.60(0.09) 0.38(0.01) 0.36(0.02)
Coffee 0.06 0.06(0.00) 0.02(0.00) 0.02(0.00)

Diatom Size Reduction 0.87 0.76(0.04) 0.83(0.01) 0.55(0.02)
ECG 0.35 0.35(0.00) 0.12(0.00) 0.18(0.00)

Face Four 0.46 0.39(0.02) 0.31(0.02) 0.29(0.00)
Gun Point 0.16 0.16(0.00) 0.04(0.00) 0.08(0.00)

Sony AIBO Robot I 0.65 0.61(0.02) 0.63(0.01) 0.59(0.00)
Sony AIBO Robot II 0.35 0.35(0.00) 0.16(0.00) 0.62(0.02)
Star Light Curves 0.62 0.62(0.00) 0.58(0.00) 0.23(0.00)

Symbols 0.74 0.74(0.02) 0.75(0.05) 0.58(0.07)
Synthetic Control 0.74 0.73(0.02) 0.72(0.01) 0.69(0.03)

Trace 0.68 0.64(0.03) 0.50(0.00) 0.61(0.07)
Wafer 0.64 0.64(0.00) 0.00(0.00) 0.50(0.06)

Table 3. B. Comparative results (NMI metric) of regression mixture models for
the UCR datasets

datasets we have used in our study. The results using two evaluation metrics,
purity and NMI, are shown in Tables 2 and 3 respectively, for the two versions of
the proposed mixture of MKRVMs and the other two regression mixture mod-
els. Since the proposed incremental learning approach (iMMKRVM) does not
depend on the initialization, we show only the result of a single run. For the
rest three methods (MMKRVM, MPRM, MAR) we provide the mean value and
the standard deviation of each measure (for 30 trials). As can be observed, the
performance of the proposed mixture of MKRVMs is obviously superior and in
many cases the difference is quite noticeable.

Figure 7 illustrates the mean mixture regression functions as estimated by
the proposed iMMKRVM model (according to Eq. 43) in the case of six UCR
datasets. ¿From these results a significant conclusion can be drawn, about the
impact of the multi-kernel scheme to the regression modeling performance which
is affected, sometimes significantly, by the choice of the design matrix. In partic-
ular, when the input samples contain strong local variations (such as in Coffee
and Face Four datasets), the estimated regression should capture these local de-
tails using small values of the scalar parameters λs. On the contrary, in cases
where data samples are smoother (such as in CBF and Gun Point datasets) large
kernel width parameters provide a better fit. The proposed method, incorporat-
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Fig. 7. Some examples of the resulting regression function for any component
(cluster), as estimated by the proposed method in some UCR datasets.
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Fig. 8. Impact of the kernel scaling parameter λ on the clustering performance.
These are plots of the purity evaluation metric in terms of value of λ as a per-
centage of the total samples variance of six different UCR datasets.

ing the multi-kernel scheme, has the flexibility to automatically adapt to the
characteristics of input data samples, thus improving the data fitting capability.

In this direction, we have made additional experiments to study the influ-
ence of the multi-kernel scheme on the performance of the clustering process. In
particular, we have considered a mixture model with single kernel RVMs where
we have assumed a kernel design matrix with constant value for the scaling pa-
rameter λ (Eq. 4). The results are shown in Fig. 8 that plots the performance
of the mixture model of single-kernel RVMs in terms of λ, while the results for
the proposed mixture model of MKRVMs are shown with dotted lines. The re-
sults indicate that the selection of a proper value of λ is an important issue
for the performance of the clustering procedure. Moreover, there are some cases
where, using the single-kernel scheme, we are not able to determine a value for
λ providing better performance compared with the multi-kernel case. It must
be noted here that we have also studied other kernel design matrices, such as
wavelet-based kernel, without obtaining better results. Our empirical results in-
dicate that the employment of the Gaussian multi-kernel framework is a good
choice for regression mixture modeling.
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Fig. 9. The truck trajectories shown as raw data used in our experiments. Three
datasets are shown containing trajectories of K = 2, K = 3 and K = 4 clusters,
respectively.

Problem: Number of clusters
K = 2 K = 3 K = 4

purity NMI purity NMI purity NMI
1.0 1.0 1.0 1.0 0.87 0.76

Table 4. Clustering performance of our method on the trucks trajectory dataset
under different number of clusters

4.3. Clustering real trajectories

We have also studied our method with a real trajectory dataset where the ground
truth is known. It consists of GPS-tracked positions of 50 trucks transporting
concrete in the area of Athens between August and September 2002 (Pelekis
et al., 2011), and the goal is to discover complex mobility patterns. ¿From the
original raw data, smaller trajectories were created by splitting the recordings of
a truck in subsets if there was a temporal gap between two consecutive recordings
larger than 15 minutes. Each trajectory yn shows a round trip performed by a
truck consisting of the target values tn and the geographical coordinates xn. A
more detailed description about this dataset can be found in (Pelekis et al., 2011).

There are four kinds of possible directions of trips performed by tracks that
were manually discovered. In our study we have used a subset of this dataset
consisting of 50 trajectories per each cluster of length L = 58. Following the ex-
perimental methodology on this dataset of the original work described in (Pelekis
et al., 2011), we conducted a series of experiments using different portions of the
trucks trajectories containing two (K = 2), three (K = 3) or four (K = 4) clus-
ters. Figure 9 shows these three (overlap) sets of trucks trajectories used in our
study. The obtained results (purity and nmi evaluation metrics) are shown in
Table 4. The proposed incrementally constructed mixture of MKRVMs showed
excellent behavior in the case of K = 2 and 3 clusters, while the performance
somehow deteriorates for K = 4 clusters, since as shown in Fig. 9, there is a
significant overlapping between trajectories of the 3d and the 4th cluster (green
and blue colored trajectories). In our experiments with this dataset we have also
studied the BIC model selection criterion. According to the results the estimated
number of components was much higher than the real value of the clusters K.
There are two main reason for this behavior: first due to the structure of data and
the existence of subclusters, and secondly because of the relevant small number
of data per cluster (note that BIC is an accurate measure only in the limit, thus
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it generally requires a lot of data for making accurate decisions). As a result, the
BIC criterion fails leading to an over-estimation of the true number of clusters.

5. Conclusions

In this work we presented a powerful regression mixture model, where each mix-
ture component is a multi-kernel RVM regression model. The model is very
general and can be used to cluster a set of multidimensional functions, where
each function is represented by a set of input-target pairs. The key aspect of
the proposed technique lies on the employment of RVMs as components and the
exploitation of its superior regression performance to model the data of each
latent class. We have also presented a weighted multi-kernel scheme for compos-
ing the kernel matrix of each component that offers better fitting capabilities.
Learning in the proposed sparse regression mixture model is achieved in terms
of a maximum a posteriori (MAP) framework that allows the EM algorithm to
be effectively used for estimating the model parameters. This has the advan-
tage of establishing update rules in closed form during the M -step and thus
data fitting is computationally efficient. An incremental learning strategy has
also been presented that makes the construction of the sparse regression mixture
model independent of parameter initialization. Finally, we have considered the
BIC criterion for choosing the number of components in the regression mixture
model and thus estimating the structure of the model. Clustering experiments
on several datasets using simulated functional data, time-series and trajectories,
demonstrated the ability of the proposed MKRVM mixture to achieve improved
clustering performance and robustness compared to other typical regression mod-
els.

We are planning to study the performance of the proposed methodology in
computer vision applications, such as visual tracking problems and object detec-
tion in a video surveillance domain (Alon et al., 2003; Williams et al., 2005; An-
tonini and Thiran, 2006). Another future research direction is to examine the
possibility of applying alternative types of sparse priors (Schmolck and Ever-
son, 2007; Seeger, 2008). Furthermore, instead of using BIC for model selection,
the fully Bayesian mixture of multi-kernel RVMs could be defined and trained
providing an alternative methodology for the estimation of the number of clus-
ters.
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