
Continuous Optimization Schemes for Fuzzy Classification

K. Blekas, G. Papageorgiou and A. Stafylopatis
National Technical University of Athens

Department of Electrical and Computer Engineering
157 73 Zographou, Athens, Greece

email: fkblekas,gpap,andreasg@softlab.ece.ntua.gr

Abstract

Two approaches are developed, which are suitable for the optimization of a fuzzy classification scheme
through the formation of appropriate space-filling clusters. The first approach is based on the analog Hopfield
neural network, while the second one uses real-encoded genetic optimization. Experimental results concerning
difficult classification problems show that both proposed approaches are very successful in generating fuzzy
partitions and outperform other known algorithms in terms of the correct placement of patterns into partitions.

1 Introduction

The task of pattern classification is a key element to nu-
merous engineering applications and typically constitutes a
major component of an intelligent diagnostic system. Un-
like pattern clustering, which considers a set of unlabeled
data objects and seeks to find natural groupings amongst the
exemplars, pattern classification provides class labels with
pattern exemplars and attempts to find the decision bound-
ary between classes that minimizes misclassification. We
shall consider here a nearest-neighbour pattern classifica-
tion scheme that is able to build decision regions separating
classes of any shape and size. Class regions are created by
properly placing and adjusting a number of fuzzy clusters,
characterized by their respective geometric centres. The
clusters (whose number is assumed to be known a priori)
are formed according to a predefined criterion, based on a
distance measure and on the knowledge of pattern labels.

A broad spectrum of clustering/classification algorithms
attempt to generate a partition of the sample data through
the minimization of an objective function based on the clus-
tering criterion. The kinds of partitions generated and the
geometric structure of the clusters are closely related to the
distance measure chosen and the objective function being
optimized. The partitionsare either hard, that is each sample
point is unequivocally assigned to a cluster and is consid-
ered to bear no similarity to members of other clusters, or
fuzzy, in which case a membership function expresses the
degree of similarity between the sample and each cluster
[1, 2, 6, 15, 16].

As an alternative to typical numerical processes used
to search for an optimal partitioning, computationally "in-
telligent" techniques such as neural networks and genetic
algorithms have recently been applied to related problems
[3, 4, 5, 10, 11, 17]. In the present paper we develop two
approaches of the above type, namely a scheme based on the
analog Hopfield network and a real-coded genetic algorithm,
to obtain fuzzy partitioning optimization, and evaluate their
effectiveness on various data sets.

Let X = f~x1; : : : ; ~xng denote a set of labeled data

points (patterns) in Rp. Each ~xj is the numerical represen-
tation of p features associated with a corresponding physical
object. Our aim is to partition the p-dimensional space into
a number c of clusters (1 < c < n), that is assumed to
be known in advance. Clusters are represented by the vec-
tor V = [~v1; : : : ; ~vc] (~vi 2 Rp) of their geometric centres
(cluster prototypes). We shall consider that each cluster be-
longs to one of the predefined classes, namely the classes
of pattern labels. We seek the best set of clusters, such
that patterns are assigned to clusters according to a fuzzy
membership function with minimum misclassification error.

Given X, a partition of X is represented by the c � n
fuzzy partition matrix M = [�ij] satisfying the conditions:0 � �ij � 1 (1 � i � c, 1 � j � n),

Pci=1 �ij = 1
(1 � j � n) and

Pnj=1 �ij > 0 (1 � i � c), where each
value �ij represents the membership of the j-th data point
to the i-th cluster.

The optimization criterion is associated with the gener-
alized least-squared errors functionalH = cXi=1 nXj=1 �ijDij�mij (1)

where m > 1 is a weighting exponent (degree of fuzzifica-
tion) and Dij is some similarity metric between ~xj and ~vi,
which will be taken equal to the squared Euclidean norm:Dij = k~xj � ~vik2 (2)

The quantity �ij is equal to unity if the pattern ~xj and the
centre ~vi are of the same class, otherwise it is taken equal to
some positive constant much larger than unity.

Thus, the optimization criterion includes distance in-
formation as well as knowledge about pattern and cluster
labels, in a way to favour correct classification. In general,
the choice of the similarity metric implies different geomet-
ric and statistical properties of the generated partition.

2 Hopfield Network Approach

The analog Hopfield neural network [9] is a fully connected,
continuous time network, that employs units with analog in-
put and output. The basic idea is to encode the objective
function and the problem constraints in terms of an appropri-
ate energy function which can be minimized by the network
architecture. An analog Hopfield neural network with N
units performs local search in the continuous space inside
the hybercube f0; 1gN . We consider a network with con-
nection weights wij, where wii = 0 and wij = wji, and
threshold values �i (i; j = 1; : : : ; N). By ui and yi we
denote the input and the output of unit i, respectively. The
energy function:E = �12 NXi=1 NXj=1wijyiyj� NXi=1 �iyi+� NXi=1 Z yi0 f�1(x)dx

(3)
constitutes a Liapunov function for the system. This func-
tion decreases during the operation of the network. The
evolution of the behaviour of each unit is described by the
following equations:duidt = �@E@yi = ��ui + NXj=1wijyj + �i (4)

and yi = f(ui) (5)

where f is a differentiable, monotonically increasing func-
tion with values in [0; 1] (or in [�1; 1]). A standard
form of f , which we are going to use, is yi = f(ui) =12 (1 + tanh(ui=u0)), where u0 determines the steepness of
the gain. Under the above dynamics, the analog Hopfield
network converges to an equilibrium state that corresponds
to a local minimum of the energy function.

A formulation of the problem suitable for the Hopfield
network requires the definition of an appropriate quadratic
energy function. The energy function will consist of three
parts E1, E2 and E3 (see equations (6)-(9)). The E1 part
consists of the constraint terms, which enforce the network
to relax at states at which each pattern ~xi is characterized
by high membership to one cluster. The E2 part includes
the standard integral term, which guides the network to
search in the interior of the unit hypercube f0; 1gn�c, and
the thresholds of the units of the network. Finally, the E3
component consists of the cost term which is the functionalH defined in Section 1. The coefficients A, B and C are
positive constants. E = E1 +E2 +E3 (6)E1 = A2 nXj=1 cXi=1 cXk=1k6=i �ij�kj + B2 nXj=1(cXi=1 �ij � 1)2 (7)E2 = � cXi=1 nXj=1 Z �ij0 f�1(x)dx� cXi=1 nXj=1 �ij (8)E3 = C �H = C cXi=1 nXj=1 �ijDij�mij (9)

The relaxation of the network is performed according to
the following differential equations:duijdt = � @E@�ij = �A cXk=1k6=i �kj � B(cXk=1�kj � 1)��uij + �ij � C�ij @Dij@�ij �mij �mC�ijDij�m�1ij (10)

The above equations are solved using the Euler approxima-
tion method.

At each relaxation step the centres of the clusters are
updated as follows:~vi = 0@ nXj=1(�ij)m~xj1A = nXj=1(�ij)m (11)

The distances of the patterns from the new centres are com-
puted according to (2), while the derivative @Dij=@�ij is
obtained from (2) and (11). At each iteration, the uij pro-
vided by the Euler method yield the new �ij values.

3 Real-coded Genetic Optimization

Genetic algorithms [7, 13] seem to offer a promising alter-
native in the direction of optimizing the proposed functionalH. As genetic algorithms are considered more natural for
discrete optimization problems, most approaches to cluster-
ing have been based on a binary encoding of the parame-
ter space [3, 5]. The traditional binary coding, however,
has serious drawbacks when applied to multidimensional
problems of high numerical precision, since binary repre-
sentation generates prohibitively large search spaces. For
problems with variables over continuous domains, it seems
natural to represent genes directly as floating-point numbers
and chromosomes as vectors of real numbers, thus enabling
the exploration of large domains without sacrificing preci-
sion or memory [8, 13].

In the approach presented here, we have considered
floating-point encoding of the cluster centres ~vi = [vik]
(1 � i � c, 1 � k � p). A chromosome is a vector
(string) of total length c � p, composed of c subvectors of
length p corresponding to cluster centres. Given a vectorV , the membership values �ij (1 � i � c, 1 � j � n) are
eliminated from H through the substitution�ij = " cXl=1 DijDlj #�1 1 � i � c; 1 � j � n (12)

and the computed value of the function H provides the fit-
ness of the string. (Actually, the fitness is obtained via
appropriate normalization of H yielding a form suitable for
maximization.)

The main features of the proposed real-coded genetic
algorithm (RCGA) are described next. Given an initial
population of K randomly created vectors, a reproduction
procedure takes place repeatedly, during which members of
the population are recombined and a new generation of vec-
tors is created, until a maximum number of generations is

attained. Specifically, at each generation step and for each
current member � we decide with probability pc (which
generally assumes high values) whether crossover will be
applied or not, and, in the positive case, another member �
is randomly selected and crossover is performed between the
vectors corresponding to the two parents. The recombina-
tion operator that we have considered is a variant of single-
point crossover operating at the cluster level. A position s
is selected at random within the range 1 � s � c�1, wherec is the number of subvectors, and crossover is performed
between each pair of corresponding subvectors s; : : : ; c of
each vector ofV � andV � The above reproductionscheme is
synchronous, in the sense that all K children can be created
simultaneously and independently based on the precedent
generation, thus achieving a high degree of parallelism. In
implementing the crossover scheme we have used selection
based on fitness value, that is members with high fitness
value have more chances to be selected and recombined in
the next generation.

Population diversity is further enhanced by applying a
mutation operator. In our case, we have considered an adap-
tation of the non-uniform mutation described in [13]. The
non-uniform mutation operator can be applied to each indi-
vidual real-valued component of each subvector of a vector
with probability pm, which generally takes very small val-
ues. Let us assume that the domain of the element vik
(1 � i � c, 1 � k � p) which will undergo mutation
is [aik; bik]. If the operator is applied at generation step t
and T is the maximum number of generations, then the new
value of the element will be :v0ik = � vik +�(t; bik � vik) if � = 0vik ��(t; vik � aik) if � = 1 (13)

with � being a random binary digit (0 or 1), and�(t; y) = y �1� r(1� tT)b� (14)

where r is a random number from the interval [0; 1] and b
is a system parameter, which determines the degree of de-
pendency on the number of generations. The function �
returns a value in the range [0; y] such that the probability of
returning a number close to 0 increases as t increases. Thus,
the size of the interval for the element value becomes lower
with the passing of generations. This causes the mutation
operator to make a uniform search of the space initially, and
a very local search at later stages. It is this property that
provides the system with fine local tuning capabilities.

A last operator which has proved to improve the de-
scribed recombinative scheme is the apathy operator. When
a vector of the current population gets a fitness value better
than its previous one, it remains apathetic for a (generally
small) number of generation steps. This technique does
not cause any harm to the specific vector, while reinforc-
ing other vectors by facilitating their participation in the
selection process.

4 Experimental Results

In our experiments we have considered a variety of classifi-
cation problems. The first data set that was used to test the

proposed approaches was the Fisher’s Iris database which
consists of 150 feature vectors described by 4 continuous-
valued attributes with 3 classes. Half of them were used for
training and the remaining for testing (75 data). Another
tested database was the James Cook University Thyroid
gland database which is a collection of 215 instances whose
5 attributes are all continuous-valued. The vectors belong to
one of three decision classes that define a prediction of a pa-
tient’s thyroid to the class of euthyroidism, hypothyroidism
or hyperthyroidism. We have selected 100 patterns for train-
ing and the remaining 115 for testing. Finally, we have used
the sytnthetic two-class problem taken from Ripley [14]. It
is a realistic problem with 1250 2-dimensional patterns that
belong to 2 classes, where 250 and 1000 patterns were used
for training and testing respectively.

Experiments have been conducted considering a range
of values for the number c of clusters, applying the continu-
ous Hopfield network and the real-coded genetic algorithm
to each of the three data collections. In all experiments the
output of the algorithms was the best solution found during
the search (maximum 10000 iterations for the Hopfield net-
work and 5000 genetic steps). After that, we were able to
evaluate the classification rate of the optimized classifier as
the percentage of patterns which are correctly placed into
clusters (in the nearest-neighbour sense). It should be noted
that both methods exhibited an almost perfect classification
performance on the training sets.

For all datasets and for each number of clusters con-
sidered, a series of 10 experiments was performed using
different seed values for the random number generator. For
both optimization methods the weighting exponent m was
set equal to 2. In the energy function E optimized by the
Hopfield network the coefficients A, B and C were equal to
1.0, 1.0 and 5.0 respectively, whereas the thresholds �ij took
the value 1.0 and the parameter � was set equal to 1.0. The
population size of the genetic algorithm was nearly double
the respective size of chromosomes. The crossover proba-
bility was pc = 0:85, while the parameter b was set to 4.0.
Finally, the mutation probability pm had initially a large
value (0.1) and was decreased by 3% every 100 generation
steps until it reached the value of 0.005.

To evaluate the effectiveness of both approaches, the
same experiments were carried out using a backpropagation
feed-forward neural network (BP) and Kohonen’s Learning
Vector Quantization (LVQ) for the three databases. The
neural network was a single hidden-layer network with 10
nodes, with a learning rate 0:09 and a momentum rate equal
to 0:9. For the LVQ method we have used the LVQ1 algo-
rithm [12] with learning rate 0:03.

Table 1 reports testing results for the three data collec-
tions and for the two proposed approaches in comparison
with the BP and LVQ methods. The best number of clus-
ters found and the classification rate for the testing sets are
displayed. Also, the average number of steps required to
find the best value is given for the Hopfield network and
the genetic algorithm. The superiority of the proposed op-
timization techniques is apparent in all datasets. Using a
small number of clusters the Hopfield network manages
to relax at an equilibrium state where the corresponding
centres, which were indirectly computed, show good clas-
sification behaviour. The genetic algorithm converged in a

straightforward manner to a chromosome vector suggesting
appropriate decision boundaries of pattern classes. As can
be observed, the Hopfield network performs slighty better
than the real coded-genetic algorithm. On the other hand the
genetic algorithm needs little knowledge of the classifica-
tion problem to perform efficient exploration of the domain
space. It must be noted that for small numbers of clusters
equal to the number of classes the results are very similar
for both techniques.

HOPF. RCGA BP LVQ
Iris database

Clusters 3 6 6
Rate (%) 98.67 96.00 94.67 94.67

Avg. steps 4800 1950
Thyroid database

Clusters 6 6 6
Rate (%) 96.52 96.52 94.78 94.78

Avg. steps 3780 2300
Synthetic database

Clusters 4 4 6
Rate (%) 91.00 90.50 88.00 89.50

Avg. steps 4130 1570

Table 1: Comparative results for the classification problems

5 Conclusions

We have developed and tested two approaches for the opti-
mization of fuzzy partitioning in nearest-neighbour classifi-
cation problems. Both approaches are based on the formu-
lation of an appropriate clustering criterion that incorporates
a distance metric along with knowledge about the class la-
beling of patterns and clusters. The first approach considers
the use of an analog Hopfield network properly designed to
encode the optimization criterion and problem constraints.
The second approach is a genetic algorithm based on coding
the space of cluster prototypes by means of floating point
values and using appropriate genetic operators. The two
methods have been tested experimentally on a variety of
classification problems and have shown very good perfor-
mance in terms of the rate of correct classifications during
testing. Comparison with other established classification
approaches has shown that the proposed formulation of the
clustering criterion combined with the above optimization
schemes provides a promising alternative. Moreover, this
work allowed us to experiment with the use of continu-
ous representations in a problem area that is particularly
suited to this type of state-space encoding. The advantage
of both schemes considered is reinforced by the possibility
of obtaining efficient parallel implementations in a straight-
forward manner, thus ensuring fast and effective solutions
to hard problems.

References

[1] Bezdek J.C., Ehrlich R. and Full W., FCM: The Fuzzyc-Means Clustering Algorithm. Computers and Geo-
sciences, 10, 1984, pp. 191–203.

[2] Bezdek J.C. and Pal, S.K., Fuzzy Models for Pattern
Recognition. IEEE Press, 1992

[3] Bezdek J.C, Boggavarapu S., Hall L.O. and Bensaid
A., Genetic Algorithm Guided Clustering. Proc. First
IEEE Conf. on Evolutionary Computation, Orlando,
Florida, 1994, Vol. I, pp. 34–39.

[4] Blekas, K. and Stafylopatis, A., Real-coded Genetic
Optimization of Fuzzy Clustering. Proc. EUFIT’96,
Aachen, Germany, 1996, pp. 461–465.

[5] Buckles B.P., Petry F.E., Prabhu D., George R. and
Srikanth R., Fuzzy Clustering with Genetic Search.
Proc. First IEEE Conf. on Evolutionary Computation,
Orlando, Florida, Vol. I, 1994, pp. 46–50.

[6] Buhmann, J. and Kühnel, H., Complexity Optimized
Data Clustering by Competitive Neural Networks.
Neural Computation, 5, 1993, pp. 75–88.

[7] Goldberg D.E., Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley,
1989.

[8] Herrera F., Lozano M. and Verdegay J.L., Tackling
Real-Coded Genetic Algorithms: Operators and Tools
for Behavioural Analysis. Technical Report #DECSAI-
95107, Universidad de Granada, Spain, Feb. 1995.

[9] Hopfield, J.J. and Tank, D.W., Neural Computation of
Decisions in Optimization Problems. Biological Cy-
bernetics, 52, 1985, pp. 141–152.

[10] Kamgar-Parsi, B., Gualtieri, J.A., Devaney, J.E. and
Kamgar-Parsi, B., Clustering with Neural Networks.
Biological Cybernetics, 63, 1990, 201–208.

[11] Kamgar-Parsi, B. and Kamgar-Parsi, B., A Revised
Clustering Technique Using a Hopfield Network. Proc.
World Congress on Neural Networks, Portland, Ore-
gon, Vo. IV, 1993, pp. 24–27.

[12] Kohonen, T., The Self-Organizing Map. Proceedings
of the IEEE, 78, 1990, 1464–1480.

[13] Michalewicz Z., Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, 1992.

[14] Ripley B.D., Pattern Recognition and Neural Net-
works, Cambridge University Press, 1996.

[15] Simpson P.K., Fuzzy Min-Max Neural Networks-Part
1: Classification. IEEE Trans. on Neural Networks, 3,
1992, 776–786.

[16] Simpson P.K., Fuzzy Min-Max Neural Networks-Part
2: Clustering. IEEE Trans. on Fuzzy Systems, 1, 1993,
32–45.

[17] Van Le T., Evolutionary Fuzzy Clustering. Proc. IEEE
Int. Conf. on Evolutionary Computation, Perth, West-
ern Australia, Vol. 2, 1995, pp. 753–758.

