
Real-coded Genetic Optimization of Fuzzy ClusteringKonstantinos Blekas and Andreas StafylopatisNational Technical University of AthensDepartment of Electrical and Computer EngineeringPhone: +301 7722508Fax: +301 7722459email: fkblekas,andreasg@softlab.ece.ntua.grABSTRACT: A genetic approach is developed, which is suitable for the optimization of fuzzy c-means clustering.The approach is based on real encoding of the prototype variables (cluster centers) and uses appropriate geneticoperators and techniques to optimize the clustering criterion. Experimental results concerning di�cult clusteringproblems show that the proposed approach is very successful in generating fuzzy partitions and prototypes andoutperforms the fuzzy c-means algorithm in terms of the correct placement of patterns into partitions.1 INTRODUCTIONThe task of pattern classi�cation and recognition typically constitutes a major component of an intelligentdiagnostic system. Pattern classi�cation can be viewed as including two steps: �rst, a phase of clusteringgiven samples, and second, classi�cation of new samples based on the knowledge of clusters. Pattern clusteringconsiders a set of unlabeled data objects and seeks to �nd natural groupings amongst the exemplars. Theclusters are formed according to some prede�ned criterion, which is usually based on a distance measure. Thisand the number of clusters (which, in general, is assumed to be known a priori) constitute fundamental aspectsof the clustering problem.A broad spectrum of clustering algorithms attempt to generate a partition of the sample data through the(iterative) minimization of an objective function based on the clustering criterion. The kinds of partitionsgenerated and the geometric structure of the clusters are closely related to the distance measure chosen andthe objective function being optimized [7, 8, 12, 14]. The partitions are either hard, that is each sample pointis unequivocally assigned to a cluster and is considered to bear no similarity to members of other clusters, orfuzzy, in which case a membership function expresses the degree of similarity between the sample and eachcluster.The fuzzy c-means (FCM) clustering approach [2] belongs to the general class of c-means partitioning models[1, 3] and has been extensively used in various types of pattern and image processing/analysis applications [10].As an alternative to the typical iterative numerical process used by the algorithm to search for an optimalpartitioning, genetic algorithms have recently been applied to this and related problems [4, 5, 6, 15]. Geneticalgorithms [9, 13] are an increasingly important approach to �nding good suboptimal solutions to large-scaleoptimization problems and have been shown to be capable of adaptive and robust search over a wide range ofsearch space topologies.As genetic algorithms are considered more natural for discrete optimization problems, most approaches toclustering have been based on a binary encoding of the parameter space [4, 5, 6]. An increasing interest, however,has focused on the use of real coding for problems with variables in continuous domains. This representation isvery close to the natural formulation of many problems and allows the development of e�ective operators andpowerful exploration techniques [11, 13]. In the present paper we develop a real-coded genetic approach to theFCM clustering problem and evaluate its e�ectiveness on well-known data sets allowing a measure of relativeperformance.The next section provides a brief overview of FCM models, while Section 3 describes the proposed real-codedgenetic approach to fuzzy clustering. Experimental results are presented and discussed in Section 4. Finally,Section 5 gives the summary and conclusions. 1



2 FUZZY c-MEANS CLUSTERINGThe fuzzy c-means algorithm is one of the best known and best performing fuzzy clustering algorithms. Mostof the results, extensions and analysis of the algorithm are due to Bezdek [1, 2, 3, 4, 5]. The FCM algorithmassumes that the number of clusters c is known in advance and minimizes an objective function to �nd the bestset of clusters.Let X = fx1; : : : ; xng denote a set of unlabeled data points (vectors) in Rp, and let c be an integer, 1 < c < n.Each xj is the numerical representation of p features associated with a corresponding physical object. GivenX, a fuzzy c-partition of X is represented by a c� n fuzzy partition matrix U = [uij] satisfying the conditions:0 � uij � 1 (1 � i � c, 1 � j � n), Pci=1 uij = 1 (1 � j � n) and Pnj=1 uij > 0 (1 � i � c), where each valueuij represents the membership of the j-th data point to the i-th cluster.The clustering criterion used by the FCM algorithm is associated with the generalized least-squared errorsfunctional Jm(U; V ) = cXi=1 nXj=1(uij)mDij (1)where m > 1 is a weighting exponent (degree of fuzzi�cation), V = [v1; : : : ; vc] (vi 2 Rp) is the vector ofgeometric centers (cluster prototypes), and Dij is some similarity (distance) metric between xj and vi, whichis taken equal to the squared distanceDij = kxj � vik2A = (xj � vi)>A(xj � vi) (2)the matrix A being a positive de�nite n� n weight matrix. Following the choice of A, di�erent norms can beidenti�ed implying di�erent geometric and statistical properties of the generated partition. If A is taken as theidentity matrix I, the resulting Euclidean norm implies hyperspherical clusters.Optimal fuzzy partitions ofX are de�ned as pairs (U; V ) that locally minimize Jm. Form > 1 and assuming thatcluster prototypes are distinct from sample points, the following conditions are necessary (but not su�cient)for local optimality [1]: vi = 0@ nXj=1(uij)mxj1A = nXj=1(uij)m 1 � i � c (3)uij =  cXk=1�DijDkj�1=(m�1)!�1 1 � i � c; 1 � j � n (4)Given an initial vector of centers, an alternate application of the above equations can be used for iterativeoptimization of Jm. This computation, which constitutes the basic FCM algorithm, exhibits good convergenceproperties. To check the quality of the clusterings obtained through local minima of Jm extra validity criteriaare usually applied. Generalizations of Jm can be considered that imply various geometric properties for thepartition. The FCM model can also be formulated in a connectionist manner [8], allowing for an e�cientneuro-fuzzy approach to data clustering.3 REAL-CODED GENETIC OPTIMIZATIONGenetic algorithms seem to o�er a promising alternative in the direction of optimizing the FCM functionalJm. Representation and exploration of the problem parameter space can be based on encoding and evolvingeither both U and V , or only one of the variables U and V . In the latter case, one variable is eliminated andoptimization of Jm is performed over the other. Elimination of U or V can be obtained through appropriatesubstitution from (4) or (3) respectively into (1). In various related approaches binary coding has been generallyemployed for representing data partitioning [4, 5, 6, 15].The traditional binary coding has serious drawbacks when applied to multidimensional problems of high nu-merical precision, since binary representation generates prohibitively large search spaces. For problems withvariables over continuous domains, it seems natural to represent genes directly as 
oating-point numbers (prob-lem variables) and chromosomes as vectors of real numbers, thus enabling the exploration of large domainswithout sacri�cing precision or memory. Also, due to the ability of real-variable functions to follow slightchanges in the variables, it is possible to perform �ne local tuning of the obtained solutions and to operate inthe presence of constraints.



In the approach presented here, we have considered 
oating-point encoding of the cluster centers vi = [vij](1 � i � c, 1 � j � p) as the appropriate parameter-space representation for the FCM algorithm. Thus, achromosome is a vector (string) of total length cp, composed of c subvectors of length p corresponding to clustercenters. Given a vector V , the membership values uij (1 � i � c, 1 � j � n) are eliminated via substitutionfrom (4) into (1) and the computed value of Jm provides the �tness of the string. (Actually, the �tness isobtained via appropriate normalization of Jm yielding a form suitable for maximization.) This approach isjusti�ed by the fact that, for �xed V , minimization of Jm over U can be done by applying (4) [1].The main features of the proposed real-coded genetic algorithm (RCGA) are described next. Given an initialpopulation of K randomly created vectors, a reproduction procedure takes place repeatedly, during whichmembers of the population are recombined and a new generation of vectors is created, until a maximumnumberof generations is attained.At each generation step, for each current member k we decide with probability pc (which generally assumes highvalues) whether crossover will be applied or not, and, in the positive case, another member l is randomly selectedand crossover is performed between the vectors corresponding to the two parents. A recombination operator thatwe have considered is a variant of single-point crossover. If we denote by V k and V l the vectors corresponding tomembers k and l respectively, a new vector V is created as follows. A split point s (1 � s � cp� 1) is randomlyselected and two new vectors are created by swapping all elements between positions s and cp. From the twogenerated vectors the one which is closer to V k (in the sense that its major part comes from V k) is taken as thenew vector and replaces V k. In this way, the characteristics of individual population members are preserved tosome extent, retarding the decrease of population diversity and the advent of premature convergence. Anothercrossover scheme that has been considered in our approach is the following. A position s is selected at randomwithin the range 1 � s � p� 1, where p is the size of subvectors, and a crossover point is considered at positions of each subvector of V k and V l. Then crossover is performed between each pair of corresponding subvectorsin a manner analogous to that described above at the whole vector level.It must be noted that the above reproduction schemes are synchronous, in the sense that all K children can becreated simultaneously and independently based on the precedent generation, thus achieving a high degree ofparallelism. In implementing the crossover schemes we may use either uniform selection of the mate vector V lor selection based on �tness value. In the latter case, members with high �tness value have more chances to beselected and recombined in the next generation. In any case, due to the synchronous scheme of reproduction,even the `bad' members of the population will take part in the selection operation and, thus, population diversityis maintained.Population diversity is further enhanced by applying a mutation operator. As is the case with crossover, severalmutation operators for real coding have appeared in the literature [11, 13]. In our case, we have considered anadaptation of the non-uniform mutation described in [13]. The non-uniform mutation operator can be appliedto each individual real-valued component of each subvector of a vector with probability pm, which generallyassumes very small values. Another approach would be to randomly select a subvector and an element withinthe selected subvector and apply the operator to that element. Yet another mechanism would be to apply thenon-uniform mutation operator according to a given small probability to a whole vector (all elements) ratherthan to selected individual elements. In our implementation we have taken the �rst of the above options.Let us assume that (regardless of the mechanism adopted) the domain of the element vij (1 � i � c, 1 � j � p)which will undergo mutation is [aij; bij]. If the operator is applied at generation step t and T is the maximumnumber of generations then the new value of the element will bev0ij = � vij +�(t; bij � vij) if � = 0vij ��(t; vij � aij) if � = 1 (5)with � being a random digit that may take a value of 0 or 1, and�(t; y) = y �1� r(1� tT )b� (6)where r is a random number from the interval [0; 1] and b is a system parameter, which determines the degreeof dependency on the number of generations. The function � returns a value in the range [0; y] such that theprobability of returning a number close to 0 increases as t increases. (Other functions with the above propertycan be used as well.) Thus, the size of the interval for the element value becomes lower with the passing ofgenerations. This causes the mutation operator to make a uniform search of the space initially, and a very localsearch at later stages. It is this property that provides the system with �ne local tuning capabilities.



4 EXPERIMENTAL RESULTSIn our experiments we have considered a variety of classi�cation problems. The selected databases include featurevectors that are de�ned on high-dimensional spaces and some of them are noisy containing hard examples.The �rst data set that was used to test our real-coded genetic approach was the Fisher's Iris database. Iris dataconsists of 150 feature vectors described by 4 continuous-valued attributes with 3 classes. Another databasewas the B. German's Glass Identi�cation database which is composed of 214 9-dimensional feature vectors andpresents a classi�cation of types of glass to one of two general classes (window glass or non-window glass).Finally, we have used the James Cook University Thyroid gland database which is a collection of 215 instanceswhose 5 attributes are all continuous-valued. The vectors belong to one of three decision classes that de�ne aprediction of a patient's thyroid to the class of euthyroidism, hypothyroidism or hyperthyroidism. Among thethree databases, the last one is considered the hardest example of clustering problem.Experiments have been conducted with speci�c numbers of clusters for each of the three data collections. Inall experiments the output of the algorithm was the best solution (in terms of the value of the generalizedleast-squared errors functional Jm) found during the search (5000 generation steps). After that, we were able toevaluate the classi�cation performance of the system, by considering each generated cluster as a separate classand labeling each pattern with the cluster of maximum membership value (equation (4)). Then, classi�cationrate can be obtained as the percentage of patterns which are correctly placed into clusters (in the sense thatthey are assigned the same label as the majority of patterns assigned to the cluster).For all databases and for each number of clusters considered, a series of 10 experiments were performed usingdi�erent seed values for the random number generator. The population size of the genetic algorithm was nearlydouble the respective size of chromosomes. The parameter values were m = 2:0 and b = 4:0, while the valuesof the crossover and mutation probabilities were respectively pc = 1:0 and pm = 0:015. Best results were foundusing the �rst formulation of crossover as described in Section 3 and the selection scheme based on �tness value.To evaluate the e�ectiveness of our approach the same experiments were carried out using the standard fuzzyc-means (FCM) algorithm for the three databases. The parameter value of m was the same used in the real-coded genetic algorithm (RCGA). In implementing both methods we have considered Euclidean norm for theclustering criterion.Table 1 reports the results for the three respective data collections and for the two approaches considered. Thebest Jm function value found and the classi�cation rate are both displayed. Moreover, the average number ofsteps required to �nd the best value is also given in the case of the genetic algorithm. As can be observed fromthe table, the value of the objective function generated by the genetic formulation is in most cases lower thanthe corresponding value from fuzzy c-means. This means that a better set of clusters is produced leading to ahigher classi�cation rate. It must be noted that for small numbers of clusters the results are very close for bothclustering techniques. As the number of clusters increases, however, the genetic-based technique is superior.Moreover, the superiority of the genetic approach is more apparent in the case of the Thyroid database whichrepresents the hardest problem among the three benchmarks considered.Table 1: Comparative resultsRCGA FCMNb. of clusters Jm(U; V ) Class. rate (%) Avg. nb. steps Jm(U; V ) Class. rate (%)IRIS DATABASE3 60.57 89.33 848 60.57 89.336 24.58 90.67 2315 24.67 90.679 15.53 98.00 2144 15.62 97.3312 10.89 98.67 3226 10.95 98.00GLASS DATABASE2 298.87 93.92 2589 298.93 93.924 133.89 95.79 2234 134.25 95.326 83.48 96.26 1790 84.61 94.398 58.74 99.53 945 61.52 98.13THYROID DATABASE3 17757.25 79.06 2756 17757.88 79.066 6715.80 87.44 2620 6716.67 87.449 3998.42 88.37 1638 4014.10 87.4412 2663.87 91.62 1816 2740.62 88.37



5 CONCLUSIONSWe have developed a genetic approach for the optimization of the clustering criterion in the fuzzy c-meansalgorithm. The proposed scheme is based on coding the space of cluster prototypes (centers) by means of
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