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Abstract

In this work we present an advanced Bayesian formulation to
the task of control learning that employs the Relevance Vector
Machines (RVM) generative model for describing value func-
tions. The key aspect of the proposed method is the design of
the discount return as a generalized linear model that con-
stitutes a well-known probabilistic approach. This allowsto
augment the model with advantageous sparse priors provided
by the RVM’s regression framework. We have also taken into
account the significant issue of selecting the proper parame-
ters of the kernel design matrix. We have demonstrated that
our method produces improved performance in both simu-
lated and real test environments.
Additional information on this work can be found at:
http://www.cs.uoi.gr/∼ntziortzi/AAAI2011/

Introduction
Reinforcement Learning (RL) (Sutton and Barto 1998)
refers to learning to control a system. It is a paradigm of
Machine Learning (ML) in which rewards and punishments
guide the learning process. In reinforcement learning an
agent interacts with its environment, receiving observations
and selecting actions to maximize a scalar reward signal that
is provided by the environment. This interaction is usually
modeled by Markov Decision Processes (MDPs). A stan-
dard MDP consists of(X ,U , R, p), whereX andU are the
state and action spaces, respectively. Further,R : X → ℜ is
the reward function, whilep : X × U × X → [0, 1] is the
state transition distribution. A policyµ : X × U → [0, 1] is
a mapping from states to action selection probabilities. The
discounted return for D(x) for a statex under policyµ is a
random process defined as

D(x) =

∞
∑

i=0

γiR(xi)|x0 = x, (1)

wherexi+1 ∼ pµ(·|xi) is the policy-dependent state tran-
sition probability distribution andγ ∈ [0, 1] is the discount
factor that determines the present value of future rewards.
The above Equation can be written more concisely as

D(x) = R(x) + γD(x′) wherex′ ∼ pµ(|̇x). (2)
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The RL goal is to estimate avalue function for each state
which is the expected discounted return under a policyµ
with respect to the randomness in the trajectories and in the
rewards collected therein, soV (x) = EµD(x). In this way,
agent will select actions that drive to states with the best ex-
pected reward. During learning the agent must balance be-
tween selecting actions to achieve high reward and selecting
actions to gain information about the environment. This is
called exploration vs. exploitation trade off.

Gaussian Processes (Rasmussen and Williams 2006) have
been recently used to optimal control problems providing
an elegant Bayesian modeling RL framework. The Gaus-
sian Process Temporal Difference (GPTD) (Engel, Mannor,
and Meir 2005) assumes that value functions are modeled
with Gaussian processes. In particular, a decomposition of
the discounted returnD(x) is first considered into its mean
value and a zero-mean residual∆V , i.e.

D(x) = V (x) + ∆V (x). (3)

Thus by combing Eqs. (3), (2) we obtain the following rule

R(x) = V (x)− γV (x′) +N(x,x′), (4)

where x
′ ∼ pµ(·|x). Given a sample trajectory

x0,x1, . . . ,xt the model results in the following set of
t linear equationsRt = HtVt + Nt, where Rt =
(R(x0), . . . , R(xt)), Vt = (V (x0), . . . , V (xt)), Nt =
(N(x0,x1), . . . , N(xt+1,xt)), and

Ht =









1 −γ 0 · · · 0
0 1 −γ · · · 0
...

...
0 0 · · · 1 −γ









.

According to the Gaussian processes’ strategy, the value
function is assumed to be zero-mean Gaussian, i.e.Vt ∼
N (0,Kt), with a covariance matrixKt andNt ∼ N (0,Σt)
with Σt = σ2

tHtH
T
t .

The application of the Gaussian Process to this regression
problem provides with update rules for the value function
according to the computation of the marginal posterior dis-
tribution of the value. However, the computational cost of
the above method is huge since the size of matrices grow
linearly with the number of states visited. For this reason,a
sparse online algorithm has been proposed in (Engel, Man-
nor, and Meir 2005) by constructing adictionary of input



states. Every time a statext is visited, a procedure is per-
formed in order to decide whether or not to be entered into
dictionary. This is made by examining if the feature space
image of tested stateφ(xt) can be approximated by the the
existing dictionary with a maximum allowed square error.
The sparse version of GPTD makes further some approxi-
mations for calculating efficiently the kernel matrixKt with
a reduced computational cost (for details see (Engel, Man-
nor, and Meir 2005)).

The proposed method
The contribution of the proposed method is twofold: At first
it establishes a better value function modeling with the useof
a sparse Bayesian framework. At a second level it manages
to overcome some limitations of the GPTD and its sparse
version, arisen from the enormous computational complex-
ity that lead to approximated solutions. Our scheme deals
with the construction of a proper state dictionary and the cu-
mulative discount rewards between successive states entered
in it. Using the stationarity of the MDP we may rewrite the
discount return (Eq. 2) for a visited statext as

D(xt) = SR(xt) + γktD(xt+kt
) , (5)

where SR(xt) =
∑kt−1

j=0
γjR(xt+j) is the par-

tial discount return of the state-reward sequence
xt, R(xt), . . . ,xt+kt−1, R(xt+kt−1), and kt is the time
difference between successive samples entering in the
dictionary. Using the above formulation and considering the
decomposition of GPTD (Eq. 3) we can obtain the next rule:

SR(xt) = V (xt)− γktV (xt+kt
) +N(xt,xt+kt

) , (6)

whereN(xt,xt+kt
) = ∆V (xt) − γkt∆V (xt+kt

). There-
fore, for each samplẽxn inserted into the dictionary, we can
obtain a set ofn model equations for states̃x1, . . . , x̃n}:

SRn = HnVn +Nn , (7)

whereSRn = (SR(x̃1), . . . , SR(x̃n)), while matrix H
takes the following form

Hn =











1 −γk1 0 · · · 0
0 1 −γk2 · · · 0
...

...
0 0 · · · 1 −γkn











.

In our approach, we further assume that the sequence of
value functionVn = (V (x̃1), . . . , V (x̃n)) can be described
as a linear model, i.e.

Vn = Φnwn , (8)

whereΦn is a kernel design matrix of sizen× n, whilewn

is the vector of the (unknown) model regression coefficients.
Thus, Equation 7 can be written as

yn = Φnwn + en , (9)

whereyn = (HT
n Hn)

−1HT
n SRn. In the above formulation

the termen plays the role of the model noise and is assumed
to be zero mean Gaussian with a spherical covariance, i.e.
en ∼ N (0, β−1

n I) (β−1
n is the precision parameter).

The policy estimation problem is turned into a regres-
sion coefficients estimation problem. In this direction, sparse
Bayesian methodology offers an advanced solution by intro-
ducing sparse priors that has been successfully employed
in the Relevance Vector Machine (RVM) model (Tipping
2001). In particular, a heavy tailed prior distribution is im-
posed on the regression parameters that causes to zero out
most of them and maintain only a few which are consid-
ered significant after training. RVM has the advantages to
increase the flexibility of the inference process, to control
automatically the model complexity and to avoid overfitting.
Sparse prior is defined in a hierarchical way by consider-
ing first a zero-mean Gaussian distribution overwn, where
their precision are considered as hyperparameters following
a Gamma hyperprior. This two-stage hierarchical prior is ac-
tually a Student’s-t distribution that is sparse. Trainingof
the RVM under the maximum-likelihood framework, leads
to closed form update equations that are applied iteratively
until convergence (Tipping 2001).

Special care has been also given to the construction of the
design matrix. During our study we have adopted the Gaus-
sian kernel functionK(xi, xj) = exp(|xi − xj |2/(2λ)),
which is governed by the scalar parameterλ. As experi-
ments have shown, this parameter plays an important role
that may affect significantly the performance. We have in-
troduced here a multi-kernel scheme by assuming a mixture
of M kernel matricesΦn =

∑M

m=1
umΦnm. Each matrix

has its own kernel parameter valueλm and a weightum,
where

∑M

m=1
um = 1. During the RVM training, there mix-

ing weights{um} are estimated by considering a convex
quadratic programming problem with constraints (equalities
and inequalities). Experiments have shown that the proposed
scheme improves significantly the performance and makes
the method independent on the scalar parameter choice.

We have experimentally studied the proposed method to
known simulated environments, such as the Cart-pole and
the Mountain Car, as well as to several simulated and real
environments of a Pioneer/PeopleBot mobile robot which
is built on the robust P3-DX base. Comparison has been
made using the sparse version of the GPTD and the typical
SARSA(λ) temporal difference algorithm (Sutton and Barto
1998). Our approach manages to yield significantly better
asymptotic performance in much faster rate and to improve
learning procedure.

References
Engel, Y.; Mannor, S.; and Meir, R. 2005. Bayesian re-
inforcement learning with gaussian process temporal dif-
ference methods. InInternational Conference on Machine
Learning, 201–208.
Rasmussen, C., and Williams, C. 2006.Gaussian Processes
for Machine Learning. The MIT Press.
Sutton, R., and Barto, A. 1998.Introduction to reinforce-
ment learning. MIT Press Cambridge, USA.
Tipping, M. E. 2001. Sparse Bayesian Learning and the
Relevance Vector Machine.Journal of Machine Learning
Research 1:211–244.


