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Abstract. The fuzzy min-max classification network constitutes
a promisimg pattern recognition approach that is based on hy-
berbox fuzzy sets and can be incrementally trained requiring
only one pass through the training set. The definition and
operation of the model considers only attributes assuming con-
tinuous values. Therefore, the application of the fuzzy min-max
network to a problem with continous and discrete attributes,
requires the modification of its definition and operation in order
to deal with the discrete dimensions. Experimental results us-
ing the modified model on a difficult pattern recognition prob-
lem establishes the strengths and weaknesses of the proposed
approach.

INTRODUCTION

Fuzzy min-max neural networks [2, 3] consitute one of the many mod-
els of computational intelligence that have been recently developed from
research efforts aiming at synthesizing neural networks and fuzzy logic
[1].

The fuzzy min-max classification neural network [2] is an on-line
supervised learning classifier that is based on hyperboz fuzzy sets. A hy-
perbox constitutes a region in the pattern space that can be completely
defined once the minimum and the maximum points along each dimen-
sion are given. Each hyperbox is associated with exactly one from the
pattern classes and all patterns that are contained within a given hyper-
box are considered to have full class membership. In the case where a
pattern is not completely contained in any of the hyperboxes, a properly



computed fuzzy membership function (taking values in [0, 1]) indicates
the degree to which the pattern falls outside of each of the hyperboxes.
During operation, the hyperbox with the maximum membership value
is selected and the class associated with the winning hyperbox is con-
sidered as the desicion of the network. Learning in the fuzzy min-max
classification network is an expansion-contraction process that consists of
creating and adjusting hyperboxes (the minimum and maximum points
along each dimension) and also associating a class label to each of them.

In this work, we study the performance of the fuzzy min-max clas-
sification neural network on a pattern recognition problem that involves
both discrete and continuous attributes. In order to handle the discrete
attributes, the definition of a hyperbox must be modified to incorporate
crisp (not fuzzy) sets in the discrete dimensions. Moreover, a modifica-
tion is needed of the way the membership values are computed, along
with changes in the criterion under which the hyperboxes are expanded.
Besides extending the definition and operation of the fuzzy min-max net-
work, the purpose of this work is also to gain insight into the factors that
affect operation and training and test its classification capabilities on a
difficult problem.

In the following section a brief description of the operation and train-
ing of the fuzzy min-max classification network is provided, while in
Section 3 the modified approach is presented. Section 4 provides ex-
perimental results from the application of the approach to a difficult
classification problem. It also presents results from the comparison of
the method with the backpropagation algorithm and summarizes the
major advantages and drawbacks of the fuzzy min-max neural network
when used as a pattern classifier.

LEARNING IN THE FUZZY MIN-MAX CLASSIFICATION
NETWORK

Consider a classification problem with n continuous attributes that have
been rescaled in the interval [0, 1], hence the pattern space is I™ ([0, 1]7).
Moreover, consider that there exist p classes and K hyperboxes with
corresponding minimum and maximum values v;; and wj; respectively
(j=1,...,K,i=1,...,n). Let also ¢, denote the class label associated
with hyperbox Bi.

When the h'" input pattern A, = (a1, ..., an,) is presented to the



network, the corresponding membership function for hyperbox B; is ([3])

bj(Ar) =
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where f(z,v) =av,iff 0 <2y <1, f(z,y)=1if 2y > 1 and f(z,7) =0
if zv < 0. If the input pattern Aj falls inside the hyperbox B; then
bj(Ap) = 1, otherwise the membership decreases and the parameter
~v > 1 regulates the decrease rate. As already noted, the class of the
hyperbox with the maximum membership is considered as the output of
the network.

In a neural network formulation, each hyperbox B; can be considered
as a hidden unit of a feedforward neural network that receives the input
pattern and computes the corresponding membership value. The values
vj; and wj; can be considered as the weights from the input to the hidden
layer. The output layer contains as many output nodes as the number
of classes. The weights u;; (j=1,...,K, k=1,...,p) from the hidden
to the output layer express the class corresponding to each hyperbox:
ujr, = 1 if B; is a hyperbox for class ¢, otherwise it is zero.

During learning, each training pattern Ay is presented once to the
network and the following process takes place: First we find the hyperbox
B; with the maximum membership value among those that correspond
to the same class as pattern A, and meet the expansion criterion:

né > Zn:(max(wﬁ, api) — min(vj;, ap;)) (2)

=1

The parameter § (0 < § < 1) is a user-defined value that imposes a
bound on the size of a hyperbox and its value significantly affects the
effectiveness of the training algorithm. In the case where an expandable
hyperbox (of the same class) cannot be found, then a new hyperbox
By is spawned and we set wy; = vg; = ap; for each ¢. Otherwise, the
hyperbox B; with the maximum membership value is expanded in order

to incorporate the new pattern Ay, i.e., foreach i =1,...,n:
0" = min (v, ay;) (3)
e g0 9 he
W' = max(w2?, ap;) (4)
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Following the expansion of a hyperbox, an overlap test takes place to
determine if any overlap exists between hyperboxes from different classes.
In case such an overlap exists, it is eliminated by a contraction process
during which the size of each of the overlapping hyperboxes is minimally



adjusted. Details concering the overlap test and the contraction process
can be found in [2].

From the above description it is clear that the effectiveness of the
training algorithm mainly depends on two factors: the value of the pa-
rameter # and the order with which the training patterns are presented
to the network.

TREATING DISCRETE ATTRIBUTES

A basic assumption concerning the application of the fuzzy min-max clas-
sification network to a pattern recognition problem is that all attributes
take continuous values. Hence, it is possible to define the pattern space
(union of hyperboxes) corresponding to each class by providing the min-
imum and maximum attribute values along each dimension. In the case
of pattern recognition problems that are based on both analog and dis-
crete attributes, it is nessecary for the discrete features to be treated in
a different way. This is mainly due to the fact that it is not possible to
define a meaningful ordering of the values of discrete attributes. Thus,
it is not possible to apply the minimum and maximum operations on
which the original fuzzy min-max neural network is based.

Consider a pattern recognition problem with n attributes (both con-
tinous and discrete). Let D denote the set of the indices of the discrete
attributes and C denote the set of indices of the continuous attributes.
Let also n¢ = |C| and np = |D| denote the number of continuous and dis-
crete attributes respectively and D' denote the domain of each discrete
feature ¢ € D. A pattern Ay, = (ap1,...,an,) of this problem has the
characteristic that ap; € [0,1] for i € C and ap; € D' for i € P. In order
to deal with problems characterized by such mixture of attributes, we
consider that each hyperbox B; is described by providing the minimum
vj; and maximum wj; attribute values for the case of continuous features
(2 € C) and by explicitly providing a set of attribute values D;; C D' for
the case of discrete features ¢ € D. Since it is not possible to define any
distance measure between the possible values of discrete attributes, we
cannot assign any fuzzy membership values to the elements of sets D;.
Therefore, the sets D;; are crisp sets, i.e., an element either belongs to
a set or not. Taking this argument into account, equation (1) provid-
ing the membership degree of a pattern A, to a hyperbox B;, takes the



following form:

bi(Ap) = %{Z[l — flani—wji,y) = f(vji—ans, Y]+ D mpy(an)} (5)
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where mg(z) denotes the membership function corresponding to the crisp
set .S, which is equal to 1 if € 5, otherwise it is equal to 0.

In a neural network implementation, the continuous input units are
connected to the hidden units via the two kinds of weights v;; and w;;
as mentioned in the previous section. In what concerns the discrete
attributes, we can assign one input unit to each atribute value, that is
set to 1 in case this value exists in the input pattern, while the other
units corresponding to the same attribute are set equal to 0. If a specific
value d; € D! belongs to the set Dj;;, then the weight between the
corresponding input unit and the hidden unit j is set equal to 1, otherwise
it is 0.

During training, when a pattern Ay is presented to the network the
expansion criterion has to be modified in order to take into account both
the discrete and the continuous dimensions. More specifically, we have
considered two distinct expansion criteria: The first one concerns the
continuous dimensions and remains the same as in the original network
given by equation (2) with n being replaced by nc which denotes the
number of continuous attributes. The second expansion criterion con-
cerns the discrete features and has the following form:

A< mpy(an) (6)

1€D

where the parameter A (0 < A < np) expresses the minimum number
of discrete attributes in which the hyperbox B; and the pattern A
must agree in order for the hyperbox to be expanded to incorporate the
pattern.

During the test for expansion process, we test whether there exist
expandable hyperboxes (according to the two criteria) from the same
class as A and we expand the hyperbox with the maximum membership.
If no expandable hyperbox is found a new one By is spawned and we set
Vg = wy; = ap; for 1 € C and Dy; = {ahi} for ¢+ € D.

When a hyperbox is expanded, its parameters are adjusted as follows:
IfielC

vift = min(v;’fd, ani) (7)

new

Wi = 1r1r1ax(w]°f»d7 ani) (8)



If:eD
DY = D9 U {api} (9)

During overlap test and contraction the discrete dimensions are not
considered and ovelap is eliminated by adjusting ony the continuous di-
mensions of the hyperboxes following the minimum disturbance principle
as in the original network. Although it is possible to separate two hy-
perboxes B; and Bj by removing common elements from some of the
sets Dj; and Dy;, we have not followed this approach. The main reason
is that the disturbance in the already allocated patterns would be more
significant, since these sets do not contain many elements in general.

EXPERIMENTS AND CONCLUSIONS

We have studied the modified fuzzy min-max neural network classifier
on a difficult classification problem concerning the assignment of credit
to consumer applications. The data set (obtained from the UCI repos-
itory [5]) contains 690 examples and was originally studied by Quinlan
[4] using decision trees. Each example in the data set concerns an appli-
cation for credit card facilities described by 9 discrete and 6 continuous
attributes, with two decision classes (either accept of reject the applica-
tion). Some of the discrete attributes have large collections of possible
values (one of them has 14) and there exist examples in which some at-
tribute values are missing. As noted in [4] these data are both scanty
and noisy making accurate prediction on unseen cases a difficult task.
Two series of experiments were performed. In the first series, the
data set was divided into a training set of 460 examples (containing
equal number of positive and negative cases) that were used to adjust
the network hyperboxes, while the remaining 230 examples were used as
a test set to estimate the performance of the resulting classifier. Each
experiment in a series consisted of training the network (in a single pass)
for certain values of # and A and then computing the percentage of correct
classifications over the test set. Moreover, the order of presentation of
the training patterns to the network was held fixed in all experiments.
Best results were found for 8 = 0.237 and A = 8. For these parameter
values the resulting network contained 136 hyperboxes and the success
rate was 87%. It must be noted that the success rate was very sensitive
both on the choice of the parameter § and on the order with which the
training examples are presented. This of course constitutes a weakness
of the fuzzy min-max classifier, but on the other hand, each training



experiment is very fast and the process of adjusting 8 can be performed
in reasonable time. We have also tested the classification performance in
case the training data are presented to the network more than once and
we have found that only marginal performance improvement is obtained.

We have also used the same data set to train a multilayer percep-
tron using the backpropagation algorithm (the on-line version). A net-
work with one hidden layer was considered. Several experiments were
conducted for different values of the number of hidden units. The best
classification rate we were able to obtain was 83% for a network of 10 hid-
den units and with learning rate 0.1. It must be noted that the required
training time was excessively long compared to the one-shot training of
the fuzzy min-max network.

During experiments, we have observed that some of the examples
were ‘bad’, in the sense that they were very difficult predict, and, in
addition, when used as part of the training set, the resulting network
exhibited poorer classification performance, than in the case in which
these examples were not used for training. For this reason, a second series
of experiments were conducted on a subset of the data set (400 examples)
that resulted from the removal of the bad examples. We considered
a training set and a test set of size 200, each of them containing 100
positive and 100 negative examples. Best performance was obtained for
6 = 0.115 and A = 8 (112 hyperboxes) with classification rate 97.5%.
Moreover, the performance was very robust with respect to the value of
6 with the classification rate being more than 90% for all tested values.
The best classification rate we have obtained for this data set using the
backpropagation algorithm was 89.5%.

As the experiments indicate, the fuzzy min-max classification neural
network constitutes a promising method for pattern recognition problems
that has the advantage of fast one-shot training with its only drawback
coming from its sensitivity in the parameter values used in the test for
expansion criteria. Therefore, further research should be focused on de-
veloping algorithms for automatically adjusting these parameters during
training.
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