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A Vector Quantization Schema forNon-Stationary Signal Distributions Based onML Estimation of Mixture DensitiesN. A. Vlassis K. Blekas G. Papakonstantinou A. StafylopatisABSTRACTWe show that by selecting an appropriatedistortion measure for the encoding-decodingvector quantization schema of signals follow-ing an unknown probability density p(x), theprocess of minimizing the average distortionerror over the training set is equivalent to theMaximum Likelihood (ML) estimation of theparameters of a Gaussian mixture model thatapproximates p(x). Non-stationary signal dis-tributions can be handled by appropriately al-tering the parameters of the mixture kernels.1 IntroductionVector quantization (VQ) [1] is a data com-pression method in signal processing in whichan input signal x is assigned a value c(x) byan encoder, and this value|instead of the ac-tual value x|is sent through a communica-tion channel to the receiver. The latter ap-plies a decoder function x0 = x0(c(x)) to ob-tain the original value. The quality of thisquantizer is measured by the average distor-tion D over a training set T = fx1; : : : ; xngof d-dimensional input signals de�ned asD = nXi=1 �(xi; x0i); (1)with �(x; x0) being the distortion, i.e., a dis-similarity measure, between the actual signalx and its reconstruction x0. The optimal val-ues for the encoder and the decoder of a VQschema are those that minimize the functionD.We assume that the probability densityfunction p(x) of the incoming signals is un-known and we approximate it with a generalmixture of K Gaussian kernels [4, 8], each one

parametrized on its mean �j and variance �2j .These parameters are to be estimated by theMaximum Likelihood (ML) method [5] overthe training set T . In the following we showthat the ML estimation is equivalent to mini-mizing the average distortion functionD, thusprovides a way to compute the nearly optimalvalues for the encoder and decoder functions.In addition, we propose a VQ schema that canhandle non-stationary signal distributions.A similar model has been proposed in theliterature under the name of ProbabilisticNeural Networks [7], in which the mixingweights are assumed equal among all kernelsand equal to the reciprocal of the total num-ber of input samples. For the estimation ofthe total number of kernels the reader mayrefer to [8] for mathematical methods, or [6]for a neural network approach.2 The Vector QuantizerWe assume that the total input density p(x)is a mixture of K Gaussian kernelsp(x) = KXj=1 �jfj(x); (2)where each kernel j is the normal probabilitydensity functionfj(x) = 1�jp2� exp[�(x� �j)22�2j ]; (3)parametrized over its mean �j and variance�2j , and having prior probability �j . Addi-tionally, it must hold PKj=1 �j = 1, �j � 0.The posterior probability that a new signalx is assigned to kernel k is given by the Bayes



formula Pfkjxg = �kfk(x)PKj=1 �jfj(x) ; (4)and the Bayes minimum risk rule assigns asignal x to the kernel k with the maximumposterior probability Pfkjxg. Based on theabove, we de�ne the VQ encoding functionc(x) to be the minimum risk kernel, i.e.,c(x) = k if Pfkjxg = maxPfjjxg; (5)for j = 1; : : : ;K, and the decoding functionx0(c(x)) as x0(c(x)) = �c(x); (6)i.e., the mean of the kernel the input signalwas assigned to.The Maximum Likelihood procedure for thetraining set T assigns to the parameters �j , �j ,and �j of each kernel j values that maximizethe log-likelihoodL(T ) = nXi=1 ln p(xi) (7)which, by applying the logarithm to (3) andusing (2) and (4), amounts to minimizing thetotal distortion D of (1), with x0i = x0(c(xi))and�(xi; x0i) = (xi � x0i)2�2c(xi) + 2 ln�c(xi) � 2 ln�c(xi)+2 lnPfc(xi)jxig; (8)with c(xi) de�ned from (5) while the �rst term(xi � x0i)2=�2c(xi) de�nes the Mahalanobis dis-tance from xi to the mean x0i = x0i(c(xi)) ofthe kernel c(xi). Eq. (8) de�nes the distortionmeasure of our VQ schema.3 Estimating the unknown densityMaximizing the log-likelihood of (7) with re-spect to �j , �j , and �2j , it can be shown [9, 10]that recursive expressions for the estimationof the parameters of each Gaussian kernel jcan be estimated as�j := �j + (n�j)�1Pfjjxg(x��j); (9)�2j := �2j+(n�j)�1Pfjjxg[(x��j)2��2j ];(10)�j := �j+n�1(Pfjjxg��j); (11)

applied each time a new input signal x is ar-rived, while Pfjjxg is the posterior probabil-ity (4) that x is assigned to kernel j.Substituting the number n|the cardinal-ity of T|above with a constant l, i.e., ren-dering the system `memoriless' to old signals,non-stationary signal distributions can also behandled [10]. Also, we propose here a methodthat on-line seeks for the correct number ofkernels based on simple test statistics for test-ing the hypothesis of single normality againsta two-kernel alternative.3.1 Testing for the number of kernelsSplit: We �rst look for a test statisticto decide when a kernel should split in two.A statistical test is needed to check the hy-pothesis that the input samples assigned to aparticular kernel with � and � follow a sin-gle Gaussian against the alternative that theyfollow a mixture of two kernels, in which casethe single kernel should split in two.We form a simple sequential test statisticbased on a weighted formula of the kurtosis,or fourth moment, of a kernel j askj := kj+(n�j)�1Pfjjxg"�x� �j�j �4�kj�3#;(12)with �j and �j the current ML estimates forthe parameters of the kernel. On the hy-pothesis that xi follow a normal distributionN(�j ; �j) it follows that the random variableq = kjqn�j=96 (13)approximately follows normal distributionN(0; 1), and thus we can accept the hypothe-sis that the kernel j is N(�j ; �j) if q is su�-ciently close to zero.When a new kernel is created it gets a zerovalue of kurtosis which is updated at each iter-ation step from (12). The �rst time the afore-mentionted kurtosis test is violated we splitthe kernel and create two kernels with means�+� and ���, and variances and priors bothequal to the original variance. The priors ofall kernels are then re-normalized to ensurePKj=1 �j = 1.Join: A reasonable criterion for joiningtwo neighboring kernels in one is when theyhave almost the same variance and very near



means. For checking for equality of the vari-ances �2j and �2k of two neighboring kernels jand k we form the ratio of the larger to thesmaller variance, e.g.,F = �2j�2k ; (14)and accept the hypothesis of equal variancesif F is lower than a pre-determined threshold.If the test for equal variances succeeds, wesubsequently check for equal means assumingcommon variance �2 = �j�k , using the teststatistic t = pn�j �j � �k�p2 ;which under the hypothesis of equal meansapproximately follows normal distributionN(0; 1). Similarly, we accept the hypothe-sis of equal means if t is su�ciently close tozero. Then the two kernels are joined in onewith mean (�j+�k)=2, variance �2, and priorequal to �j . The priors of all kernels are re-normalized to unity.Removing a kernel: A kernel j is re-moved from the mixture when its prior prob-ability �j is below 1=n, a threshold ensur-ing that the terms in (9) and (10) remainbounded. After a kernel is removed all ker-nels should update their priors to sum one.4 Multivariate densitiesFor problems of higher dimension d, Eq. (3)generalizes for a kernel j and input vector x =[x1; : : : ; xd] tofj(x) = exp[�0:5(x�mj)S�1j (x�mj)T ]p(2�)d detSj (15)where mj = [�j1; : : : ; �jd] is the mean of thekernel, Sj is the covariance matrix, and detSjdenotes the determinant of Sj .The approach we described in the previoussection can be directly applied to the multi-variate case if we make the assumption thatin each multivariate kernel j the d compo-nents of the input vector x are jointly normaland uncorrelated, an assumption that resultsin hyper-ellipsoidal kernels. In this case [3]the respective covariance matrix Sj is diago-nal and (15) can be written as the product of

the d marginal univariate Gaussians, i.e.,fj(x) = 1�j1 � � ��jdp(2�)dexp[�(x1 � �j1)22�2j1 +� � �+�(xd � �jd)22�2jd ](16)where �2j1, . . . , �2jd are the diagonal elementsof Sj . For the prior updates we use (2),(4), and (11) with the kernel densities substi-tuted from (16), while adaptation of the ker-nel parameters is done in each dimension sep-arately so that the d components of mj andthe d diagonal elements of Sj of each kernelare estimated as in the univariate case from(9) and (10), respectively. The kurtosis testis applied on each dimension separately and ifit succeeds for dimension i then the split ker-nels keep all but the i components unaltered,the latter being changed as in the univariatecase. Finally, to join two kernels, the respec-tive tests must succeed in all dimensions.5 ExamplesTo test the validity of our method we ap-plied it to the problem of estimating a uniformdistribution, in 1-d and 2-d. This can be con-sidered a di�cult problem for Gaussian ap-proximators, and although theoretically [5] auniversal approximator for continuous func-tions via Gaussians can be established, inpractice this proves to be a hard task.In Fig. 1 we show the approximation of ouralgorithm to two uniform densities, the �rst1-d and the second 2-d. One notes that thefunctions are adequately approximated nearthe center, with the expected \jumps" at thediscontinuities (corners). For the �rst, thenumber of employed kernels was 31, while forthe second 170. The thresholds for the statis-tical tests for splitting, joining, and removinga kernel, were kept to a minimum to favor thecreation of many kernels and thus a better ap-proximation.6 Conclusions-DiscussionWe showed that the problem of minimizingthe average distortion (1) in a VQ schemais equivalent to the ML estimation procedurefor the unknown signal density. We also de-scribed an iterative self-organizing procedurefor estimating the unknown probability den-sity function of the input signals. The bulk
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a. 1-d uniform (K=31) b. 2-d uniform (K=170)Figure 1: Estimating a uniform density in a 1-d problem (a), and a 2-d problem (b). Parameters:n = 1000, a = 0:1.of our approach lies in approximating the un-known density with a mixture of Gaussiankernel functions and employing the MaximumLikelihood technique for estimating the pa-rameters of each kernel. Moreover, by ap-propriately splitting and joining kernels it ispossible to handle even non-stationary signaldistributions.We may note the similarity of our kernelmeans update equation (9) to the reconstruc-tion vectors update formula of [2]x0(c0(x)) = x0(c0(x))+��(c0(x)�c(x))(x�x0(c0(x))):(17)There � is the learning rate and �(�) is the pdfof a noise added by the channel to the codec(x) to produce a distorted code c0(x) at thereceiver. From the above relationship we infera similar model for the channel noise in ourVQ schema; the noise pdf over a codevectorc(x) is the Gaussian kernel pdf pc(x).References[1] A. Gersho and R. M. Gray. Vector Quan-tization and Signal Compression. KluwerAcademic Publishers, Boston, 1992.[2] S. P. Luttrell. Self-organization: Aderivation from �rst principle of a classof learning algorithms. In Proc. IEEEConf. on Neural Networks, pages 495{498, Washington, DC, 1989.[3] A. Papoulis. Probability, RandomVariables, and Stochastic Processes.McGraw-Hill, 3rd edition, 1991.

[4] R. Redner and H. Walker. Mixture den-sities, maximum likelihood and the EMalgorithm. SIAM Review, 26(2):195{239,Apr. 1984.[5] B. D. Ripley. Pattern Recognition andNeural Networks. Cambridge UniversityPress, Cambridge, U.K., 1996.[6] S. Shimoji. Self-Organizing Neural Net-works Based on Gaussian Mixture Modelfor PDF Estimation and Pattern Classi-�cation. PhD thesis, University of South-ern California, 1994.[7] D. Specht. Probabilistic neural networks.Neural Networks, 3:109{118, 1990.[8] D. Titterington, A. Smith, andU. Makov. Statistical Analysis ofFinite Mixture Distributions. Wiley,1985.[9] H. G. C. Tr�av�en. A neural network ap-proach to statistical pattern classi�cationby \semiparametric" estimation of prob-ability density functions. IEEE Transac-tions on Neural Networks, 2(3):366{377,May 1991.[10] N. A. Vlassis, A. Dimopoulos, and G. Pa-pakonstantinou. The probabilistic grow-ing cell structures algorithm. In Proc.ICANN'97, 7th Int. Conf. on Arti�cialNeural Networks, pages 649{654, Lau-sanne, Switzerland, Oct. 1997.


