ON-CHIP DETERMINISTIC COUNTER-BASED TPG WITH LOW HEAT
DISSIPATION *

X. Kavousianos D. Nikolos
The University of Patras

Computer Engineering and Informatics Dept.

Patras, Greece 26500
kabousia@ceid.upatras.gr/nikolos@cti.gr

ABSTRACT

An on—chip test pattern generation (TPG) scheme
for the digital components of a mixed signal system is
presented. The TPG is a counter. We propose CAD
tools that automate its design so that the heat dis-
sipation during test application is low. Experimental
results on the ISCAS’85 benchmarks show the impact
of the proposed methods.

I. INTRODUCTION

A popular method of testing systems containing
mixed-signal devices uses a dual-mode Automatic
Test Equipment (ATE) which consists of a System
Controller, the Analog Measurement System and a
Switch [5]. Each device is accessed and tested through
a mixed-signal Test Bus. Each device may contain
digital and analog components which are tested in dif-
ferent testing modes. This process can be significantly
simplified and accelerated if Built-In Self-Test (BIST)
mechanisms are incorporated into all, or most, of the
digital components in each device. The latter compo-
nents may be self-tested while other components in
the same or other devices are tested using the ATE.

The main objective of most BIST techniques has
been the design of on—chip Test Pattern Generators

(TPGs) that achieve high fault coverage at acceptable

test lengths. Pseudorandomly generated patterns can
detect the easy to detect faults.

A methodology for on—chip TPG suggests that the
test patterns for the hard to detect faults be stored in a
ROM or generated on—chip by less hardware intensive
mechanisms such as a Linear Feedback Shift Register
(LFSR) or a binary counter. The goal is to reproduce
on—chip a set T of patterns, referred to as the test
matrix, that an Automatic Test Pattern Generation
Tool (ATPG) has already generated for detecting the
hard to detect faults. This is also called the test set
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embedding problem, and is different than the pseu-
doexhaustive/pseudorandom TPG problem which is a
fault-independent TPG problem.

Several on—chip test set embedding TPG schemes
for fully scanned digital systems have been proposed.
They are based on Weighted Random LFSRs (WRLF-
SRs), counters, and cellular automata. Their test ap-
plication time and hardware overhead is low.

However, WRLFSR-based TPGs require long test
sequences to attain high fault coverage for circuits
that have a large number of random pattern resistant
faults. In addition, the correlation between consecu-
tive patterns generated by LFSRs is much lower than
the patterns which are applied on the circuit during
operation mode. It has been observed that this type of
on—chip TPG may result to switching activity in the
circuit that can be significantly higher during BIST
than during its normal operation [6].

Excessive switching activity during test increases
the heat dissipation in a CMOS circuit since the lat-
ter quantity is proportional to switching activity. This
may cause permanent damage of the circuit. Heat
dissipating in the test mode is already affecting test
methodologies and test scheduling [6]. The problem
becomes alarming as advances in high performance
allow smaller chips to be placed closer in order to de-
crease interconnect delays. Many neighboring chips
may be simultaneously self-tested or tested using ATE
that supports mixed-mode devices.

The use of special cooling equipment to remove
excessive heat dissipated during test application be-
comes increasingly difficult, especially on mixed-
signal BIST at board applications. The other alter-
native is to design on—chip TPGs which apply test
patterns that cause switching activity which is com-
parable to that generated during normal operation.

An LFSR-based on—chip TPG was proposed re-
cently in [7] that guarantees reduced switching activ-
ity when compared to traditional LFSR-based TPGs.



However, [7] considers pseudoexhaustive TPG. This
approach will generate unnecessarily high heat dissi-
pation (due to the very large application time) when
applied for deterministic on—chip TPG.

This paper proposes a low heat dissipation deter-
ministic on—chip TPG based on a binary counter. The
counter will reproduce on—chip an input test matrix T’
consisting of p test patterns. Counter—based schemes
with low test application time and hardware overhead
were recently proposed in [3, 4]. The lack of random-
ness between consecutive patterns indicates a promis-
ing framework for low switching activity and thus heat
dissipation. The latter objective was not considered in
[3, 4].

The paper is organized as follows. Section II de-
scribes techniques that we use to effectively synthe-
size counters as deterministic on—chip TPGs. These
methods amount to operations on the test matrix 7T'.
Section III proposes metrics that can be used in order
to synthesize counters with low heat dissipation. It
also presents our proposed methodology. Section IV
gives experimental results on ISCAS’85 benchmarks,
and Section V concludes.

II. PRELIMINARIES

The work in [3, 4] proposes synthesis methods that
may have a significant impact in the performance of
the designed counter TPG. They are described as op-
erations on the test matrix 7. However, it is explained
that any modification of 7" amounts to a well defined
resynthesis (redesign) process for the counter TPG.
[3, 4] show that these operations have a great impact
on the the test matrix reproduction time. This paper
shows that the heat dissipation is drastically reduced
when these operations are used appropriately in the
design of the on—chip counter TPG. The matrix oper-
ations are briefly reviewed in this section.

Let us first assume that the matrix T is binary, i.e.,
no test pattern in 7" has don’t cares. Observe that up
to f identical columns of the binary matrix T can be
collapsed (merged) into a single one. This column will
then be generated by a single counter cell. Quantity f
is a precomputed upper bound for each circuit so that
the fan-out stems of the counter cells do not cause
timing violations. This is particularly important for
at—speed testing, which is used to detect slow chips.
The number of counter cells w is reduced as the value
of f increases. Therefore the test reproduction time ¢
is reduced as well.

Observe that complimentary columns can be
merged into a single column since they can be re-
produced by the same counter cell. Also any column
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can be substituted by its binary compliment. Fur-
thermore, all columns of T' that are either constant at
0 or 1 can be eliminated; they can connected to the
power or ground wires. These operations may reduce
w significantly and thus the test application time .

In addition, the columns of 7" can be permuted at
any order as long as the wires that connect the re-
spective counter cells to the circuit inputs are not ex-
cessively long. This restriction, however, is rarely an
issue because the operations described earlier reduce
w significantly.

Finally, observe that if one is willing to use more
than one counters, the vectors of T can be partitioned
into submatrices. The operations described earlier can
then be applied in each submatrix. [4] explain that
matrix partitioning may significantly reduce time ¢. It
presents several counter—-based schemes whose hard-
ware overhead is bounded by that of two counters.
The described operations may applied on the subma-
trices in different ways which define alternative syn-
thesis schemes with clear trade-offs between the test
reproduction time ¢ and the hardware overhead [4].

The work in [3, 4] shows that it is computationally
intensive to determine the optimal way of applying the
above operations on T so that the matrix reproduction
time ¢ is minimum. However, sophisticated CAD tools
are proposed that apply them effectively. The example
below illustrates the impact of these operations on the
test reproduction time ¢ when they are appropriately
applied on a binary matrix T

C1 c2 Cc3 Ca Cs Cg [o4 cg
P1 1 1 0 1 1 1 0 1
P2 0 1 0 1 1 1 0 1
P3 1 1 0 1 1 1 1 1
Pa 1 0 1 0 0 [} 0 0
(a)

c3 1 c7

vy 0 0 0

v [ O i 0

v3 0 0 1

vy |1 0 0

(®)

Fig. 1(a): A test matrix with reproduction time 130 (leftmost
column is most significant bit). Four patterns are applied on a
8-bit circuit.

Fig. 1(b): After identical column merging (c2,c4,cs,¢s,C8),
complementary column merging (c2,c3), complementary col-
umn generation (c; ), and permutation, the reproduction time

becomes ¢ = 4.

Ezample: Consider the test matrix T in Fig. 1(a)
which consists of four test patterns, i.e., p=4. The
combinational logic circuit that has eight inputs. A



simple binary counter requires 130 clock cycles to ap-
ply the patterns of Fig. 1(a).

However, Fig. 1(b) shows how T was modified by
the CAD tool in [3] which considers a single counter
TPG. Observe that the reproduction time ¢ is now op-
timal and equal to 4. In general, matrix 7 is ternary
and contains test patterns with don’t cares. An ap-
propriate assignment of the don’t care values may re-
sult into drastic reductions on the reproduction time¢.
The CAD tools in [3, 4] utilize don’t care assignment
effectively.

Once the CAD tools in [3, 4] modify T using the
above operations, it is easy to synthesize the counter
TPG so that it maps the reduced matrix with the
minimal reproduction timet to the original test matrix
T. This step can be performed very fast. It only
requires time that is linear to the number of the circuit
inputs (number of columns in T).

III. SYNTHESIS SCHEMES

This section proposes methods for synthesizing
counter TPGs with low heat dissipation using algo-
rithms that benefit from the operations in Section II.
We assume a single counter TPG.

We consider power dissipation due to the consump-
tion of dynamic switching components, resulting from
the charging and discharging of capacitors. It is known
that this dominates the power consumption.

Let Vg4 denote the power supply voltage, C; the
load capacitance at line [, and tr; the total number of
transitions on line ! during the test reproduction time.
The total heat dissipation is:

H=1/2-Vj) Ci-tu. (1)
1

Observe that average heat dissipation cannot con-
sider the applied test patterns as accurately as H.
Clearly, average heat dissipation is an important mea-
sure when designing chips whose operation time is not
known in advance. However, in TPG (with the excep-
tion of pseudorandom TPG) it is preferable to consider
instead the total heat dissipation, especially when the
order of the applied patterns is known.

The goal of this paper is to provide a methodology
for applying the operations of Section II on matrix T’
and design the counter so that H is minimized. Ob-
serve that Equation (1) implicitly takes into consid-
eration the test application time ¢ as well as the set
of vectors that that synthesized counter will generate.
If the test application time ¢ is very high it is very
unlikely that H will be low.
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We cannot however compute H before we explicitly
apply the patterns in the order generated by the de-
signed counter. Furthermore, it is impossible to com-
pute for every line [ the quantity tr; without explicitly
simulating each generated pattern on the circuit under
test.

The methods in [3, 4] were able to benefit from the
operations of Section II by being able to identify cir-
cuit independent properties on the columns of T' that
have a significant impact on the reproduction time ¢.
Clearly, the problem studied here is significantly more
difficult because not all properties of the columns of T
can be circuit independent.

This section proposes two metrics. The first metric,
described in subsection A, identifies a circuit indepen-
dent property that is very useful for minimizing H.
The metric of subsection A is the starting point of
our proposed method. Subsection B then proposes a
second metric which takes into consideration the cir-
cuit under test. Finally, subsection C shows how our
method benefits from the two presented metrics.

A. The First Metric

It is expected that when two consecutive patterns
pi and p; that the counter generates induce transitions
on many inputs in the circuit then many lines in the
circuit will also have transitions and thus their appli-
cation order will contribute significantly on H. The
metric of this subsection is based on this assertion and
proposes to apply the operations of subsection Il on T’
so that the synthesized counter generates a sequence
of test patterns which minimize the total number of
transitions on the inputs of the circuit. The latter
quantity is precisely

tr = Z )
Pi,Pj

The metric of this section proposes that the total
heat dissipation H is estimated by the quantity

Hy=1/2-Vj- Z bpip;- (27)
PiPj

Thus, the goal of the respective counter synthesis
CAD tool is to apply the operations of Section II on
T so that Equation (2’) or, equivalently, (2) is min-
imized. In the following, we show that the problem
of minimizing tr is related to the problem minimizing
the test reproduction time ¢. Thus, the design of the
new CAD tools can benefit from the algorithms and
ideas in [3).
Definition We call a test matrix T basic if it is binary
(does not have don’t cares), no column is constant



at 0 or 1, and not any two columns are identical or
complimentary to each other.

The only two operations that may apply on a ba-
sic matrix T so that the number of input transitions
tr is minimized are the column permutation and the
complimentary column generation. We call these op-
erations basic. Note that the number of columns re-
mains invariant, under any application of the basic
operations, and equal to w.

Let t be the matrix reproduction time after an arbi-
trary application of the basic operations. Assume that
the columns are numbered in increasing order from the
rightmost column (least significant counter cell) to the
leftmost column (most significant counter cell) of the
resulting test matrix. Then the number of the input
bit transitions on column k is

2 -1

Therefore the total number of bit transitions on the
inputs is

>(11- D).

Since w is invariant of the order of applying basic
operations, we have been able to show the following
theorem.

Theorem 0.1 The design of a counier that mini-
mizes the test reproduction time t also minimizes H,
for any basic matriz T'.

Theorem 0.1 allows for a direct application of the
CAD tools that were developed in [3, 4] to this new
problem formulation. However, basic test matrices
are only of theoretical importance. In practice, many
columns that are identical or complimentary to each
other, and are represented by a single column, which
we call a column representative. Every column repre-
sentative corresponds to a a single counter cell.

The proposed CAD tool sorts the column repre-
sentatives in decreasing order according to the num-
ber of the original columns (number of circuit inputs)
that each representative column contains. Let z; be
the number of columns represented by the i** column
representative, 1.e., Zjy; > ;.

The representative columns are then assigned in
their sorted order from the most significant counter
cell to the least significant counter cell. According to
our previous analysis, this minimizes the total number
of transitions on the inputs for a given reproduction
time t.

20

More precisely, the total number of input bit tran-
sitions for reproduction time t is

D (51-1).

S)nce:ck+1>:ck>1and1<|' i1 -1<[§] -
1, Vk, the above approach mmumzes the number of
input transitions for a given value of ¢. In addition,
the described method resembles the one used in [3,
4] in order to minimizing ¢ heuristically. Therefore
the approach tends to minimize ¢ as well as the total
number of input transitions that may occur while T is
embedded using a counter.

It is a difficult task to determine the column rep-
resentatives in the presence of don’t cares [3]. The
approach we have followed works as follows. We form
a graph G where each column of T' corresponds to a
node in G, and two nodes are connected with an edge
if the respective columns are either identical or compli-
mentary. Then the CAD tool heuristically selects the
clique (subgraph with all possible induced edges) that
has the maximum number of nodes, and assigns all
the respective columns under a single representative
column. The respective nodes and induced edges are
then removed from G and the process is repeated until
no more representative columns can be generated.

We observe that this approach does not necessarily
provide a good heuristic for the problem of minimizing
the number of representative columns. This is an im-
portant parameter because the smaller the number of
representative columns, the smaller the reproduction
time ¢ tends to be. Such modifications of the heuristic
are currently under investigation.

B. The Second Metric

Our second metric takes into consideration the cir-
cuit under test so that quantity tr; is taken into con-
sideration while applying the operations of Section II.
Let f(I) denote the function of line I, and %9- denote
the boolean difference of f(I) with respect to input
in;. This boolean function indicates whether f(I) is
sensitive to changes on input in;.

Let f(!)in; (resp., f({)in,) denote the cofactor of
f(1) with respect to input variable in; (resp., in;’) and
@ be the XOR operator. The boolean difference is
precisely

o “) = f(Dim, ® FDiny. (3)

Let P(“s%}l) denote the probability that function
%Q evaluates to 1. The estimated heat dissipation is



Ho= 172Vl 0 PO .. )

Tin; -

Once the probability P(%%}}) is computed, each in-
put in; is assigned a weight

wlin) = Y SN

fin;

Weights w(in;) are used to guide a CAD tool which
appliés the operations of Section II on 7" so that metric
H, is minimized heuristically.

This CAD tool is similar to the one described ear-
lier for the first metric. The representative columns
are generated and assigned to counter cells as follows.
Graph G is now a weighted graph; every node of G is
assigned a weight equal to the w(in;) weight of the col-
umn it represents. The algorithm selects each time the
largest weighted clique which corresponds to a column
representative. This column representative is then as-
signed to the most significant counter cell that has not
been assigned a representative column.

Next, we describe how the probabilities P(%?) are
computed. Their computation reduces to computing
the signal probabilities for all lines ! using the cutting
algorithm in [2]. We have currently implemented the
Full Range Cutting algorithm but we intend to im-
plement and use the Partial Range cutting algorithm
which tends to be more accurate.

The cutting algorithm gives for some circuit lines
the exact probabilities but, in general, for each proba-
bility it gives a range that the probability belongs to.
We compute the signal probability by considering the
signal probability as the median of the returned range.

We execute the Full Range Cutting algorithm a to-
tal of 2 - w times. Each time the probability values of
the input lines change. Each input in; is considered
twice, the first time its probability is set to 0 and the
second time is set to 1. In both cases, the probability
of the other inputs is set to 1/2. That way, for each
internal line I we find two probabilities P} and P} with
respect to the main input in;.

Subsequently, the XOR, of P and P} is computed as
follows: If line ! does not depend on in; then P( s )
is 0. Otherwise, we consider an XOR ga.te w1th two
inputs with probabilities P§ and P} and P( Bins ) is set
to the probability of the output of the gate.

Finally, we have estimated the capacitance at each
line of the circuit as follows: For each line we add
the capacitance of the output of the gate that drives
this line, and the capacitances of the inputs of the
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gates driven by this line. The capacitances of the in-
puts/outputs of each type of gate (And, Nand, Or etc)
have been estimated taking into account an 1-micron
Technology implementation and normalized to integer
values. For all types of gates, the input/output capac-
itance is considered to be equal to 4, except the XOR
and XNOR input capacitance which is equal to 6.

C. The Proposed Method

The first metric tends to minimize the number of
bit transitions on the inputs and also the test applica-
tion time. Both factors are critical in the heat dissi-
pation. Its disadvantage is that it completely ignores
the circuit under test.

The second metric takes into consideration the cir-
cuit under test but only implicitly considers the num-
ber of the transitions on the inputs and the test ap-
plication time. For example, the CAD tool in the pre-
vious subsection may assign to the most significant
counter bit a representative column that may contain
much less number of circuit inputs. Furthermore, since
the don’t care assignment is also driven by the input
weights w(in;), the CAD tool may result into a higher
number of representative columns than the CAD tool
for the first metric. That way, the test application
time may be increased significantly. We would like to
assign higher priority to these two factors.

Recall that the probabilities P(%Q) that the sec-
ond metric uses in order to consider the circuit under
test are computed approximately and often this com-
putation is not very accurate. On the other hand, we
have shown that the two circuit independent quanti-
ties can be tackled more efficiently.

We thus propose to combine the ideas of subsections
A and B by giving higher priority to the quantities
considered by the first metric. We modify the CAD
tool for the first metric so that it also considers the
weights w(in;) on the inputs.

More precisely, the CAD tool consists of two major
steps. First it constructs the representative columns.
Since the number of these columns has a direct impact
on the test application time (is equal to the number
of cells in the counter) and implicitly on the number
of transitions on the circuit inputs, we construct them
as in subsection A, i.e., based on the cardinalities of
the cliques in the intermediate graph G.

The second step assigns one representative column
per counter cell. This assignment is now driven by the
weights on the representative columns. The weight
w(I) of a representative column I is

Z w(in;).

in;el

w(l) =



The column representatives are sorted in descending
order according to their w() weights and they are as-
signed in that order from the most significant counter
cell to the least significant counter cell.

VI. EXPERIMENTAL RESULTS

Table 1 provides experimental comparisons on the
described metrics. We consider the ISCAS’85 bench-
marks. In order to further evaluate the impact of
our proposed method in Section III.C we implemented
another approach, we call it Random Assignment
Method (RAM). This approach that determines the
representative columns as in the proposed method but
then assigns them on the cells of the counter in a ran-
dom order. Comparing our method with this method
allows us to evaluate the impact of the w(in;) weights
on quality of the solution. Note that the RAM ap-
proach already provides significant savings over the
brute—force approach that does not consider the op-
erations of Section II. Such savings are not reported
here simply because it is very time consuming to sim-
ulate the power consumption with the brute—force ap-
proach. Due to the huge number of patterns required
by the latter method, the power consumption will also
be huge.

The first column of Table 1 gives the name of each
benchmark. Column 2, labeled p, gives the number of
patterns p that were embedded for each benchmark.
These patterns were provided by Sunrise Inc. for all
the hard to detect faults.

Column 3, labeled PM (proposed metric), gives in-
formation on the total power when the counter TPG
was designed with the method proposed in this paper.
It reports the % savings on the heat dissipation ob-
tained by our method over the RAM approach. The
results clearly show the impact of the w(in;) weights.

Columns 4 and 5 are labeled FM (first metric) and
SM (second metric) and they list the % savings on the
heat dissipation obtained by these two methods over
the RAM approach.

The results clearly show the superiority and impact
of the proposed method. None of the other methods is
consistently good. There are instances where each of
these methods may produce 1/3 more heat dissipation
than our method.

Although space limitations do not allow us to list
and analyze our experiments in more details, we note
that we have observed several instances where the test
reproduction time as well as the number of transitions
on the inputs obtained by some metric is much higher
than the respective values of another and at the same
time the total heat dissipation is reduced. For ex-

92

ample, metric FM requires 209 cycles to embed the
patterns for ¢3540 and its heat dissipation is 209,771.
In contrast, our metric PM requires 216 cycles but the
heat dissipation is reduced to 206,342. These observa-
tions show that it is dangerous to use the methods in
[3] when heat dissipation is a concern.

circuit || p PM M SM

c432 6 || 46,3% | 22,7% | 40,2 %
c499 14 1192% | 6,1% | 192%
c880 1711 62,9% | 57,2 % | 54,1 %
c1908 [ 22 ([ 51,1% | 29,9% | 49,1 %
c3540 1221 29,7% | 28,6 % | 204 %
cb315 7 (3,9%|412% | 16%

Table 1. Experimental comparisons

In benchmark ¢5315, metric FM performed slightly
better than ours. We observed that this is due to re-
duced test embedding time as well as reduced number
of transitions on the inputs.

V. CONCLUSIONS

We have presented a method for synthesizing a
counter in order to reproduce on chip a set of precom-
puted test patterns so that the total heat dissipation is
minimized. The listed results show that the presented
approach is promising.
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