
Neural Network Construction using
Grammatical Evolution

Ioannis G. Tsoulos(1) , Dimitris Gavrilis(2), Euripidis Glavas(3)

(1)Department of Computer Science, University of Ioannina, P.O. Box 1186,
Ioannina 45110 - GREECE,

(2)Department of Electrical & Computer Engineering, University of Patras,
Patras 26500 - GREECE

(3)Department of Communications, Informatic and Management, Technological
Educational Institute of Epirus , ARTA - GREECE

Abstract— A method which is based on
grammatical evolution is presented in this
paper for the construction of artificial
neural networks (ANNs). The method is
capable to construct ANNs with an arbitrary
number of hidden levels or even recurrent
neural networks. The efficiency of the
method is tested on a series of classification
and regression problems and the results
are compared against traditional neural
networks.

Keywords- Genetic programming,
grammatical evolution, neural networks,
classification, regression, evolutionary
process.

I. INTRODUCTION

Artificial neural networks are well estab-
lished in the bibliography as approximation
tools [1], [2]. They have been used with
success for pattern recognition [3], solving
differential equations [4] etc. Although, the
architecture of the neural network as well
as its training algorithm, play the most
important role in the approximation and
small modifications in either of them can

lead to major changes in the efficiency
of the network. In most cases, scientists
have to experiment with the architecture
of the neural network by adding or cutting
computation nodes from the network, in
order to achieve maximum performance.
A survey on pruning algorithms for neural
networks is given in [5]. During the past
years many methods have been proposed
for the construction of neural networks.
In [9] a s simulated annealing algorithm
was used to optimize neural networks ar-
chitecture and weights with application to
an odour classification problem. Also in
[10] a method which is based on Particle
Swarm Optimization (PSO) is used for the
construction of neural networks. Genetic
algorithms has also been applied to the
optimization of the architecture of neural
networks [11], [12], [13], [14]. This article
introduces a method that can produce arti-
ficial neural networks using a mapping pro-
cess governed by a grammar expressed in
Backus Naur Form. The proposed method
aims to infer the optimal architecture for a
given problem accompanied by an optimal

8270-7803-9314-7/05/$20.00©2005 IEEE

2005 IEEE International
Symposium on Signal Processing
and Information Technology

set of weights. Grammatical evolution has
been applied successfully to problems such
as symbolic regression [6], financial pre-
diction [7] etc. Further details about gram-
matical evolution can be found in [8]. The
rest of this article is organized as follows:
in section II the method is described in
detail, in section III the efficiency of the
proposed method is tested against some
data fitting problems as well as classifi-
cation problems and finally in section IV
some conclusions and guidance for further
work are presented.

II. DESCRIPTION

The proposed method relies on a series
of integer vectors, which will be called
chromosomes for the rest of this article.
Every chromosome, through a mapping
procedure described in [8] that is gov-
erned by the BNF grammar of figure 1,
is mapped to an artificial neural network
with one hidden level and one output. The
output of the constructed neural network is
a summation of different sigmoidal units
and it can be formulated as N(x, p) =∑H

i=1 p(d+2)i−(d+1)sig(oi(x) + p(d+2)i) ,
where oi(x) =

∑d
j=1 p(d+2)i−(d+1)+jxj

and x ∈ Rd, H = nodes
d+2 is the number

of hidden nodes and the vector p denotes
the parameters (weights) of the neural net-
work. The function sig(x) is the sigmoidal
function sig(x) = 1

1+exp(−x) . The constant
nodes represents the total number of pa-
rameters. The basic steps of the proposed
algorithm are the following:

1) Initialization of the population,
where every element of each
chromosome is initialized randomly
in the range [0..255].

Fig. 1. Proposed grammar

<S>::=<sigexpr>
<sigexpr>::=<Node>

|<Node> <sigexpr>
<Node>::=<weight>*sig(<sum>+<bias>)
<sum>::=<weight>*<xxlist>

|<sum>+<sum>
<xxlist>::=x1 | x2 | ... | xD
<weight>::=<number>
<bias>::=<number>
<number>::=(<digitlist>.<digitlist>)

|(-<digitlist>.<digitlist>)
<digitlist>::=<digit>

|<digit><digitlist>
<digit>::=0 | 1 | 2 | 3 | 4

| 5 |6 |7 |8 |9

2) Fitness evaluation. For a given chro-
mosome g the steps for the fitness
evaluation are the following:

a) Apply the mapping procedure
of the grammatical evolution,
creating a function f(x).

b) Set v = 0.
c) For every point (xi, yi) in

the training set v = v +
(f (xi) − yi)

2. The fitness val-
ues is set to −v.

3) Application of the genetic operations
of selection, crossover and mutation.
The procedure of selection are per-
formed using tournament selection
with tournament size 8. The selec-
tion procedure creates a mate pool
that will be used in the crossover
procedure to create new chromo-
somes, which will replace the worst
chromosomes in the population. In
the mutation procedure every ele-
ment of each chromosome can be
changed with a probability pm ∈

828

[0, 1].
4) Terminate either if a maximum num-

ber of generations is reached (typical
value 2000) or the best chromosome
of the population has fitness value
below a predefined threshold e (typi-
cal value e = 10−7). Otherwise jump
to step 2.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of
the proposed technique a series of classifi-
cation and regression problems were used.
The proposed technique was issued 30
times for each test problem using different
seeds for the random generator each time.
Each time the genetic algorithm evolved
2000 generations. In all the experiments
the number of chromosomes in the pop-
ulation was set to 500 and the length of
the chromosomes to 200. The selection rate
was set to 10% and the mutation rate to
5%. The evaluation of the produced chro-
mosomes was made by the FunctionParser
programming library [15]. The results from
the proposed method are compared against
a traditional Multilvel Perceptron trained
with the Tolmin optimization method.

A. Classification problems

Wdbc problem : The Winsonsin Diag-
nostic Breast Cancer dataset (WDBC) con-
tains data from breast tumors. It contains
569 training examples of 30 attributes each
that are classified into two categories. In
the conducted experiments 303 examples
were used for training and 266 for test-
ing. The best constructed neural network
was: f(x) = −40.1sig(88x19 + 19.9x29 −
20.1) + 0.99sig(−0.5x23 − 180.2x25 −
0.6x22 + 98.1) with test error 3.01%. The

final form has only two nodes and only 5
attributes are used to construct this form.
The best traditional neural network had a
test error of 5.64% with four hidden nodes.

Ionosphere problem : The Ionosphere
dataset contains data from the John Hop-
kins Ionosphere database. The dataset con-
tains 351 examples of 34 attributes each
that belong into two categories. In the
conducted experiments 115 examples were
used for training and the rest for testing.
The best discovered constructed neural net-
work was f(x) = 0.39sig(3615.2x3 −
407.4) + 0.5sig(588041.3x5 − 5.8) −
13.8sig(−6.6x4 − 9.8) − 3.3sig(3.7x4 −
5.6) with test error 6.36%. The constructed
functional form has only 4 nodes and it
uses only 3 from the attributes of the prob-
lem. The best traditional neural network
had a test error of 12.71% with 3 hidden
nodes.

Circular problem : The circular artificial
data contains 1000 examples that belong
to 2 categories (500 examples each). The
data in the first class belong to the inside
area of a circle and data of the second
class belong to a circular disc outside
the first circle. Each example vector has
two attributes. It is expanded by adding 3
more attributes generated randomly (noise)
using a normal distribution. In the con-
ducted experiments 354 examples were
used for training and the rest for testing.
The best discovered constructed neural net-
work was f(x) = 0.8sig(6.6 − 6.5x1) +
0.8sig(6.8x1−20.8)+ sig(7.47−7.2x2)+
1.1sig(2.9x2 − 9.0) with test error 4.33%.
The functional form has 4 nodes and it
uses only the two attributes that contains
the actual information and not the noise.
The best neural network trained by Tolmin
method gave an test error of 4.49% with

829

10 hidden nodes.

B. Regression problems

The Ailerons problem: This data set
addresses a control problem, namely flying
a F16 aircraft. This problem has 40 at-
tributes and consists of 7150 examples 200
of which were used for training and the
rest were used for testing. The best discov-
ered function was f(x) = 4.9sig(0.1x7 −
8.0) − 9.9sig(9.8x37 − 5.0x9 + 24.5x35 +
12.3x11 + 0.2x3 − 9.1) with test error
4.4 × 10−8. The resulting functional form
has two nodes and it uses only 6 attributes.
The best traditional neural network trained
by the Tolmin method had an test error of
4.03 × 10−8 with 3 hidden nodes.

The Pyrimidines problem: This dataset
contains 27 attributes and 74 number of
patterns. The task consists of Learning
Quantitative Structure Activity Relation-
ships (QSARs). The Inhibition of Dihydro-
folate Reductase by Pyrimidines. From the
above dataset 50 patterns were used for
training and 24 for testing. The best dis-
covered function was f(x) = sig(3.7x26 +
0.4) − 4.5sig(5.9x19 − 37.6x11 − 3.2) −
27.5sig(−9.9x9 − 4.6) + 5.3sig(3.7x11 −
8.0) with test error per point 4.19× 10−3.
The best neural network optimized by the
Tolmin method gave a test error of 6.3 ×
10−3 with seven hidden nodes.

IV. CONCLUSIONS

A method which is based on genetic
programming for the creation of artificial
neural networks was presented in this ar-
ticle. The proposed method can infer not
only the architecture of an neural network
but it can estimate an optimum set of nodes
for a given problem. The method was

tested on classification problems as well as
data fitting problems. The grammar of the
proposed method can be enriched to im-
plement artificial neural networks of higher
complexity, such as neural networks with
more than two processing levels or even
recurrent neural networks. The memory re-
quirements of the proposed method depend
on the product of the number of chromo-
somes and each chromosome’s length. The
complexity of the method and thus the time
required in order to complete depends only
on the size of the training dataset and on
the population size. The average time for
completion for the experiments described
above is 4 minutes on an Athlon 2400 with
512 Mb Ram running Debian Linux.

REFERENCES

[1] Hornik K., Stinchcombe M., and White H.,
Neural Networks 2 (1989) 359.

[2] Cybenko G., Approximation by superpositions
of a sigmoidal function, Mathematics of Control
Signals and Systems 2 (1989) 303-314.

[3] Bishop C., Neural Networks for Pattern recog-
nition, Oxford University Press, 1995.

[4] Lagaris I. E., Likas A., Fotiadis D. I., “Artifi-
cial Neural Networks for solving ordinary and
partial differential equations”, IEEE Trans. on
Neural Networks, 9 (1998) 987-1000.

[5] Pruning algorithms - a survey, IEEE Transac-
tions on Neural Networks 4(5): 740-747.

[6] M. O’Neill and C. Ryan, Grammatical Evolu-
tion: Evolutionary Automatic Programming in a
Arbitrary Language, volume 4 of Genetic pro-
gramming. Kluwer Academic Publishers, 2003.

[7] A. Brabazon and M. O’Neill, “A grammar
model for foreign-exchange trading,” In H. R.
Arabnia et al., editor, Proceedings of the In-
ternational conference on Artificial Intelligence,
volume II, CSREA Press, 23-26 June 2003, pp.
492-498, 2003.

[8] M. O’Neill and C. Ryan, “Grammatical Evolu-
tion,” IEEE Trans. Evolutionary Computation,
Vol. 5, pp. 349-358, 2001.

[9] M.C.P de Souto A.Yamazaki and T.B. Ludernir,
Optimization of neural network weights and ar-
chitecture for odor recognition using simulated
annealing. Proceedings of the 2002 International

830

Joint Conference on Neural Networks, 1:547-
552, 2002.

[10] Chunkai Zhang, Huihe Shao, and Yu Li, Particle
Swarm Optimization for evolving artificial neu-
ral networks, IEEE International Conference on
Systems, Man and Cybergenetics, 2000, 4:2487-
2490, 2000.

[11] John R. Koza and James P. Rice, Genetic gener-
ation of both the weights and architecture for a
neural network. International Joint Conference
on Neural Networks, IJCNN-91, II:397-404, 8-
12, 1991.

[12] Matt Bell, Evolving the structure and weights
of recurrent neural network though genetic al-
gorithms. In John R. Koza, editor, Genetic Al-
gorithms and Genetic Programming at Stanford
1999, pages 11–20. Stanford Bookstore, Stan-
ford, California, 94305-3079 USA, 15 March
1999.

[13] Frederic Gruau. Genetic synthesis of modular
neural networks. In Stephanie Forrest, editor,
Proceedings of the 5th International Confer-
ence on Genetic Algorithms, ICGA-93, pages
318–325, University of Illinois at Urbana-
Champaign, 17-21 July 1993. Morgan Kauf-
mann.

[14] Joao Carlos Figueira Pujol and Riccardo Poli.
Evolution of the topology and the weights
of neural networks using genetic programming
with a dual representation. Applied Intelligence,
8:73–84, 1998.

[15] Nieminen J. and Yliluoma J., “Function
Parser for C++, v2.7”, available from
http://www.students.tut.fi/̃warp/FunctionParser

[16] Powel M. J. D., “A Tolerant Algorithm for Lin-
early Constrained Optimization Calculations”,
Mathematical Programming 45 (1989), 547

831

