
A User-level Toolkit for Storage I/O

Isolation on Multitenant Hosts

ACM Symposium on Cloud Computing 2020 (SoCC ‘20)

Giorgos Kappes, Stergios V. Anastasiadis

University of Ioannina, Ioannina 45110, Greece

Data-intensive Apps in Multitenant Cloud

Software Containers

 Run in multitenant hosts

 Managed by orchestration systems

 Host data-intensive applications

 Achieve bare-metal performance and

resource flexibility

Host OS Kernel

 Serves the containers of different tenants

 Mounts the root and application filesystems of containers

 Handles the I/O to local and network storage devices

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts

APP

Container Host

APP

Local FS

VFS

Host OS Kernel

Container Container

Remote FS

Hardware

Cloud Storage

2

Limitations of the Shared Host OS Kernel

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts3

1. Unfair use of resources
 Tenants compete for shared I/O services, e.g., page cache

2. Global configuration rather than per tenant
 Tenants cannot customize the configuration of system parameters

(e.g., page flushing)

3. Software overheads
 Require complex restructuring of kernel code (e.g., locking)

4. Slow software development
 Time-consuming implementation and adoption of new filesystems

5. Large attack surface
 Tenants are vulnerable to attacks/bugs on shared I/O path

Challenges of User-level Filesystems

1. Support multiple processes

 Connect multiple processes with tenant filesystems at user-level

2. Consistency

 Coordinate the state consistency across multiple concurrent operations

on a shared filesystem

3. Flexible configuration

 Provide deduplication, caching, scalability across the tenant containers

4. Interface

 Support POSIX-like semantics (e.g., file descriptors, reference counts)

5. Compatibility with implicit I/O

 Support system calls with implicit I/O through the kernel I/O path

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts4

Motivation: Multitenancy Setup

Tenant

 1 Container

 2 CPUs (cgroups v1), 8GB RAM (cgroups v2)

Container host

 Up to 32 tenants

Container application

 RocksDB

Shared storage cluster

 Ceph

 Separate root filesystem (directory tree) per container

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts5

Motivation: Colocated I/O Contention

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts6

Outcome on 1-32 tenants
 Throughput (slowdown) FUSE: up to 23%, Kernel: up to 54%
 99%ile Put latency (longer) FUSE: up to 3.1x, Kernel: up to 11.5x

Reasons
 Contention on shared kernel data structures (locks)
 Kernel dirty page flushers running on arbitrary cores

RocksDB 50/50 Put/Get

Background on Containers

Lightweight virtualization abstraction that isolates process groups

 Namespaces: Isolate resource names (Process, Mount, IPC, User, Net)

 Cgroups: Isolate resource usage (CPU, Memory, I/O, Network)

Container Image (system packages & application binaries)

 Read-only layers distributed from a registry service on a host

Union filesystem (container root filesystem)

 File-level copy-on-write

 Combines shared read-only image layers with a private writable layer

Application data

 Remote filesystem mounted by the host with a volume plugin, or

 Filesystem made available by the host through bind mount
A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts7

Existing Solutions

User-level filesystems with kernel-level interface
 May degrade performance due to user-kernel crossings

 E.g., FUSE, ExtFUSE (ATC‘19), SplitFS (SOSP‘19), Rump (ATC’09)

User-level filesystems with user-level interface
 Lack multitenant container support

 E.g., Direct-FUSE (ROSS‘18), Arrakis (OSDI’14), Aerie (EuroSYS‘14)

Kernel structure partitioning
 High engineering effort for kernel refactoring

 E.g., IceFS (OSDI‘14), Multilanes (FAST‘14)

Lightweight hardware virtualization or sandboxing
 Target security isolation; incur virtualization or protection overhead

 E.g., X-Containers (ASPLOS ’19) , Graphene (EuroSys ’14)
A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts8

Polytropon: Per-tenant User-level I/O

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts9

Polytropon

Polytropon

Cloud Storage

Kernel

Container

APP

Tenant 1

Container

APP

Tenant N

…

Polytropon

Per tenant user-level filesystems

Cloud Storage

Kernel

Legacy

Container

APP …

Tenant 1

Container

APP

Tenant N

Shared kernel I/O Stack

Design Goals

G1. Compatibility

 POSIX-like interface for multiprocess application access

G2. Isolation

 Tenant containers access their isolated filesystems on a host over

dedicated user-level I/O paths

G3. Flexibility

 Cloning, caching, or sharing of container images or application data

 Per-tenant configuration of system parameters (e.g., flushing)

G4. Efficiency

 Containers use efficiently the datacenter resources to access their

filesystems

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts10

Application

Front Driver

Container(s)

User-level

IPC

Filesystem

Service

Back Driver

Mount

Table

Kernel

Legacy

Default

union

cache

remote

local

libservices
Container Pool(s)

Filesystem

Library

Toolkit Overview

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts11

Mount Table
Routes container I/O to filesystems

Filesystem Service
Provisions the private/shared filesystems of containers

Filesystem Library
Provides filesystem access

to processes

Optimized User-level IPC
Optimized queue and data

copy for fast I/O transfers

Dual Interface
I/O passing from user (default)

or kernel level (legacy)

Composable libservices
User-level storage functions

Container Pool
Collection of containers

Per tenant / Machine

Filesystem Service

Purpose

 Handles the container storage I/O in a pool

libservice

 Standalone user-level filesystem functionality

 Implemented as a library with POSIX-like interface

 Network filesystem client; local filesystem; block

volume; union; cache with custom settings

Filesystem Instance

 Mountable user-level filesystem on mount path

 Collection of one or multiple libservices

Filesystem Table

 Associates a mount path with a filesystem instance
A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts12

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Container (NS, cgroups)

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Filesystem Table

libservice 1

libservice N

…

Filesystem Instance

Filesystem Service

Mount Table
Path
Path

C
o
n
ta

in
e
r

P
o
o
l
(N

S
,

c
g
ro

u
p
s)

Shared Memory

Mount Table

Purpose

 Translates a mount path to a serving pair of

filesystem service & filesystem instance

Structure

 Hash table located in pool shared memory

Mount request: mount path, FS type, options

 Search for longest prefix match of the mount path

 Full match: Filesystem instance already mounted

 Partial match & Sharing: New filesystem instance

with shared libservices in matching filesystem

service

 Otherwise: New filesystem service

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts13

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Container (NS, cgroups)

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Filesystem Table

libservice 1

libservice N

…

Filesystem Instance

Filesystem Service

Mount Table
Path
Path

C
o
n
ta

in
e
r

P
o
o
l
(N

S
,

c
g
ro

u
p
s)

Shared Memory

Filesystem Library

Purpose

 Provides filesystem access to processes

State management

 Private part (FS library): Open file descriptors,

user/group IDs, current working directory

 Shared part (FS service): Filesystem instance,

libservice file descriptors, file path, reference

count, call flags

Dual interface

 Preloading: Unmodified dynamically-linked apps

 FUSE path: Unmodified statically-linked apps

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts14

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Container (NS, cgroups)

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Filesystem Table

libservice 1

libservice N

…

Filesystem Instance

Filesystem Service

Mount Table
Path
Path

C
o
n
ta

in
e
r

P
o
o
l
(N

S
,

c
g
ro

u
p
s)

Shared Memory

File Management

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts15

1 2 3 …0
Library file table

Application

Library Open File

Service File

Descriptor

Mount Table

Entry

Service Open File

File

Descriptor

Filesystem

Instance

Ref Count

Path

Flags

Filesystem Library …
Filesystem Instance

Filesystem Service

fd
:

3

libservice N

Service Open File

 Shared state across applications

Library Open File

 Private state in application process

Libservice File Descriptor

 File descriptor returned by a libservice

Service File Descriptor

 Memory address of a Service Open File

Library File Descriptor

 Index of Library Open File

 Returned to the application

Other Calls

Process Management
 fork/clone: modified to correctly handle shared filesystem state

 exec: preserve a copy of library state in shared memory, retrieved
by the library constructor when the new executable is loaded

Memory Mappings
 mmap: emulated at user level by mapping the specified address

area and synchronously reading the file contents

Library Functions
 The libc API supported using the fopencookie mechanism

Asynchronous I/O
 Asynchronous I/O supported with code from the musl library

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts16

Interprocess Communication

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts17

Signal

Shared MemoryFront Driver Back Driver

Request

Producer

Put

Consumer

Get

~

Read

Wait

Write

Application Thread
RQ

Attach

Address

Request Buffer

(per application

thread)

Service Thread

Filesystem

Buffers

...
Small items

~

...
Small items

Large items
Completion
notification

Attach

Address

Read

Write

[FD] Copy large data on request buffer1

[FD] Prepare a request descriptor2

[FD] Wait for completion on the

request buffer
4

[BD] Retrieve the request descriptor

and the request buffer
5

[FD] Insert the request descriptor to a

request queue
3

[BD] Process the request, copy the

response to the request buffer
6

[BD] Notify the front driver for

completion
7

[FD] Wake up and copy the response to

the application buffer
8

[FD]: Front Driver [BD]: Back Driver
Request Queue

Communication of I/O requests; distinct queue

per core group

Request Buffer
Communication of completion notification and

large data; distinct per application thread

Relaxed Concurrent Queue Blocking (RCQB)

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts18

H

T

D D

E
E

Idea

 1st Stage: Distribute operations

sequentially

 2nd Stage: Let them complete

in parallel potentially out

of FIFO order

Goals

 High operation throughput

 Low item wait latency in the queue

Implementation

 Fixed-size circular buffer

Dequeue operation:
1. Allocate a slot sequentially

with fetch-and-add on head

2. Lock the slot for dequeue,

remove the item, unlock

the slot

Dequeuers follow the

enqueuers

Enqueue operation:
1. Allocate a slot sequentially

with fetch-and-add on tail

2. Lock the slot for enqueue,

add the item, unlock the

slot

Data Transfer

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts19

(c) SMO (Copy pipeline)

In
st

ru
ct

io
ns

Time

(2 cache lines)
prefetch load/store

...

(a) CMA (1 Copy)

Back
Driver

Shared
Memory

Kernel

Front
Driver

Data path

Control path

Cross-Memory Attach (CMA)

 Copy data between process address spaces with zero

kernel buffering

Shared-Memory Copy (SMC) with libc memcpy

 Copy data from source to shared memory buffer

 Copy data from shared memory buffer to target

Shared-Memory Optimized (SMO) pipeline of 2 stages

 One time: Non-temporal prefetch of 10 cache lines

 1st Stage: Non-temporal prefetch of 2 cache lines

 2nd Stage: Non-temporal store of 2 cache lines

(b) SMC / SMO (2 Copies)

Back
Driver

Kernel

Front
Driver

Shared
Memory

Pool Management

Container engine
 Standalone process that manages the container pools on a host

Isolation
 Resource names: Linux namespaces

 Resource usage: cgroups v1: CPU, network, cgroups v2: memory

Storage drivers
 Mount container root & application filesystems

Pool start
 Fork from container engine process, create & join the pool’s namespaces

Container start
 Fork from container engine process, inherit pool’s namespaces, or create

new namespaces nested underneath

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts20

Prototype Supported Filesystems

Polytropon (user-level path and execution)

 Root FS: Union libservice over a Ceph client libservice

 Application FS: Ceph client libservice

Kernel (kernel-level path and execution)

 Root FS: Kernel-level AUFS over kernel-level CephFS

 Application FS: Kernel-level CephFS

FUSE (kernel-level path and user-level execution)

 Root FS: FUSE-based UnionFS over FUSE-based Ceph client

 Application FS: FUSE-based Ceph client

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts21

Danaus as a Polytropon Application

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts22

Application

Front

Driver

Container(s)

IPC

Kernel

Shared

Memory

Default
Ceph libservice

Legacy

Storage

Backend

Filesystem

Library

Container Engine

VFS

API
Back

Driver
FUSE

Union libservice

Filesystem

ServiceMount

Table

Dual Interface
 Default: Shared memory IPC

 Legacy: FUSE

Filesystem Instance
 Union libservice (optional)

 Ceph libservice

Union libservice
 Derived from unionfs-fuse

 Modified to invoke the libservice
API instead of FUSE

Ceph libservice
 Derived from libcephfs

Experimental Evaluation Setup

2 Servers

 64 Cores, 256GB RAM

 2 x 10Gbps Ethernet

 Linux v4.9

Shared Ceph Storage Cluster

 6 OSDs (2 CPUs, 8GB RAM, 24GB

Ramdisk for fast storage)

 1 MDS, 1 MON (2 CPUs, 8GB RAM)

Container Pool

 1 Container

 Cgroups v1 (CPU), v2 (Memory)

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts23

Application

Client

…

Image/ Data Image/ Data

Client: Container Host

Ceph Storage Cluster

Pool 1 Pool 32

…

Client

Application

OS

Hardware

Xen / Hardware

MON

Server: Storage Host

MDS OSD x6

Data-Intensive Applications: RocksDB

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts24

Polytropon achieves faster I/O response & more stable performance

 Put latency (longer) FUSE: up to 4.8x, Kernel: up to 14x

 Get latency (longer) FUSE: up to 4.2x, Kernel: up to 7.2x

 Throughput (slowdown) FUSE: up to 23%, Kernel: up to 54%

FUSE and Kernel client face intense kernel lock contention

RocksDB 50/50 Put/Get

Data-Intensive Applications: Gapbs, Source Diff

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts25

Gapbs: Polytropon and FUSE keep the timespan stable regardless of pool count

 Timespan (longer) Kernel: up to 1.9x

 Kernel client slowed down by wait time on spin lock of LRU page lists

Diff: Polytropon offers stable performance, the I/O kernel path causes delays

 Timespan (longer) FUSE: up to 1.9x, Kernel: up to 2.9x

 Kernel I/O causes substantial performance variability: 32.6x higher std

Source diffGapbs - BFS

Read

Intensive

Workload:

BFS on

directed

graph

(1.3GB)

Workload:

Difference

between

Linux

v5.4.1 &

v5.4.2

Read &

Metadata

Intensive

Cloned Containers

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts26

Handling both the communication and filesystem service at user-
level improves performance

 Fileappend: Opens a cloned 2GB file, appends 1MB, closes it

 Timespan (longer) FUSE: up to 28%, Kernel: up to 88%

Fileappend
1 Pool of

 64 Cores

 200GB RAM

Cloned Containers
 Separate root filesystem (Union

libservice): a writable branch
over a read-only branch

 The branches are accessible over a
shared Ceph libservice

50-50 read/write

Workload:

1. Open a

cloned

2GB file,

2. append

1MB,

3. close it

Concurrent Queues

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts27

RCQB achieves lower average enqueue latency & higher task throughput
due to parallel completion of enqueue and dequeue operations

 Average enqueue latency (longer) LCRQ: up to 77x, WFQ: up to 246x,

BQ: up to 5881x

 Task throughput (lower) LCRQ: up to 4x, WFQ: up to 34x , BQ: up to 52x

Closed system, separate threads for enqueuer & dequeuer

Task: Rate at which

enqueuers receive

completions by dequeuers

1 Pool of

 64 Cores

IPC Performance

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts28

The SMO pipelined copy improves data transfer

 SMO is 66% faster than SMC and 29% faster than CMA

Handling the IPC at user-level makes Polytropon faster than FUSE

 FUSE: 32-46% longer to serve reads due to 25-46% higher IPC time

File I/O RAM Seqread/Ceph (Polytropon)

1 Pool of

 8 Cores

 32GB RAM

Conclusions & Future Work

Problem: Software containers limit performance of data-intensive apps
 Storage I/O contention in the shared kernel of multitenant hosts

Our Solution: The Polytropon toolkit
 User-level components to provision filesystems on multitenant hosts

 Optimized IPC with Relaxed Concurrent Queue & pipelined memory copy

Benefits
 Combine multitenant configuration flexibility with bare-metal performance

 I/O isolation by letting tenants run their own user-level filesystems

 Scalable storage I/O to serve data intensive containers

Future Work
 Native user-level support of most I/O calls (e.g., mmap, exec)

 Support network block devices & local filesystems with libservices

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts29

Process Management

Fork, Clone

 FS service: increases the reference count of opened files in parent

 FS library: invokes the native fork, replicates library state from

parent to child

Exec

1. Create copy of library state in shared memory with process ID as

possible key

2. Invoke the native exec call, load the new executable, call the FS

library constructor

3. The FS library constructor recovers the library state from the copy

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts33

Memory Mappings

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts34

mmap(addr, length, prot, flags, fd, offset)

Memory Mapping Table

Memory Mapping

maddr

offset

flags

length

service fd

maddr = mmap(addr, length, prot, MAP_ANONYMOUS, -1, 0)

fd

Library File Table

Library Open File

Service File

Descriptor

Mount Table

Entry

mount entry

1

2 Create a Memory Mapping & add it to the Memory Mapping Table

3 polytropon_pread(fd, maddr, length, offset)

4 Increase backing file reference counter

hash(maddr)

5 return maddr

