
A User-level Toolkit for Storage I/O

Isolation on Multitenant Hosts

ACM Symposium on Cloud Computing 2020 (SoCC ‘20)

Giorgos Kappes, Stergios V. Anastasiadis

University of Ioannina, Ioannina 45110, Greece

Data-intensive Apps in Multitenant Cloud

Software Containers

 Run in multitenant hosts

 Managed by orchestration systems

 Host data-intensive applications

 Achieve bare-metal performance and

resource flexibility

Host OS Kernel

 Serves the containers of different tenants

 Mounts the root and application filesystems of containers

 Handles the I/O to local and network storage devices

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts

APP

Container Host

APP

Local FS

VFS

Host OS Kernel

Container Container

Remote FS

Hardware

Cloud Storage

2

Limitations of the Shared Host OS Kernel

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts3

1. Unfair use of resources
 Tenants compete for shared I/O services, e.g., page cache

2. Global configuration rather than per tenant
 Tenants cannot customize the configuration of system parameters

(e.g., page flushing)

3. Software overheads
 Require complex restructuring of kernel code (e.g., locking)

4. Slow software development
 Time-consuming implementation and adoption of new filesystems

5. Large attack surface
 Tenants are vulnerable to attacks/bugs on shared I/O path

Challenges of User-level Filesystems

1. Support multiple processes

 Connect multiple processes with tenant filesystems at user-level

2. Consistency

 Coordinate the state consistency across multiple concurrent operations

on a shared filesystem

3. Flexible configuration

 Provide deduplication, caching, scalability across the tenant containers

4. Interface

 Support POSIX-like semantics (e.g., file descriptors, reference counts)

5. Compatibility with implicit I/O

 Support system calls with implicit I/O through the kernel I/O path

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts4

Motivation: Multitenancy Setup

Tenant

 1 Container

 2 CPUs (cgroups v1), 8GB RAM (cgroups v2)

Container host

 Up to 32 tenants

Container application

 RocksDB

Shared storage cluster

 Ceph

 Separate root filesystem (directory tree) per container

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts5

Motivation: Colocated I/O Contention

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts6

Outcome on 1-32 tenants
 Throughput (slowdown) FUSE: up to 23%, Kernel: up to 54%
 99%ile Put latency (longer) FUSE: up to 3.1x, Kernel: up to 11.5x

Reasons
 Contention on shared kernel data structures (locks)
 Kernel dirty page flushers running on arbitrary cores

RocksDB 50/50 Put/Get

Background on Containers

Lightweight virtualization abstraction that isolates process groups

 Namespaces: Isolate resource names (Process, Mount, IPC, User, Net)

 Cgroups: Isolate resource usage (CPU, Memory, I/O, Network)

Container Image (system packages & application binaries)

 Read-only layers distributed from a registry service on a host

Union filesystem (container root filesystem)

 File-level copy-on-write

 Combines shared read-only image layers with a private writable layer

Application data

 Remote filesystem mounted by the host with a volume plugin, or

 Filesystem made available by the host through bind mount
A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts7

Existing Solutions

User-level filesystems with kernel-level interface
 May degrade performance due to user-kernel crossings

 E.g., FUSE, ExtFUSE (ATC‘19), SplitFS (SOSP‘19), Rump (ATC’09)

User-level filesystems with user-level interface
 Lack multitenant container support

 E.g., Direct-FUSE (ROSS‘18), Arrakis (OSDI’14), Aerie (EuroSYS‘14)

Kernel structure partitioning
 High engineering effort for kernel refactoring

 E.g., IceFS (OSDI‘14), Multilanes (FAST‘14)

Lightweight hardware virtualization or sandboxing
 Target security isolation; incur virtualization or protection overhead

 E.g., X-Containers (ASPLOS ’19) , Graphene (EuroSys ’14)
A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts8

Polytropon: Per-tenant User-level I/O

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts9

Polytropon

Polytropon

Cloud Storage

Kernel

Container

APP

Tenant 1

Container

APP

Tenant N

…

Polytropon

Per tenant user-level filesystems

Cloud Storage

Kernel

Legacy

Container

APP …

Tenant 1

Container

APP

Tenant N

Shared kernel I/O Stack

Design Goals

G1. Compatibility

 POSIX-like interface for multiprocess application access

G2. Isolation

 Tenant containers access their isolated filesystems on a host over

dedicated user-level I/O paths

G3. Flexibility

 Cloning, caching, or sharing of container images or application data

 Per-tenant configuration of system parameters (e.g., flushing)

G4. Efficiency

 Containers use efficiently the datacenter resources to access their

filesystems

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts10

Application

Front Driver

Container(s)

User-level

IPC

Filesystem

Service

Back Driver

Mount

Table

Kernel

Legacy

Default

union

cache

remote

local

libservices
Container Pool(s)

Filesystem

Library

Toolkit Overview

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts11

Mount Table
Routes container I/O to filesystems

Filesystem Service
Provisions the private/shared filesystems of containers

Filesystem Library
Provides filesystem access

to processes

Optimized User-level IPC
Optimized queue and data

copy for fast I/O transfers

Dual Interface
I/O passing from user (default)

or kernel level (legacy)

Composable libservices
User-level storage functions

Container Pool
Collection of containers

Per tenant / Machine

Filesystem Service

Purpose

 Handles the container storage I/O in a pool

libservice

 Standalone user-level filesystem functionality

 Implemented as a library with POSIX-like interface

 Network filesystem client; local filesystem; block

volume; union; cache with custom settings

Filesystem Instance

 Mountable user-level filesystem on mount path

 Collection of one or multiple libservices

Filesystem Table

 Associates a mount path with a filesystem instance
A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts12

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Container (NS, cgroups)

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Filesystem Table

libservice 1

libservice N

…

Filesystem Instance

Filesystem Service

Mount Table
Path
Path

C
o
n
ta

in
e
r

P
o
o
l
(N

S
,

c
g
ro

u
p
s)

Shared Memory

Mount Table

Purpose

 Translates a mount path to a serving pair of

filesystem service & filesystem instance

Structure

 Hash table located in pool shared memory

Mount request: mount path, FS type, options

 Search for longest prefix match of the mount path

 Full match: Filesystem instance already mounted

 Partial match & Sharing: New filesystem instance

with shared libservices in matching filesystem

service

 Otherwise: New filesystem service

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts13

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Container (NS, cgroups)

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Filesystem Table

libservice 1

libservice N

…

Filesystem Instance

Filesystem Service

Mount Table
Path
Path

C
o
n
ta

in
e
r

P
o
o
l
(N

S
,

c
g
ro

u
p
s)

Shared Memory

Filesystem Library

Purpose

 Provides filesystem access to processes

State management

 Private part (FS library): Open file descriptors,

user/group IDs, current working directory

 Shared part (FS service): Filesystem instance,

libservice file descriptors, file path, reference

count, call flags

Dual interface

 Preloading: Unmodified dynamically-linked apps

 FUSE path: Unmodified statically-linked apps

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts14

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Container (NS, cgroups)

library mapping table

library file table

Root, CWD, UID/GID

Library State
Filesystem Library

Application

Filesystem Table

libservice 1

libservice N

…

Filesystem Instance

Filesystem Service

Mount Table
Path
Path

C
o
n
ta

in
e
r

P
o
o
l
(N

S
,

c
g
ro

u
p
s)

Shared Memory

File Management

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts15

1 2 3 …0
Library file table

Application

Library Open File

Service File

Descriptor

Mount Table

Entry

Service Open File

File

Descriptor

Filesystem

Instance

Ref Count

Path

Flags

Filesystem Library …
Filesystem Instance

Filesystem Service

fd
:

3

libservice N

Service Open File

 Shared state across applications

Library Open File

 Private state in application process

Libservice File Descriptor

 File descriptor returned by a libservice

Service File Descriptor

 Memory address of a Service Open File

Library File Descriptor

 Index of Library Open File

 Returned to the application

Other Calls

Process Management
 fork/clone: modified to correctly handle shared filesystem state

 exec: preserve a copy of library state in shared memory, retrieved
by the library constructor when the new executable is loaded

Memory Mappings
 mmap: emulated at user level by mapping the specified address

area and synchronously reading the file contents

Library Functions
 The libc API supported using the fopencookie mechanism

Asynchronous I/O
 Asynchronous I/O supported with code from the musl library

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts16

Interprocess Communication

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts17

Signal

Shared MemoryFront Driver Back Driver

Request

Producer

Put

Consumer

Get

~

Read

Wait

Write

Application Thread
RQ

Attach

Address

Request Buffer

(per application

thread)

Service Thread

Filesystem

Buffers

...
Small items

~

...
Small items

Large items
Completion
notification

Attach

Address

Read

Write

[FD] Copy large data on request buffer1

[FD] Prepare a request descriptor2

[FD] Wait for completion on the

request buffer
4

[BD] Retrieve the request descriptor

and the request buffer
5

[FD] Insert the request descriptor to a

request queue
3

[BD] Process the request, copy the

response to the request buffer
6

[BD] Notify the front driver for

completion
7

[FD] Wake up and copy the response to

the application buffer
8

[FD]: Front Driver [BD]: Back Driver
Request Queue

Communication of I/O requests; distinct queue

per core group

Request Buffer
Communication of completion notification and

large data; distinct per application thread

Relaxed Concurrent Queue Blocking (RCQB)

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts18

H

T

D D

E
E

Idea

 1st Stage: Distribute operations

sequentially

 2nd Stage: Let them complete

in parallel potentially out

of FIFO order

Goals

 High operation throughput

 Low item wait latency in the queue

Implementation

 Fixed-size circular buffer

Dequeue operation:
1. Allocate a slot sequentially

with fetch-and-add on head

2. Lock the slot for dequeue,

remove the item, unlock

the slot

Dequeuers follow the

enqueuers

Enqueue operation:
1. Allocate a slot sequentially

with fetch-and-add on tail

2. Lock the slot for enqueue,

add the item, unlock the

slot

Data Transfer

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts19

(c) SMO (Copy pipeline)

In
st

ru
ct

io
ns

Time

(2 cache lines)
prefetch load/store

...

(a) CMA (1 Copy)

Back
Driver

Shared
Memory

Kernel

Front
Driver

Data path

Control path

Cross-Memory Attach (CMA)

 Copy data between process address spaces with zero

kernel buffering

Shared-Memory Copy (SMC) with libc memcpy

 Copy data from source to shared memory buffer

 Copy data from shared memory buffer to target

Shared-Memory Optimized (SMO) pipeline of 2 stages

 One time: Non-temporal prefetch of 10 cache lines

 1st Stage: Non-temporal prefetch of 2 cache lines

 2nd Stage: Non-temporal store of 2 cache lines

(b) SMC / SMO (2 Copies)

Back
Driver

Kernel

Front
Driver

Shared
Memory

Pool Management

Container engine
 Standalone process that manages the container pools on a host

Isolation
 Resource names: Linux namespaces

 Resource usage: cgroups v1: CPU, network, cgroups v2: memory

Storage drivers
 Mount container root & application filesystems

Pool start
 Fork from container engine process, create & join the pool’s namespaces

Container start
 Fork from container engine process, inherit pool’s namespaces, or create

new namespaces nested underneath

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts20

Prototype Supported Filesystems

Polytropon (user-level path and execution)

 Root FS: Union libservice over a Ceph client libservice

 Application FS: Ceph client libservice

Kernel (kernel-level path and execution)

 Root FS: Kernel-level AUFS over kernel-level CephFS

 Application FS: Kernel-level CephFS

FUSE (kernel-level path and user-level execution)

 Root FS: FUSE-based UnionFS over FUSE-based Ceph client

 Application FS: FUSE-based Ceph client

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts21

Danaus as a Polytropon Application

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts22

Application

Front

Driver

Container(s)

IPC

Kernel

Shared

Memory

Default
Ceph libservice

Legacy

Storage

Backend

Filesystem

Library

Container Engine

VFS

API
Back

Driver
FUSE

Union libservice

Filesystem

ServiceMount

Table

Dual Interface
 Default: Shared memory IPC

 Legacy: FUSE

Filesystem Instance
 Union libservice (optional)

 Ceph libservice

Union libservice
 Derived from unionfs-fuse

 Modified to invoke the libservice
API instead of FUSE

Ceph libservice
 Derived from libcephfs

Experimental Evaluation Setup

2 Servers

 64 Cores, 256GB RAM

 2 x 10Gbps Ethernet

 Linux v4.9

Shared Ceph Storage Cluster

 6 OSDs (2 CPUs, 8GB RAM, 24GB

Ramdisk for fast storage)

 1 MDS, 1 MON (2 CPUs, 8GB RAM)

Container Pool

 1 Container

 Cgroups v1 (CPU), v2 (Memory)

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts23

Application

Client

…

Image/ Data Image/ Data

Client: Container Host

Ceph Storage Cluster

Pool 1 Pool 32

…

Client

Application

OS

Hardware

Xen / Hardware

MON

Server: Storage Host

MDS OSD x6

Data-Intensive Applications: RocksDB

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts24

Polytropon achieves faster I/O response & more stable performance

 Put latency (longer) FUSE: up to 4.8x, Kernel: up to 14x

 Get latency (longer) FUSE: up to 4.2x, Kernel: up to 7.2x

 Throughput (slowdown) FUSE: up to 23%, Kernel: up to 54%

FUSE and Kernel client face intense kernel lock contention

RocksDB 50/50 Put/Get

Data-Intensive Applications: Gapbs, Source Diff

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts25

Gapbs: Polytropon and FUSE keep the timespan stable regardless of pool count

 Timespan (longer) Kernel: up to 1.9x

 Kernel client slowed down by wait time on spin lock of LRU page lists

Diff: Polytropon offers stable performance, the I/O kernel path causes delays

 Timespan (longer) FUSE: up to 1.9x, Kernel: up to 2.9x

 Kernel I/O causes substantial performance variability: 32.6x higher std

Source diffGapbs - BFS

Read

Intensive

Workload:

BFS on

directed

graph

(1.3GB)

Workload:

Difference

between

Linux

v5.4.1 &

v5.4.2

Read &

Metadata

Intensive

Cloned Containers

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts26

Handling both the communication and filesystem service at user-
level improves performance

 Fileappend: Opens a cloned 2GB file, appends 1MB, closes it

 Timespan (longer) FUSE: up to 28%, Kernel: up to 88%

Fileappend
1 Pool of

 64 Cores

 200GB RAM

Cloned Containers
 Separate root filesystem (Union

libservice): a writable branch
over a read-only branch

 The branches are accessible over a
shared Ceph libservice

50-50 read/write

Workload:

1. Open a

cloned

2GB file,

2. append

1MB,

3. close it

Concurrent Queues

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts27

RCQB achieves lower average enqueue latency & higher task throughput
due to parallel completion of enqueue and dequeue operations

 Average enqueue latency (longer) LCRQ: up to 77x, WFQ: up to 246x,

BQ: up to 5881x

 Task throughput (lower) LCRQ: up to 4x, WFQ: up to 34x , BQ: up to 52x

Closed system, separate threads for enqueuer & dequeuer

Task: Rate at which

enqueuers receive

completions by dequeuers

1 Pool of

 64 Cores

IPC Performance

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts28

The SMO pipelined copy improves data transfer

 SMO is 66% faster than SMC and 29% faster than CMA

Handling the IPC at user-level makes Polytropon faster than FUSE

 FUSE: 32-46% longer to serve reads due to 25-46% higher IPC time

File I/O RAM Seqread/Ceph (Polytropon)

1 Pool of

 8 Cores

 32GB RAM

Conclusions & Future Work

Problem: Software containers limit performance of data-intensive apps
 Storage I/O contention in the shared kernel of multitenant hosts

Our Solution: The Polytropon toolkit
 User-level components to provision filesystems on multitenant hosts

 Optimized IPC with Relaxed Concurrent Queue & pipelined memory copy

Benefits
 Combine multitenant configuration flexibility with bare-metal performance

 I/O isolation by letting tenants run their own user-level filesystems

 Scalable storage I/O to serve data intensive containers

Future Work
 Native user-level support of most I/O calls (e.g., mmap, exec)

 Support network block devices & local filesystems with libservices

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts29

Process Management

Fork, Clone

 FS service: increases the reference count of opened files in parent

 FS library: invokes the native fork, replicates library state from

parent to child

Exec

1. Create copy of library state in shared memory with process ID as

possible key

2. Invoke the native exec call, load the new executable, call the FS

library constructor

3. The FS library constructor recovers the library state from the copy

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts33

Memory Mappings

A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts34

mmap(addr, length, prot, flags, fd, offset)

Memory Mapping Table

Memory Mapping

maddr

offset

flags

length

service fd

maddr = mmap(addr, length, prot, MAP_ANONYMOUS, -1, 0)

fd

Library File Table

Library Open File

Service File

Descriptor

Mount Table

Entry

mount entry

1

2 Create a Memory Mapping & add it to the Memory Mapping Table

3 polytropon_pread(fd, maddr, length, offset)

4 Increase backing file reference counter

hash(maddr)

5 return maddr

