A User-level Toolkit for Storage I/O Isolation on Multitenant Hosts

Giorgos Kappes, Stergios V. Anastasiadis – University of Ioannina, Ioannina 45110, Greece

Multitenancy with Containers

Software Containers

- Run in multitenant hosts
- Host data-intensive applications
- Achieve bare-metal performance & flexibility

Host OS Kernel

- Serves the containers of different tenants
- Mounts container root & application filesystems
- Handles I/O to local & network storage devices

Limitations of sharing the host kernel

- Unfair use of resources
- Global configuration rather than per tenant
- Software overheads
- Slow software development
- Large attack surface

The Polytropon Toolkit

- Per tenant user-level filesystems
- Container Pool: Tenant containers per machine

Goals

- Compatibility: POSIX-like interface
- Isolation: Per-tenant I/O paths
- Flexibility: Per-tenant configuration & features
- Efficiency: Lightweight on resources

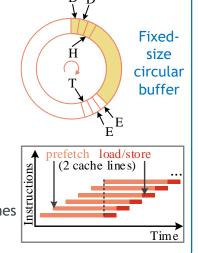
Filesystem Library _ Filesystem access to processes

- Preloaded
- POSIX-like interface for process management, memory mappings, library functions, asynchronous I/O

Filesystem Service — Handles container I/O in a pool

- Collections of libservices
- libservice: standalone user-level storage functionality implemented as library

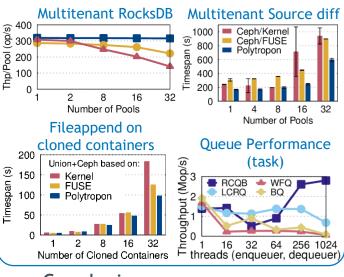
Container Pool(s) Container(s) Mount libservices Table **Application** union Filesystem Filesystem cache Default Service Library User-level remote Front Driver **Back Driver** local **Example 2** Legacy Kernel


Interprocess Communication

Request Concurrent Queue Blocking (RCQB)

- Optimized gueue for reguest communication
- 1st Stage: Distributes operations sequentially
- 2nd Stage: Let them complete in parallel potentially out of FIFO order

Shared Memory Optimized (SMO) Copy


- Optimized copy algorithm for data transfer
- Optimized copy algorithm for data transfer
 Copy: Source -> Shared Memory -> Destination
 1st Stage: Non-temporal prefetch of 2 cache lines
- 2nd Stage: Non-temporal store of 2 cache lines

Results

Summary

- Polytropon achieves faster I/O response & more stable performance
- RCOB benefits from parallel completion of enqueuer and dequeuer operations

Conclusions

Problem

 I/O contention on shared host kernel limits performance of containerized applications

Solution: The Polytropon toolkit

- User-level components for filesystem provisioning on multitenant hosts
- Tenant I/O isolation
- Scalable and stable performance