
POSTER: A Lock-free Relaxed Concurrent 

Queue for Fast Work Distribution

Principles and Practice of Parallel Programming 2021 (PPoPP ‘21)

Giorgos Kappes, Stergios V. Anastasiadis

University of Ioannina, Ioannina 45110, Greece



The Producer-Consumer Problem

Appears in multicore machines

 Kernel & user-level I/O stacks, networking, parallel applications

 Requires fast communication at high concurrency

Communication

 Shared data structure often implemented as concurrent FIFO queue

 Multiple producer & consumer threads access the queue

 The item with longest time in the queue is removed first

Issues

 Time-based item ordering (e.g., FIFO) inherently sequential

 Limits concurrency, delays queue operations

POSTER: A Lock-free Relaxed Concurrent Queue2



Related Work

Concurrent FIFO queues

 Lock-free Michael-Scott queue: CAS retries limit performance

 Lock-free LCRQ: Operation retries & queue creations limit 

performance

 Wait-Free Queue: Performance sensitivity to frequency of slow path 

relatively to fast

 Blocking Broker Queue: Slower at empty or full queue

Relaxed queues and bags

 Multilane (concurrent multiset): No wait fairness

 Priority relaxation: Item priority probabilistically relaxed

 Lock-based RCQB: Locking limits concurrency

POSTER: A Lock-free Relaxed Concurrent Queue3



Relaxed Concurrent Queue Single (RCQS)

POSTER: A Lock-free Relaxed Concurrent Queue4

Goals

 High operation throughput

 Low item wait latency in the queue

Relaxed ordering model: split enqueues/dequeues into 2 stages

 1st Stage: Distribute operations sequentially

 2nd Stage: Let them complete concurrently, potentially out of order 

Implementation

 Fixed-size (power of 2) circular buffer (slots)

 Head and Tail unsigned integers

 Slot state (occupied/free, 1-bit value), slot data (63-bit value)

 Slot state is also a condition variable that notifies waiting dequeuers



Operations of RCQS

POSTER: A Lock-free Relaxed Concurrent Queue5

Enqueue
 Allocate slot to thread sequentially with FAA on tail

 Single Compare-and-Swap (CAS): switch slot state from free to 
occupied and update slot data atomically

 If the CAS succeeds, enqueue completes & notifies waiting 
dequeuers (if any), otherwise retry at same slot

Dequeue
 Allocate slot to thread sequentially with FAA on head

 Single Compare-and-Swap (CAS): switch slot state from occupied 
to free and zero out slot data atomically

 If the CAS succeeds, dequeue returns retrieved data

 If the CAS fails & the slot state is occupied, retry at same slot

 If the slot state is free, sleep after max number of retries

Dequeuers 

follow the 

enqueuers

DD
H

E
ET



Properties of RCQS

POSTER: A Lock-free Relaxed Concurrent Queue6

Lock-free: some operation always finishes in a finite number of steps
 Assume partial definition to satisfy non-blocking when enqueuer or 

dequeuer waits on slot for free or occupied precondition

 When a competing thread completes the CAS on a slot, an operation 
finishes in a finite number of steps

 From sequential slot allocation, enqueuers cannot indefinitely wait at a 
slot if there are active dequeuers (and vice versa) 

Linearizability: the structure remains valid and operations finish 
between invocation and response 

 2 Invariants: Sequential operation assignment to slot & safe item removal 
satisfied by FAA and CAS respectively

 For each operation assume two methods with distinct invocation-response: 
slot allocation and slot update

 Each method has its own linearization point (FAA or CAS)



Evaluation (Dual 16C/32HT Xeon 5218)

POSTER: A Lock-free Relaxed Concurrent Queue7

RCQS achieves substantially lower operation & wait latency

 Enqueue latency (lower): e.g., up to 27.7x than MSQ

 Dequeue latency (lower): e.g., up to 34.9x than LCRQ

 Wait latency (lower & stable): RCQS avg 16-114μs and std up to 3.4ms

 Wait latency of LCRQ, WFQ reaches tens or hundreds of milliseconds

 Issues: Operation retries for FIFO, queue creations, thread helping

Open System with separate threads for enqueuer & dequeuer 



Conclusions & Future Work

Queues with typical queueing discipline (e.g., FIFO)
 Time-based item ordering inherently sequential

 Limit concurrency and delay operations

Relaxed Concurrent Queue Single
 Linearizable, lock-free queue algorithm that relaxes operation ordering 

 (1) Sequentially assign operations to slots, (2) execute them concurrently

Benefits
 Utilizes limited amount of memory space

 Improves concurrency, decreases operation & item wait latency

Future Work
 Formal study of the queue properties

 Further experimental evaluation across different system configurations

POSTER: A Lock-free Relaxed Concurrent Queue8


